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Slow drift oscillations of a ship in irregular wavesf
ODD M. FALTINSEN} and ARNE E. LOKEN§
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A procedure to calculate horizontal slow drift excitation forces on an infinitely
long horizontal cylinder in irregular beam sea waves is presented. The hydro-
dynamic boundary-value problem is solved correctly to second order in wave
amplitude. Results in the form of second order transfer functions are presented
for different, two-dimensional shapes. It is concluded that Newman'’s approxi-
mative method is a practical way to calculate slow drift excitation forces on a ship
in beam sea and it is suggested that it may be used in a more general case.
Applications of the results for moored ships are discussed.

1. Introduction

Slow drift oscillations of a moored structure in irregular waves may be an impor-
tant problem. The large, horizontal excursions that occur can cause large forces in
anchor lines and limitations in drilling operations.

Hsu and Blenkarn (1970) have given a simple explanation of the phenomena.
They imagine the irregular wave system divided into approximate regular wave parts.
In each regular wave part, the structure will experience a constant horizontal driftforce
(and yaw moment). This is illustrated in Fig. 1, where the driftforce in each ‘regular
wave part’ is indicated by an arrow. In this way a slowly varying excitation force is
obtained. The magnitude is not large but, if the mean period is close to a natural period
in yaw, sway or surge, a significant amplification may occur due to small damping
in the system.
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Figure 1. Irregular wave system divided into approximate regular wave parts, showing
slowly varying horizontal drift force.

The slow drift excitation forces may also be important for dynamic positioning
of offshore structures, manoeuvering of ships in a seaway and analysis of offshore
loading. For large volume structures with a small waterplane area, the slow drift
excitation forces and moments may create large pitch, roll and heave oscillations.

Received 18th September 1979.

T This paper has been published in Applied Ocean Research, 1979, Vol. 1, No. 1, and is
reprinted in MIC with the permission of the authors and the publisher.

1 Professor at The Norwegian Institute of Technology, Trondheim, Norway.

§ Senior Research Engineer, Det norske Veritas, Havik, Norway.

M.LC, K




196 O. M. Faltinsen and A. E. Loken

The drift force and moment in regular waves is the important building brick in
Hsu and Blenkarn’s analysis of the slowly varying driftforce and moments. The same
is true in the approach by Remery and Hermans (1971) and Newman (1974). A priori
they disregard several nonlinear interaction terms between the waves and the struc-
ture. In this paper, a new procedure to calculate slow drift excitation forces on an
infinitely long horizontal cylinder in irregular beam sea waves is presented. The
hydrodynamic boundary value problem is formulated and solved correctly to second
order in wave amplitude. The first order problem is the wellknown linear problem
commonly used in strip theory calculations of ship motion, and the second order
problem contains the necessary slow drift excitation forces. The second order potential
satisfied Laplace equation with inhomogeneous boundary condition on the free surface
and the body boundary. Green’s second identity is used to derive a formula for the
drift force and slowly varying horizontal force. All nonlinear interaction terms are
included in the theory. The results are presented in the form of second order transfer
functions. Some details about theory are found in the next section. The following
three sections present numerical results of second order transfer functions for different
two-dimensional shapes. The different contributions to the second order transfer
functions are examined and the theory is compared to the simplified approach by
Newman (1974). In the final section, the application of the results to slow drift
oscillations of moored ships is discussed.

2. Theory

Consider an infinitely long horizontal cylinder in longcrested irregular beam sea
waves in infinite water depth. A cross-section is shown in Fig. 2. The problem is
two-dimensional in the cross-sectional plane and we will choose a coordinate system
(x, ) which is fixed, with respect to the structure, and coincides with the inertial
system, (x, y), when the structure is at rest. y=0 is in the mean free surface and positive
y-axis is upwards. The y-axis is symmetry axis for the structure.

A

Figure 2. Cross-section of infinitely long horizontal cylinder in long-crested irregular beam
sea waves in infinite water depth.

Let us assume the fluid to be incompressible and the fluid motion irrotational so
that there exists a velocity potential ¢ which satisfies the Laplace equation
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The solution will be written as a series expansion in a parameter & characterizing the




Slow drift oscillations of a ship in irregular waves 197

smallness of the wave amplitudes, i.e. we write

p=di+d2t ... 2

where ¢, is linear with respect to 8, ¢, is quadratic with respect to 8, and so forth.
Let the incident waves propagate along the positive x-axis. The incident wave
potential correct to first order in wave amplitude can be written as

