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The paper presents a multivariable control system for an alaminium reduction
cell. The system is based on a dynamic model for the energy and mass balance.
This model gives an optimal stationary state (or behavior) of the cell and is the
basis of a reduced model which is used in calculation of the feedback control.

The process has certain peculiarities which must be taken into account when
dealing with process control. It has considerable non-linearities, and if you want
to use a linear reduced model, there is no real stationary point where it is possible
to calculate this model. This is due to the fact that the process has continuous
production of aluminium and consumption of raw materials, while the tapping
and the supply are batch processes. The measurements that are available are
few and, therefore, much work has been expended on making the model as
accurate as possible. Taking into consideration the observability and controllabi-
lity conditions, an alternating filter based on a Robbins Monro algorithm is
used, which can only adjust some of the state variables. The state variables to be
adjusted are dependent on the disturbances and the controls. The control problem
is solved as an ordinary linear problem for the anode adjustment. For the supply
of raw materials the feedback control is calculated in a more direct way, taking
into account that it is a batch process, and that we want to keep control with the
mass of undissolved alumina. The paper also contains some experimental data
for the control system.

1. Introduction

The main goal of this project has been to construct a multivariable control system
to obtain as good operation of the pots as possible. The consequences of good opera-
tion is good economy, less uncomfortable jobs and smaller gass polution. The project
has been a joint project between A/S Ardal og Sunndal Verk (ASV) and Institutt for
Energiteknikk (IFE). ASV is the biggest aluminum producer in Norway, and have
for several years used computer models in construction and parameter studies in
for example aluminum reduction cells,

Today, the computer control system is divided into several parts which operate
almost independently of each other. One part takes care of the measurement of the
ohmic resistance through the pot, and controls it by aiming at a target value set by the
foreman. Supply of alumina is done through a special schedule based on anode effect
voltage and frequence. Events like tapping, changing of anode blocks and Alfs-supply
are ordered by the foreman on the basis of a time-dependent routine. This computer
system works very well. It was installed in 1968 and 2-3 years after, almost all the
pots were atuomatically controlled. The problem is, however, that sometimes the
pots become partly unstable or the pots behaviour are not optimal. The reason for
this is that the conventional system does not control the bath temperature, the thick-
ness of the side freeze or the mass of undissolved alumina. The question is then, is it
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possible to control the entire mass- and energy balance of the pots using a mathemati-
cal model and multivariable control theory? If the answer is yes, what does this
system require of measurements and control equipment, and how will it affect the
workers who operate the pots? This paper will mainly deal with the first question,
while the total project also deals with the other questions. Concerning the multi-
variable control system, the project objectives may be summarized as follows:

(1) Low energy consumption and maximum current efficiency. (This is dependent
on the concentration of the dissolved alumina and fluoride in the bath, the
temperatures in the pot and the interpolar distance.)

(2) Safe operation of the pot. (We want for example to get good control of the
side freeze and undissolved alumina to prevent leakages or unstable working
conditions.)

(3) Managing the interuptions to desirable points of time. (We want for example
anode effect to happen in daytime.)

(4) Use the available measurements and knowledge of the pots conditions to get
reliable and good information for state estimation.

2. Description of the process

The production of aluminium takes place in electrolytic cells (pots) where alumina
is dissolved in molten cryolite. The alumina is reduced electrolytically to Al at tem-
peratures of 950-970°C. A cross-section of a pot is shown in Fig. 1.
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Figure 1. Cross section an aluminium reduction cell.

The most important factors concerning energy balance of the pot, are the amperage
through it, the ohmic resistance between the anode and the cathode, the thickness of
the side freeze, and the energy used in dissolvation and reduction of alumina. The
process has considerable nonlinearities and the pot is never completely stationary
because the production of aluminium and the consumption of raw materials are
continuous, while tapping of aluminium and supplying of raw materials takes place
at discrete points of time. When certain controls are performed on the pot it involves
great disturbances, for example when the crust is broken down into the pot during
the supply of raw materials.