N
$'= E‘? exp (vy) sin (vix — wil +¢;) ®)

i=1 i

Here ¢ is the time variable, g the acceleration of gravity, w, the circular frequency of
oscillation and v; the wave number of wave component number i. w; and », are con-
nected through the dispersion relationship w;?/g=v;. The phase angles ¢, may be
considered as random phase angles and the amplitudes A4, of the wave components
may be determined by a wave spectrum S(w), characterizing the sea state. If the
important part of the wave energy is concentrated between the circular frequencies
Wpin and wp,,, we divide the frequency interval wp,;, 10 wm,, into N equal subintervals
and call the midpoints of the ith interval w,. 4, is then determined by

),

min (4)
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ZE L g i

N

The limit of the sum (3) when the subintervals go to zero, wp,;, 0 and wg,, >0, is

£

H= 6.. f exp (v)) cos (vx— wit +e(w))1/(2S(w)dw) (%)

From a practical point of view, eqns. (3) and (5) are the same. Equations (3) or (5) isa
first order approximation of the incident wave-field. Note that our solution will
contain a second order correction to the incident wave potential that is slowly varying
in time and propagates along the positive x-axis.

The problem of selecting appropriate design spectra is a difficult one. Different
analytical spectral forms are recommended in the literature. Examples are the Pierson—
Moskowitz spectrum, ISSC-spectrum, Scott-Wiegel spectrum and the ITTC-spec-
trum. The Jonswap spectrum is often used for the North-Sea Offshore operations.
Houmb and Overvik (1976) have recommended a practical way to determine the
parameters of the Jonswap spectrum, on the basis of a given significant wave height
and mean period.

In reality the seaway is not longcrested. Reliable information about shortcrested
waves is scarce. The cosinus square directional function is often used. In general, the
directional function is frequency-dependent and dependent on the site. In principle,
it is possible to generalize our procedure to take into account the shortcrestedness of
the waves,

Details about the solution of the first and second order problem are given by
Faltinsen and Loken (1978 a). It should be noted that the influence of the first order
motions in heave (13), sway (1,) and roll (»,) are included in the first order potential,
¢,, while the effect of second order motions is not included in the second order
potential, ¢,. This implies that the second order force we discuss below is an excita-
tion force to the second order motion.

K2
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The second order slowly varying horizontal excitation force may be obtained
through the Bernoulli’s equation

3 6 p[ () (74
R=SSEEE- P -E_I_E[(gc) +(ry) ]+Pa

where p is the fluid pressure and p, atmospheric pressure. By Taylor expansion, we
can write the pressure on the body, p,, in terms of the values on the mean position of
the body. This is indicated by the index m in the expression below. We can write

2 —1 4 "2
Ps=—PS}’—Péi; m—PG;i m‘P(’Jz m4) Af
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This is correct to second order in wave amplitude. The first term in (6) is the hydro-
static pressure, which causes the following horizontal force pr. unit length on the body

1@ ¥,
Fs=F8 i
=516 G

where b is the beam at water line.

The second term in eqn. (6) is a first order term. To derive a force-expression
correct to second order, we have to be careful about the integration of the pressure
term and take proper account of the changing wetted surface of the body. It is possible
to show that the second term causes a slowly varying horizontal force pr. unit length,
which can be derived from the expression

B
;:‘;’2 g o
x= —bj2 T
y=0 g ct

where M is the mass pr. unit length of the cylinder. An incorrect version of egn. (8)
was presented by Faltinsen and Leken (1978 a), but this did not influence their
numerical results.

The slowly varying horizontal force pr. unit length, due to the third term in
eqn. (6), has been derived by Faltinsen and Leken (1978 a). The contribution to the
slowly varying horizontal force pr. unit length on the rest of the terms in eqn. (6) can
be derived from

x= -wz} )

y=0

x=b2= (7}3+bf2134}}
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where n, is the horizontal component of the unit normal vector n to the average
wetted body surface S per pr. unit length. (n is positive into the fluid).

2%,
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The horizontal slow drift excitation forces pr. unit length can be written as

N N
E&¥= E] j;l A A{T cos((wy—ew; )t —(€;— €)) + T sin ((ew; — w; )t — (;—<))}  (10)

The mean drift force pr. unit length is easily obtained from (10) as

_ N
Fusv= ZAtZTuc (“)
i=1

T: and T, are independent of A4, 4}, ¢ and ¢;, and can be considered as second
order transfer functions. 4, T;° is the drift force in regular sinusoidal waves of
circular frequency w; and wave amplitude A4,.

A degree of ambiguity exists in the coefficients T;;° and T,;* when i#j. We could,
for example, impose the restriction that 7,,° and 7, are equal to zero when i> J.
Another possibility is to require that 7,,*=T7,° and T,°= —T7,° when j#i. This
definition was followed by Newman (3) and, in presentation of our results, we will
follow the same procedure. It should be noted that Newman’s simplifying approach

-was to assume that 7,,°=T,° and T,;=0 in eqn. (10).