However, the pot also has some good properties. The measurements of the
voltage and the amperage are reliable, and it is possible to get a good estimation of
the ohmic part of the voltage. When the ohmic effect produced in the pot is known,
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the variation of the side freeze gives a negative feedback on the temperatures in the
pot, and the energy balance is therefore a stable process. When the cell is operated
without an adequate supply of alumina, the so called “anode effect’ occurs. This shows
itself as a high voltage, and this effect gives you information about the mass balance
in the cell. It is also possible to get some information from the response of certain
controls you perform on the cell. Further, the production of aluminum and the
consumption of raw materials is given very accurately by the current through the
pot, and if you get good control (estimate) of the side freeze, the undissolved alumina,
and the temperatures, you can calculate the concentration of raw materials in the
bath. These concentrations are very important for the current efficiency and the
energy consumption.

3. The model of the energy and mass balance

The pot is divided into a finite number of components and the state of one such
component is described by its mean state. This leads to a model consisting of con-
centrated parameters:

i=f(x, u, 1) 1

y=g(x,u,1) )
where
x is a n-dimensional state vector
u 15 a r-dimensional control vector
y is a m-dimensional measurement vector
t is the time.

The way the pot is divided up is shown in Fig. 2. Today the model has 26 different
state variables and 9 different controls. To integrate these 26 nonlinear equations, fifth
order Runge-Merson formulae are used. A more detailed description of the model is
given in Ek and Fladmark (1973). Since the model is nonlinear and perhaps some of
the states are superfluous in an estimator working on-line with the process, we want
to make a linearization of the model based on ordinary perturbation techniques.
In order to do that we want to define a stationary solution, despite the fact the process
itself has no stationarity, and to make the perturbations around a nominal trajectory.
The stationary solution will be the initial state of this trajectory. If the initial state is
different from this, we will not get this desired trajectory.

Since we want the pot to be near an optimal state, the stationary solution and
thereby the initial state of the trajectory should be optimal. The model (1) calculates
among other things the current efficiency and energy consumption for a stationary
solution. One procedure is to specify the (optimal) concentrations of raw materials
and the thickness of the side freeze, and let the model calculate a corresponding
distance between the anode and cathode, and the temperatures inside the pot. The
stationary solution is defined by letting all the time derivatives of the dynamic variable
be equal zero:

S(x, u,1)=0 3)

For the masses this means that we must have a continuous tapping of aluminum
and adding of raw materials. The solution we get will then represent the mean states
of the pot over a long period with constant, or periodically repeated, operating
conditions. To solve (2) we use a Newton-Raphson method with a special treatment
of singularities (Rasmussen 1970).
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Figure 2. Components of the model. 7=temperature of the component. M =mass of the
model.

4. The reduced linear model

As mentioned above, the optimal stationary solution is the initial state in calcu-
lating the reduced model. We use ordinary perturbation techniques to describe how
‘irregularities’ are transmitted in the pot (Saksvikrenning, Gran and Vee 1976). The
procedure is as follows. We simulate the model one sampling period from the
stationary solution and get new states for the nominal trajectory at the end of the
sampling period. To get a model describing how the ‘irregularities’ from this nominal
trajectory are being transmitted in the pot, we go back to the initial states of the
nominal trajectory (stationary solution), perturbate every single state one at a time
and simulate the model the same sampling period. The states at the end of the period
this time, will not be the same as the states of the nominal trajectory since we have
initially perturbated one of them. The difference between these two set of states are
used to calculate one column in the transition matrix @,. The matrix ®; will describe
the transition:

xy(k+1)—a(k+1)=,(x, (k) —a(k)) @

where

a(k)=the state vector of the nominal trajectory at sampling point k
a(k + 1)=the state vector of the nominal trajectory at sampling point k +1
x,(k)=the actual state vector at sampling point k
x,(k + 1)=the actual state vector at sampling point k + 1
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We can modify eqn. (4) to a normal form:

x(k +1)=0x(k) ®)
where
]' x,(k)
()= (6)
|1
T @, b
| 0.0 i1
and
b=a(k+1)—®,a(k) 8)

From this, we see that the vector b contains the nominal trajectory and a correc-
tion due to the fact that the state vector x(k) is the actual state and not a difference
from the nominal trajectory.

By fairly the same method as calculating the transition matrix @,, we can calcu-
late the transmission matrix A and the measurement matrix D. The model is then
described by the egn. (9), (10).

x(k+1)= - x(k) + A - (k) ©)
Yk+1)=D - x(k+1)+E - u(k) (10)

x(k), u(k), and y(k) are the vectors defined below eqn. (1, 2) at sampling no. k.
® is a nxn transition matrix. A is a nxr transmission matrix. D is a mxn measurement
matrix.

Also, the reduction of the number of state variables is produced during this
linearization procedure. We only perturbate and calculate the transition matrix @,,
for those states which:

(1) we want to keep in the model for control purposes,
(2) must be included to preserve the dynamics of the pot.

On the basis of these factors we have concluded that the estimation model must
have the variables stated in Table 1.

In the linear model egns. (9) and (10) we have to include 2 nonlinearities which
are essential in our process.

A contains one nonlinear element describing the instant dissolving of alumina in
the bath. D contains one nonlinear element describing how the resistance in pot is a
function of the concentration of dissolved alumina in the bath. We have to use a
matrix E to describe how the current (a control variable) influences the resistance.
Consequently, to be correct, the linear model contains 2 important nonlinearities
which are necessary to give the proper accuracy.

The nominal trajectory is given implicit in the ®-matrix as a constant. The linear
model has been compared with the nonlinear model eqn. (1, 2) in several simulation
studies. The reduced linear model contains 13 state variables. Linear models based
on perturbations around a nominal trajectory can give problems dealing with feed-
back control, if the trajectory is not described good enough. However, in this case,
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State variables Measurements Controls
1. Mass of aluminum 1. Resistance 1. Tapping of aluminum
2. Mass of bath 2. Percentage of 2. Supply of alumina by
3. Mass of dissolved dissolved alumina crustbreaking the side
alumina in the bath 3. Percentage of fluoride 3. Supply of alumina in the
4. Mass of aluminum 4. Temperature in the center of the pot
fluoride bath (controlled by the
5. Mass of the side- 5. Temperature in the computer or manually)
freeze in the bath carbon side blocks 4. Supply of aluminum
level 6. Aluminum height fluoride
6. Mass of the side- 7. Bath height 5. Changing of anode
freeze in the 8. Interpolar distance carbons
aluminum level 9. Thickness of the side 6. Anode adjustment
7. Mass of undissolved freeze in the bath 7. Amperage
alumina in the bath level 8. Anode effect
8. Mass of undissolved 10. Thickness of the side (is a control to the
alumina in the freeze in the model, not the
aluminum aluminum level process)
9. Volume of frozen
cryolite in the
aluminum
10. Temperature in the
bath
11. Temperature in
aluminum

12. Height anode
13. Constant=1

Table 1. State variables, measurements, and controls in the reduced linear model.

describing the nominal trajectory as a constant deviation from time k to k+ 1 appears
to be accurate enough. It also depends on how one solves the feedback problem.
(See also the example at the end of this paper.)

5. The multivariable control system

As a starting point in this project we used ordinary extended Kalman-filter tech-
niques. See Saksvikrenning, Gran and Vee (1976). The measurements of the resistance
and the amperage are reliable and good measurements. At an earlier stage in this
project we believed strongly in measuring the temperatures in the sideblocks on-line.
However, these measurements were noisy, more influenced by crustbreaking, dis-
solving of alumina, and other strongly local phenomena inside the pot, than the
thickness of the side freeze and the mean temperatures in the bath and aluminum.

As in ordinary Kalman-filter techniques we want the model to work in parallel
with the pot. This is possible by using the resistance in a Robbins-Monro stochastic
approximation algorithm as described in Martin (1972). First let us look at the
important features which make this possible:

1. When the ochmic effect produced in the pot is known, we have a stable process.

2. Some of the important variables are slowly varying and can be measured from
time to time.
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3. The consumption of raw materials and production of aluminum is given very
accurately by the current through the pot.

4. When anode effect occurs it will give you good information of the concentra-
tion of dissolved alumina.

5. When you perform certain controls on the pot (as for example breaking the
crust) you know what variables that will be affected.