Equation (10) can be written as an integral formulation in the same way as eqn.

(3) was written as egn. (5). We can write

R = [ [ {70, ') 05 (0=~ ()~ (@)
+ T, ') sin (w— ') —((w) — @)} - V4S(@)S(@’) do do’  (12)

The mean drift force can be written as

FSV= EDZS(M)T‘(w, w) dow (13)
0

3. Numerical results

The method described in the last chapter has been used to calculate second order
transfer functions and slowly varying horizontal exciting force on infinitely long
horizontal cylinders in irregular, longcrested beam sea waves. Four different sectional
shapes were used. The main particulars are given in Table 1. GM is the transverse
metacentric height, RRG the roll radius of gyration with respect to an axis in water
plane right above centre of gravity, Y, is the vertical coordinate of the centre of
gravity, b is the beam at waterline and d is the sectional draft.

b b b
Circular Cylinder bjd=2-0 0-127 0-26 —0-125
Rectangular Cylinder b/d=2-0 0-042 0-25 —0-125
Rectangular Cylinder b/d==? 0-139 0-25 -0-125
Rectangular Cylinder b/d=%3 0-188 0-25 —0-125

Table 1.
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We did not have experimental results to compare our numerical results with.
Model tests are difficult to perform because of the small quantities we are dealing
with. There are different ways we could do the model tests. One way is to conduct
tests with two simultaneous regular wave trains of circular frequencies w; and w;
incident on a long cylinder orthogonal to the wave propagation direction. The model
can be kept in an average position by a system of soft springs. In this way, they do not
influence the first order motions significantly.

The slow drift excitation force

(73 + Ty ) cos ((wyj— )t —(e;—€)) +H(Ti* —T5°) sin ((w;— @)t —(e;—€))

can be obtained by measuring the sway response and separating the sway response
that is oscillating with circular frequency w;—w,. Assuming the low frequency added
mass and the spring characteristics to be known, we may use a simple mass-spring
mathematical description to obtain the slow drift excitation force. If w;—w; is close
to the natural circular frequency in sway for the system, we need to know the damping
of the system, which might be difficult to estimate. But the resonance problem can be
avoided by changing the spring characteristics. The second order transfer functions
can be obtained from the equation above and the symmetry relationships of 7;; and
TR

Another way to do the model tests would be to simulate irregular waves and
obtain the second order transfer function through higher order spectra. The tests
would require a long testing period compared with conventional, first order response
analysis.

It may be easier to obtain good accuracy by numerical calculations than by model
tests. But we would like to point out some of the inaccuracies that are in the numerical
calculations. It is then necessary to describe, in some detail, the calculation procedure.

The first order potential is calculated by Lewis form technique, where the velocity
potential is written either as a wave source or as a wave dipole (depending on the
symmetry of the problem) plus an infinite sum of wave free potentials. The strengths
of the source (or the dipole) and the wave free potentials are determined by the body
boundary conditions. In the numerical calculation procedure, the infinite sum of
wave free potentials is truncated and the body boundary conditions are satisfied for a
finite number of points. The number of wave free potential terms in our calculations
was six and the number of points where the body boundary condition was satisfied was
ten. The body boundary condition was satisfied by setting up a least square condition.
The increase of wave free potential terms and points, where the boundary conditions
are satisfied, will not increase significantly the accuracy of the first order terms. The
influence on the second order transfer functions will be more important. For instance,
expression (9) is calculated by evaluating the integrand at the same points where the
body boundary conditions are satisfied and then using a simple numerical integration
scheme. When the wave lengths are small, the first order variables are changing
rapidly in the free surface zone. Therefore, the numer of points on the body boundary
we are using in our calculations might be too few in the low wave length range.

In the calculation of the second order transfer function, we need expressions for the
first order velocities. This was done by both numerical differentiating and by differen-
tiating the analytical first order expressions. We found a difference of up to 107 on
the second order transfer functions by using different differentiation techniques. By
comparison with other methods of predicting drift force, we could not say that one
differentiation technique was better than another. A better agreement would have
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Figure 3. Drift force on (a) rectangular box (b/d=20'7) and (b) circular cylinder (b/d=?2).
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been achieved by increasing the number of wave free potential terms. In the calcula-
tions presented here, we obtained velocities by differentiating the analytical expres-
sions.