6. Some of the controls give you an informative response in the resistance.

7. The mass of tapped aluminum is measured accurately.

8. The amount of supply of alumina are nearly constant.

By using only the resistance as an on-line measurement, we get of course almost
open-loop prediction between the controls. This gives very strong demands on the
model for how well it can simulate the process, and the testing of the model against
measurement data from the process has been the most time consuming but also the
most interesting part in this project. The simulation of the model against data from
the process has been a powerful tool in better understanding in how the physical
relationships interact in the pot.

The energy input to the model is controlled by the following Robbins-Monro
algorithm (Martin 1972),

J'f'("f)=x'(klﬁ’f—l)+§ PO/ (k)—y'(k[k—1)) (11

where

¥'(k[k—1)= Dx(k|k—1)+ Eu(k) (12)

x'(k) is the corrected state variable (not a vector) at time k.
Xx'(k/k—1) is predicted state variable calculated by the model (9) at time k. It is
based on measurements up to time k—1.
A 1s a gain constant in the stochastic algorithm. (For example 4 =0,5).
D' is the matrix element in the D-matrix (10) connecting resistance and
the state variable x'(k/k—1).
y'(¥) is the measured resistance through the pot.
Y'(k[k—1) is the predicted resistance calculated by the model (9, 10).
i is the influence function for the algorithm. See Fig. 3. It minimized the
variance for noise densities which are contaminated gaussian.
D is the line in the D-matrix (10) connecting the resistance and the state
vector.
x(k/k—1) is the predicted state vector calculated in the model (9).

E is the line in the E-matrix (10) connecting the resistance and the control
vector.

u(k) is the control vector defined in (10).

The eqgns. (11) and (12) are used for each time step. Only one state variable is
corrected each time. The state which is corrected in this manner is dependent on the
last controls. The state variables are corrected in a manner such that energy input
in the model is the same as the energy input in the pot. Other measurements which
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Figure 3. The influence function used in the stochastic algorithm. K is generally a function
of the noise variance and the contamination factor. See (Martin 1972). (We have
used K=1 pf2).

are not performed on-line each time-step, can be used to correct the model manually
or the model can calculate the correction factor automatically and correct the state
variables that influence the actual resistance. This is for example the case for the
measurements of bath height and the aluminum height.

If the model is going to behave accurately enough (behave like the pot we are going
to control) the following must be satisfied.

(1) The energy input to the model must be the same as in the pot. This is taken
care of by the Robbins-Monro stochastic algorithm described above.

(2) All ‘mass controls’ as adding alumina, fluoride, tapping of aluminum which
are performed on the pot, must be given or ‘estimated’ accurately enough by
the model.

(3) The model must be good. All important factors influencing the energy balance
of the pot must be modelled. (Thickness of the side freeze, liquid tem-
perature, dissolvation energy for the alumina and fluoride, reaction voltage,
anode effect, etc. Some of these factors are not state variables but are given
implicit in the model (1) and therefore also in (9).)

In this project, much work has been done in getting more information from
measuring the resistance. For some pots, it is sometimes possible to predict the
anode effect and thereby control the percentage of dissolved alumina. However,
generally this is not possible. On the other hand it is possible to get information of the
thickness of the sidefreeze by measuring the resistance combined with the anode
adjustments, during and after tapping of aluminum.

The total control system (with the controller described in below) is shown in Fig.
4,

6. The control problem
We want to calculate a feedback matrix from the calculated state vector:

u(k)= G(2(k) — Xop:(K)) a3)
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Figure 4. Multivariable control system for aluminium reduction cells,

The control matrix G describes the control of :

1. Tapping of aluminum,
2. Supply of alumina.

3. Supply of AlF;.

4. Anode movement.

In the calculation of the G-matrix we have to keep in mind that we are dealing
with a batch process and that the three first controls only can be positive. It is for
example not possible to remove alumina. Further, the three first controls should not
be performed too often, because they introduce great disturbances on the process.
Tapping of aluminum and crustbreaking takes place on a specified time schedule
for all the pots. Supply of alumina takes place by an automatic feeding (can be
ordered from the system) or by breaking the crust. However, anode adjustment can
be performed on-line and can be both positive and negative. We have solved the
control problem by using ordinary minimum variance control as described in for
example Ek and Gran (1974) for the anode movement. The performance index which
is to be minimized put weights on:

1. Thickness of the side freeze.

2. Bath temperature.

3. Distance between the anode and the cathode.
4. The anode movement.

Since none of these variables are typical batch processes with a mean driving term,
Xope(k) 1n (6) is a constant vector. The calculated optimal anode movement has to be
above a certain limit to be performed. The elements in the G-matrix for the other
controls are given in a more direct manner. Since the mass of aluminum, the mass of
alumina and the mass of AlF; (these variables are state variables), are typical batch
processes with almost constant driving terms, we have simply used the gain (G=2)
from the according state variable to the according control variable. Some of these
controls have to reach a certain limit to be performed, others are performed according
to a specified schedule. However, the control of alumina supply also follows a more
technical algorithm which is based on the mass of undissolved alumina and the
anode effects.
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7. Discussion of the total control system

In the construction of the control system we have tried to approach the problems
and solve them in the most natural way. All the states in the model have for example
a real physical meaning. ASV and IFE have had very useful discussions in this project
and this has resulted in an improved understanding of the process we want to control.
As a result of this the simulation models have improved constantly. Due to the state
variables included in the model, both the estimation loop (RM-algorithm) and the
feedback control have a PID effect. The feedback control is constructed in the most
direct way. With this control, it has been very interesting to see how the pot resistance
vary as a function of raw materials in the bath and as a function of time.

8. Examples

The complete system has been tested on one pot in Ardal since August 1978.
Figure 5 shows a typical result of the estimation problem. Here the system controls
the anode movement and the automatic supply of Al,O,. However, the mass of
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Figure 5. Estimation and control based on measuring the resistance through the pot.
Anode=anode adjustment (mm). Feed=adding alumina (kg). Effect=anode effect
(volt x sek).
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undissolved alumina is unexpectedly high, and we get two anode effects in this period
as a result of this. The bath temperature is measured in a single point in the pot, and
we see that it has the same trend as the estimated mean value. We know from other
measurements that we have temperature gradients in the bath as a function of the
space. So the estimated bath temperature might be a good estimation. The same
yields for the alumina concentration.

The next example, Fig. 6, shows a test of the linear reduced against the nonlinear
model (1, 2). The nonlinear model can in this example represent the pot and both
models are controlled by the feedback controller described above. This simulation
shows how anode effect influences the system. In this case the adding of alumina to
get rid of the anode effect is relatively small, such that anode effect and energy for
dissolving the alumina represents a positive energy input. This is not the case in the
first example. Notice also that the side freeze is freezing before the anode effect. The
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Figure 6. The linear reduced model with feedback controller against the nonlinear model
(process). Anode=anode adjustment (mm). Feed=adding alumina (kg). Effect=
anode effect (volt x sek). Curr=current (kA).
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reason for this is that the liquids temperature for cryolite is getting higher because
the alumina concentration is getting smaller. The deviation between the reduced
linear model and the nonlinear model is biggest when the state is far from optimum
(linearization point). This and other simulations over a longer period of time shows
that deviation between the models are not growing steadily. When the models are
back near the optimum state they are approaching each other after being removed
from the optimum state due to anode effects, current variations, etc.

9. Conclusion

The goal in this project has been to control the entire mass and energy balance of
an aluminum reduction cell. This is only possible if you get a thorough understanding
of the physical relationships in the process, how they interact on each other, their
importance for the energy balance, etc. These relationships must be used in a mathe-
matical model which is not too complicated, but gives a good description of the
process behaviour. The estimation and control techniques applied on this model, can
then be made fairly simple as described in this project.

The entire control system is now working on-line on one pot in Ardal. We are
very satisfied with the results, but it is difficult to ge a quantitative measure of the
better performance. When you are concerned with the behaviour of a single pot, it
will always run better than the others because it is taken more care of. Today, this
pot and the estimation results are used for intensive parameter studies. This will not '
only be a benefit for this project but for the general research and construction of the
aluminum reduction cells.
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