The calculation of the driftforce in regular waves i.e. the diagonal term T, has
been compared with the method of Maruo (1960) which states that the driftforce
pr. unit length on an infinitely long horizontal cylinder, in regular beam sea waves, is

Pg
) R APRL
o= 47|

where |4~ | is the reflected wave amplitude. We have used Lewis form technique to
calculate |4~ | (Faltinsen 1975). In general, the agreement between the two methods
is quite good (see Figs. 3 and 4). There are exceptions, however. Better agreement in
the low wave length range may have been obtained by increasing the number of points
on the body boundary where the boundary condition is satisfied. But the main reason
for the discrepancy for the rectangular box (b/d=20/7) is thought to be viscous effects.
This is the only cylinder where a large resonance oscillation in roll occurs in the
frequency range of interest. The resonance roll occurs at the same wave length where
the driftforce has a maximum, i.e. when A/b~ 3-5. In the calculation of roll, a viscous
roll damping is included. This is a significant term at roll resonance. Maruo’s formula
is based on potential theory and derived using conservation of energy. He does not
take into account any viscous loss. We could therefore not expect good agreement
between Maruo’s method and our method at roll resonance. For frequencies that are
not in the vicinity of roll resonance viscous roll damping will have small effect on the
results. The peaks in the driftforce for the other cylinders are due to heave resonance
oscillation, where no viscous effects are taken into account. The heave resonance
oscillation for the rectangular box (b/d=20/15) is very significant. Its amplitude is
2-7 times the incident wave amplitude. But we note quite good agreement between
the two methods.

The second order transfer functions 7, and T;;® (see eqn. (10)) are presented in
non-dimensionalized form as functions of w,;4/(d/g) and w;y/(d[g) in Tables 2-9.
T, and T;;* are understood to be two-dimensional values, i.e. values pr. unit length
of the cylinder. From the tables, we note that 7;;° and T, are, in general, not changing
rapidly when «; is close to w;. There are some few exceptions which seem to occur in
the frequency range where the drift force is changing rapidly, for instance, in the
vicinity of a natural frequency of roll.

The second order transfer functions 7;;° and T, in Tables 2-9, were used together
with eqn. (10) to simulate horizontal slow drift excitation force pr. unit length on
infinitely long horizontal cylinders in irregular beam sea waves (see Figs. 5-8).

An [SSC-spectrum with zero-upcrossing period 7,=>5-5 sec and significant wave
height H,=2m was used to calculate the wave amplitude components A;. Only
11-14 wave components were used. In a practical case, one may need five times as
many components. This is further discussed in the next chapter. All the cylinders had
a beam equal to 20 m.

Newman’s approach was also used in the calculations. That means T}, were set
equal to 7}, and T were set equal to zero in eqn. (10). Both the present method and
Maruo’s method were used to evaluate 7,°. These methods are called Newman-
Faltinsen method and Newman-Maruo method, respectively. Simulation by using
the complete eqn. (10) is called ‘Complete expression’ in the figures. Further ‘Cosine
expression’ means that only the cosine part of eqn. (10) is used. We note that the
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w;v/(d[g)
1-25 1-18 1-12 1-06 0-95 0-89 0-84 0-65
1-25 0-308 0-285 0-259 0-250 0-250 0-240 0-233 0-256
1-18 0-285 0-314 0-306 0-292 0-277 0-246 0-234 0-254
112 0-239 0-308 0-338 0-340 0-324 0-267 0-234 0-247
1-06 0-250 0-292 - 0340 0-368 0-367 0-301 0-245 0-243
0-95 0-250 0-277 0-324 0-367 0-383 0-329 0-257 0-241
0-89 0-240 0-246 0-267 0-301 0-329 0-303 0-227 0-195
0-84 0-233 0-234 0-234 0-245 0-257 0-227 0-147 0-105
>+ 0-65 0-256 0-234 0-247 0-243 0-241 0-195 0-105 0-051
Table 2. Numerical calculations of 7},°/(e-g) for a circular cylinder in beam sea (b/d=2-0).
w;V(d]g)
1-25 1-18 1-12 1-06 0-95 0-89 0-84 0-65
1-25 0-0 0-043 0-059 0-061 0-059 0-069 0-112 0-160
1-18 | —0-043 0-0 0-030 0-038 0-032 0-028 0-066 0-112
1-12 | —0-059 | —0-030 0-0 0-015 0-013 0-004 0-041 0-087
[-06 | —0-061 | —0-038 | —0-015 0-0 0-0 —0-006 0-033 0-082
0-95 | —0-059 } —0-032 | —0-013 0-0 0-0 —0-004 0-040 0-094
| [089 | —0069 | —0:028 | 0004 | 0006 | 0004 | 00 0056 | 0-129
;f 0-84 | —0-11 —0-066 | —0-041 | —0-033 | —0-04 —0-056 0-0 0-09
32 065 | —0-160 | —0-112 | —0-087 | —0-082 | —0-094 | —0-129 | —0-09 0-0

[able 3. Numerical

calculations of T,;*/(p-g) for a circular cylinder in beam sea (b/d=2-0).
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wir/(dfg

1-25 1-18 112 0-89 0-84 0-79 0-76 0-69

1-25 0-363 0-317 0-272 0-270 0-286 0-302 0-330 0-406

1-18 0:317 0-336 0-305 0-260 0-269 0-264 0-261 0-321
1212 0-272 0-305 0-315 0-245 0-255 0-248 0-228 0-258
0-89 0-270 0-260 0-245 0-326 0-339 0-313 0-236 0-172

0-84 0-286 0-269 0-255 0-339 0-384 0-380 0-300 0-208

0-79 0-302 0-264 0-248 0-313 0-380 0-405 0-337 0-234

g 0-76 0-330 0-261 0-228 0-236 0-300 0-337 0-280 0-175
=S
34 069 0-406 0-321 0-258 0-172 0-208 0-234 0-175 0-059
Table 4. Numerical calculations of 7;,/(p- g) for a rectangular cylinder in beam sea (b/d=2-0)]
w;/(dlg
— — 3
1-25 1-18 1-12 0-89 0-84 0-79 0-76 0-69
1-25 0-0 0-045 0-059 0-050 0-034 0-031 0-049 0-075
1-18 | —0-045 0-00 0-034 0-024 0-002 | —0-021 | —0-014 0-009
1-12 | —0-059 | —0-034 00 0-009 | —0-017 | —0-047 | —0-048 | —0-021
0-89 | —0-050 | —0-024 | —0-009 0-0 —0-026 | —0-086 | —0:115 | —0-067
0-84 | —0-034 | —0-001 0-017 0-026 00 —-0-:068 | —0-111 | —0-052
0-79 | —0-031 0-021 0-047 0-086 0-068 0-0 —0-053 0-008
o
= | 0:76 | —0-049 0-014 0-048 0-113 0-111 0-053 0-0 0-068
=
34069 [ —0-075 { —0-009 0-021 0-067 0-052 | —0-008 | —0-068 0-0

Table 5. Numerical calculations of 7, ;*/(p-g) for a rectangular cylinder in beam sea (b/d=2-0)
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wi/(d]g)

105 099 094 074 070 066 063 06l

10s| 0320 0299 | o201 ] 0252] 0189 o019 | 0219 ] 0249
099 0299 | 0324 0340 | 0248 | o160 | 0148 0172 [ 0202
094 0291 | 0340 | 0392 | 0204 | 0173 | 0140 | o01533] 0178
074 | 0252 | 0248 | 0294 | 0544 | 0406 | 0311 | 0208 | 0250
070 | 0189 | 0160 | 0173 | 0406 | 0290 | 0204 | 0166 | 0-150

| |06 0191 | 0148 | 0140 | 0311 | 0204| 0123| 0088 | 0073
Eloe| o200 0172 0153 | 0268 | o166 | 0088 | 0052 | 0038
Slo6| 0249| 0202| 0178 | 025 | 0150 | 0073 | 0038 | 0023

*'ablc 6.

Numerical calculations of T;;°/(p-g) for a rectangular cylinder in beam sea (b/d=20[7).

w;v/(d]g)
1-05 0-99 0-94 0-74 0-70 0-66 0-63 0-61
1-05 0-0 0-048 0-06% | —0-071 | —0-025 0-038 0-080 0-105
099 | —0-048 0-0 0-032 | —0-018 | —0-125 | —0-051 | —0-001 0-028
0-94 | —0-069 | —0-032 0-0 —0-260 | —0-221 | —0-138 | —0-079 | —0-043
0-74 0-071 0-175 0-260 0-0 —0-042 0-0 0-044 0-073
0-70 0-025 0-126 0-221 0-042 0-0 0-042 0-089 0-120
. 0-66 | —0-038 0-051 0-138 0-0 —0-042 0-0 0-051 0-088
S | 0-63 | —0-080 | 0001 | 0079 | —0-044 | —0:089 | —0:051 | 00 0-039
? 0-61 | —0-105 | —0-028 0-043 | —0-073 | —0-120 | —0-088 | —0-039 0-0
Table 7. Numerical calculations of T;;*/(p-g) for a rectangular cylinder in beam sea (b/d=20/7).
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wjy/(d]
1-53 137 0-97 0:93 0-87 0-85 0-79 0-74
1-53 0-387 0-231 0-323 0-400 0-442 0-455 0-470 0-505
1-37 0-231 0-300 0-178 0-199 0-223 0-239 0-299 0-39
0-97 0-323 0-178 0-240 0-257 0-272 0-277 0-137 0-087
0-93 0-397 0-199 0-257 0-293 0-326 0-348 0-192 0-117
0-87 0-442 0-223 0-272 0-326 0-380 0-424 0-270 0-173
0-85 0-455 0-239 0-277 0-348 0-424 0-493 0-361 0-252
‘% 0-79 0-470 0-300 0-137 0-192 0-270 0-361 0-273 0-160
? 0-74 0-505 0-389 0-088 0-117 0-173 0-252 0-160 0*025“
Table 8. Numerical calculations of 7};°/(p-g) for a rectangular cylinder in beam sea (b/d=20/15]
w;/(d[g
1-53 1-37 0-97 0-93 0-87 0-85 079 0-74
1-53 0-0 0-085 0-007 | —0-008 | —0-022 | —0-026 0-027 0-036
137 | —0-085 0-0 0-027 | —0-0i15 | —0-062 | —0-101 | —0-103 | —0-137
097 | —0-007 | —0-027 0-0 0-0 —0-024 | —0-083 | —0-181 | —0-13
0-93 0-008 0-015 0-0 0-0 —0-021 | —0-085 | —0-209 | —0-141
0-87 0-022 0-062 0-024 0-021 0-0 —0-067 | —0-223 | —0-145
. 0-85 0-026 0-107 0-083 0-084 0-067 0-0 —0-183 | —0-105
‘%3 0-79 | —0-027 0-103 0-181 0-204 0-223 0-183 0-0 0-094
? 0-74 | —0-036 0-137 0:130 0-141 0-145 0-105 | —00%4 0-0

Table9. Numerical calculations of 7;;*/(p-g) for a rectangular cylinder in beam sea (b/d=20/15)
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Figure 5. Slowly varying horizontal force per unit length of rectangular cylinder (b/d=
20/15). 0O, Newman/Faltinsen; &, complete expression; ©, cosine expression.
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Figure 6. Slowly varying horizontal force per unit length of rectangular cylinder (b/d=
20/7). O, Newman/Faltinsen; ~, complete expression; O, cosine expression.

differences between the different methods are within 20% in the estimation of force
amplitudes and the deviation in the characteristic period is small,

The results seem to generally confirm Newman’s hypothesis (Newman 1974).
This is an important observation having great practical consequences. The evaluation
of the second order slowly varying excitation force by Newman’s method becomes
quite simple, compared with the more exact method presented in this paper. The
computer time by our method may be quite large. It took 11 minutes CPU on
UNIVAC 1110 to calculate 14 times 14 values of the second order transfer functions
T,;* and T, for three sections.

The importance of the different term in the expression for the slowly varying
excitation term has been studied. The results for a rectangular cylinder with b/d=2
are presented in Table 10. Each main matrix element is divided into three lines.

The first line is the contribution from the velocity square term in Bernoulli’s
equation, i.e. the contribution from the last term of eqn. (9)

The second line is the contribution from the second order potential, i.e. the force
due to the pressure part

i
P .,
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Figure 7. Slowly varying horizontal force per unit length of rectangular box (b/d= 2).
(], Newman/Faltinsen; 2, complete expression; ©, cosine expression.
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Figure 8. Slowly varying horizontal force per unit length of circular cylinder (b/d=2).
00, Newman/Faltinsen; x, Newman/Maruo; 2, complete expression; O, cosine expression.

The last line is the total value of T;;°. All the numbers are non-dimensionalized by pg.
We note from the table that the velocity square term in Bernoulli’s equation gives a
completely wrong estimate of T;,°. This result should be noted, since the velocity
square term of Bernoulli’s equation is sometimes used to calculate the drift force.

We also note the small influence from the second order potential when w; is close
10 w;. When w, is not close to w;, which is uninteresting in the prediction of slow drift
excitation forces, we note that the contribution from the second order potential is
important.

4. Applications to moored ships

The numerical results of chapter 3 suggest that the horizontal slow drift excitation
force on a ship in irregular beam sea waves can be calculated as

N N
V= E E A AT cos ((wy— )t —(;—€)) &

i=] j=1
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w;v/(d[g)
1-25 1-18 1-12 0-89 0-84 0-79 0-76 0-69
—0-592 | —0-580 | —0-562 | —0-523 | —0-586 | —0-634 | —0-513 | —0-214
1-25 0-0 —0-029 | —0-058 | —0-018 | —0-008 0-040 0-176 0-377
0-363 0-317 0-272 0-270 0-286 0-302 0-330 0-406
—0-580 | —0-582 | —0-573 | —0-561 | —0-622 | —0-659 | —0-522 | —0-221
1-18 | —0-029 0-0 —0-019 | —0-034 | —0-028 0-003 0-106 0-289
0-317 0-336 0-305 0-260 0-259 0-264 0-261 0-321
—0-562 | —0-573 | —0-572 | —0-588 | —0-640 | —0-669 | —0-522 | —0-225
1-12 | —0-058 | —0-019 0-0 —0-052 | —0-046 | —0-021 0-059 0-205
0-272 0-305 0-315 0-245 0-255 0-248 0-228 0-258
—0-523 | —0-561 [ —0-580 | —0-630 | —0-679 | —0-687 | —0-541 | —0-372
0-89 | —0-018 | —0-034 | —0-052 0-0 —=0-012 | —0-036 | —0-037 0-008
0-270 0-260 0-245 0-326 0-339 0-313 0-236 0-172
—0-586 | —0-622 | —0-640 | —0-679 | —0-721 | —0-725 | —0-584 | —0-332
0-84 | —0-08 —0-028 | —0-046 | —0-012 0-0 —0-01 —0-019 | —0-002
0-286 0-269 0-255 0-339 0-384 0-380 0-300 0-208
—0-634 | —0-659 | —0-669 | —0-687 | —0-725 | —0-728 | —0-595 | —0:357
0-79 | —0-040 0-003 | —0-021 | —0-036 | —0-01 0-0 —0-004 0-001
0-302 0-264 0-248 0-313 0-350 0-405 0-332 0-234
—0-513 [ —0-522 | —0-522 [ —0-541 | —0-584 | —0-595 | —0-477 | —0-266
0-76 0-176 0-106 0-059 | —0-037 | —0-019 | —0-004 0-0 0-028
o 0-330 0-261 0-228 0-236 0-300 0-337 0-280 0-175
E .
; —0-214 | —0-221 | —0-225 | —0-281 | —0-332 { —0-357 | —0-266 | —0-095
34 0-69 0-377 0-289 0-205 0-008 | —0-003 0-001 0-003 0-0
0-406 0-321 0-258 0-172 0-208 0-234 0-175 0-059

fable 10. Numerical calculations of the different main contribution to T, “/(p-g) for the
rectangular cylinder (b/d =2).
1. line: Contribution from velocity square term in Bernoulli’s equation.
2. line: Contribution from second order potential.
3. line: Total value.

Here, T, A;? is the horizontal drift force on the ship in regular sinusoidal waves of
wave amplitude A; and circular frequency w;. Further, ¢; are random phase angles
(see eqn. (3)). The drift force may be calculated by strip theory. This means the ship is
divided into a finite number of strips and the flow around each cross-section is
considered independent of each other. When the first order motions of the total ship
have been calculated, the drift force can be obtained by either Maruo’s beam sea
formula (Maruo 1960), or the method presented earlier. Results from comparisons
between different methods have been presented by Faltinsen and Loken (1978 b).
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The mean horizontal drift and the slowly varying response yg of the centre of
gravity of the moored ship can be obtained from the dynamic equation of motion.

d*ys dyes
{M+ A4,,(0)} F-'- B, w
P dyg dyg
+ 2£ dxCp(x)T(x) ] | St a15)
dys _ | /dyo

1
Pa R A
+2 ‘_E'CD Aw df Uy, \ dt “w) +f(}’5)

=

N
Z A AT cos ((w;— o)t —(€;—€))
i=1

i=1

We have assumed the wind and current are in the beam direction and the ship
has fore and aft symmetry. We may then neglect the effect from yaw motion in a stable
system. Further, M is the mass of the ship and A,,(0) is the zero-frequency added
mass in sway of the ship. B,, is a linear damping term due to the wave generation
which is likely to be small. It will be dominated by the viscous damping term. The
viscous term due to water motion is calculated by a strip theory approach. Reliable
information about the sectional drag coefficients, Cp(x) in egn. (15), is difficult to ob-
tain. They are expected to depend on Reynold’s number, Keulegan—Carpenter number
and the roughness characteristics of the ship (Sarpkaya 1976). The strip theory approach
does not take into account possible large influence of vortex shedding around the
ship’s ends. The other quantities in the water viscous damping term are the length
between perpendiculars L, the sectional drafts 7(x) and the water current velocity u,.
The formulation of the viscous drag term can be questioned because we started out
with a potential flow formulation, and it is not clear how to properly incorporate the
viscous effects. However, our formulation is often used in the literature. The approach
presented here does not take into account interaction between the current and the
wave field. The viscous term due to air flow is calculated by dividing the super-
structure into a number of parts. On each part we associate a drag coefficient Cp'.
Further, A, is the projection of part number i’s surface on the centre plane of the
ship, p, is the mass density of the air and u,, is the wind velocity. The last term on the
left hand side is the effect from the mooring lines. This may be obtained from the
mooring line characteristics. The time-dependent part may be approximated by a
linear term Kyg for small amplitudes of oscillations. In a real case, it may not be
possible to linearize the effect of the mooring lines. Sometimes a cubic approximation
is used, leading to a Duffing equation. Based on linear theory, the natural circular
frequency of the sway oscillation will be

K
wN:\/(__-—M-l-A;;(O)) (16)

Due to small damping in the system, the response will be sharply peaked in the
vicinity of wy and the response will be very sensitive to variations in excitation periods
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around the natural period. This necessitates great care in the selection of number
of wave components N (see eqn. (3)). From egn. (15) and the discussion that followed
eqn. (3), the lowest frequency component in the exciting force part of eqn. (15) is
(@max —@min)/N. Number of wave components can now be determined by requiring
that (e — @min )/ N is a certain small fraction of wy.

Equation (15) can be solved by a numerical timestep procedure. It should be kept
in mind that the damping is quite small. This necessitates quite a long simulation
period before transient effects have died out. When the motions are determined, it is
straightforward to obtain the resulting loads in the anchor-lines.

The slow drift excitation term (14) and the damping term are equally important
in the calculation of the response. The inaccuracy in the determination of the viscous
damping term is not expected to be better than the inaccuracy in approximating the
slow drift excitation term (12) by eqn. (14). Therefore, the use of the more exact
formula for the slow drift excitation does not necessarily lead to a more correct
prediction of the resulting loads in the mooring lines.

The procedure described above applies for beam sea irregular long-crested waves
in infinite water depth. One may be tempted to generalize the procedure to other
wave, current and wind headings, finite water depth and other types of structures.
In the general case, the coupled effect of yaw and surge has to be accounted for. The
slow drift excitation force in irregular longcrested waves in surge (m=1), in sway
(m=2) and the slow drift excitation moment in yaw (m=6) may then be written as

N N
Fy"= _Z| ZI A A T™ cos ((w;— w )t —(e;—€;)) a7
=1J=

Here, 7;;™ A2 with m=1, 2, 6 is, respectively, the slow drift excitation force in
surge and sway and the slow drift excitation moment in yaw on the structure in
regular sinusoidal waves of amplitude A;, circular frequency w; and the particular
wave propagation direction one is studying. For many types of structures, one may
use the general method of Faltinsen and Michelsen (1974) to calculate 7, A;2. The
method is based on potential theory and a three-dimensional source technique is
used to find the first order potential. Finite water depth is assumed. We would like
to point out some of the restrictions of the method. For instance the method is not
accepted as valid in steep waves that are breaking or close to breaking. For small
volume structures, like semisubmersibles, the viscous effects may be an important
part of the drift force. This is not incorporated in the method. Further, for shallow
water with small clearance between the bottom and the seafloor, and for a structure
where the top of the structure is close to the free surface, there have been diffi-
culties in applying the method. The physical reasons are strong nonlinearities in the
flow.

Other methods to calculate mean drift forces and moments are due to Maruo
(1960), Gerritsma and Beukelman (1972), Maruo (1957), Newman (1967), Faltinsen
and Loken (1978 a), Salvesen (1974), Kaplan and Sargent (1976), Kim and Chou
(1973), Pinkster and van Qortmerssen (1977), Ohkusu (1976), Huse (1976), Pijfers
and Brink (1977) and Longuet-Higgins (1977). Some of these methods are discussed
in detail in Faltinsen and Leken (1978 b), where the limitations and applicabilities of
the methods are stressed. In principle it should be possible to generalize eqn. (12) to
shortcrested irregular sea. The major difficulty will be in a good estimate of the
directional spectra.
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5. Conclusions
A procedure to calculate slow drift excitation forces on an infinitely long horizontal
cylinder in irregular beam sea waves is presented. The numerical results seem to
indicate
(@) The contribution from the second order potential to the slow drift excitation
forces is small;

() Calculations based on the velocity square term in Bernoulli’s equation can
give completely wrong answers;

(c) Newman’s approximative method is a practical way to calculate horizontal
slow drift excitation force on a ship in irregular beam sea waves.

It is suggested that Newman’s method may be used to calculate slow drift excitation
forces and moment on a large-volume structure in shortcrested irregular waves of
any mean wave direction.
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