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A correction of a common error in truncated second-order
non-linear filters
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A rederivation of the truncated second-order non-linear filter reveals that a
significant error appears in previous derivations of this filter. What has pre-
viously been termed the modified truncated second-order filter will be shown to be,
provided a small correction is made in the discrete-time case, the correct form
of the truncated second-order filter.

1. Introduction

Since the introduction of the Kalman filter (Kalman (1960)), similar techniques
have been developed for non-linear dynamical systems. Most of these works were
carried out and published in the late sixties, and a thorough presentation of the
different techniques was made in the book by Jazwinski (1970).

Of all the non-linear filters which have appeared in the literature, especially the
so-called second-order filters, i.e., the truncated second-order filter and the Gaussian
second-order filter seem to have attracted much attention. Non-linearities are in both
these filters carried to second order only, but while third and higher order central
moments are neglected in the truncated second-order filter, fourth-order moments are
taken into account in the Gaussian second-order filter by approximating the condi-
tional pdf. which is involved by a normal or Gaussian pdf. Simulation or experimental
results with these filters clearly show that they may improve the estimates compared
with the extended Kalman filter, but the improvement may depend on the system non-
linearities and the magnitude of the plant and measurement noises, see Schwartz and
Stear (1968), Jazwinski (1966 b), Carney and Goldwyn (1967), and Henriksen and
Olsen (1977).

Andrade Netto er al. (1976) have compared several non-linear filters for discrete-
time systems and concluded that the truncated second-order filter should not be used
because of a term in the covariance equation which tends to decrease the covariance
matrix. Jazwinski (1970) also makes some comments on the apparent discrepancy
between the truncated and the Gaussian second-order filters where a term enters the
covariance equations of the two filters with opposite signs. Obviously disquieted by
this, but with no apparent theoretical justification, Jazwinski suggests a third type of
second-order filter, the so-called modified second-order filter, where the aforementioned
term has been removed.

The truncated second-order non-linear filter was first developed by Jazwinski
(1966 a) and independently by Bass et al. (1966). What we are about to show in this
paper is that the truncated second-order filter, as it appears in the literature, actually
is wrong since a very important implication of the assumptions on which it is based
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has been overlooked. In fact, it will be shown that the modified second-order filter
is the correct form of what has been termed the truncated second-order filter.

The paper is organized as follows. In § 2 we prove the Proposition which is used
to correct the truncated second-order filter, and derive the correct form of this filter
for discrete-time systems. The correct form of the truncated second-order filter for
continuous-time systems is then derived in § 3.

2. Discrete-time truncated second-order filter
Consider a discrete-time non-linear system described by the equations

Xy 1 =f(x 1)+ Glxy, 1) 1
Yi=h(x,, 1) +w, 2)

where x, and y; are the state and observation vectors, respectively. The noise processes
{»} and {w,} are assumed to be mutually independent zero-mean white processes,
both assumed to be independent of x,. The covariance matrices of v, and Wy, are
denoted by, respectively, ¥, and W,.

Define Y, to be the sequence of observations yo, yi, . . ., Vi up to time k, viz.

Y=o Y15 - - » Vi)

and define £,, to be the expectation of x; with respect to o( ¥;), the o-algebra generated
by Y;, viz.

£,|k=E(x,]a(Yk))éE(x,| Y,) 3)
Similarly, define
X:|k=E((I:—qu)(’-': —qu)TlU( Yn))éE((x:—quxxi _-euk)T' Yy) “)
We also introduce the notation
E()LE(. |o( 1)) ()
The exact equations for £, ;| and X, , i« are from eqns. (1)—(2) found to be
Ry v 1w =E(f(x, 1)) ©)

Xicr 1e=Ex(f (xis )3, 1))+ E(G(xi, 1) Vi G (3, ) — R4 e’ (7)

Now, let us assume third and higher order central moments to be negligible. This is
appropriate if the conditional pdf. is almost symmetrical and concentrated near its
mean. Carrying the non-linearities to second order only and neglectin g third and higher
order central moments, we find

Rir 1 =FRupos 1) 3 XS Eipir 1)) ®
with the ith component of the vector (X Sfox(Rigir 1)) given by
ool = 3 Xl =00 (8,0 1) ©
kS xx\ k| ks tk) L e Kk 6):*1 ﬁx," LIl 4

where X; " is element (j, /) of Xuxs fi 1s the ith component of f while x,/ is the jth
component of x,.
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Before we proceed, let us make a note about the magnitude of fourth-order central
moments compared to the square of second-order central moments. If £ is a normal
random variable with variance o2, we know that the fourth-order central moment of ¢
is 30* which certainly is greater than o®. A more general result is provided by the
following:

Proposition
Let £ be a random zero-mean vector, and let F(EET) be a vector function of EET.
Thent

E(F(EET)FT(EET)) = E(F(EET))E(FT(EE)) (10)
Proof. Absolutely trivial. We have

E(F(EET)FT(EE"))— E(F(EET))E(F(88"))
= E{[F(E")— E(F(EE"))][F(EE™) — E(F(EE™)I"}
=0 |l

Carrying the non-linearities in eqn. (7) to second order about £, taking expectations
with respect to o ¥;), and neglecting third-order central moments (while retaining for
the moment fourth-order central moments), we find

Xiex 1 =LeCigpo )Xoy Rrpeo )
+ 2E O — Ripic )0 — Raga) L Baeps 1) 1k — R Yk~ Rii) LexRips )17}
+ G(Rip 1)ViGRuprr 11T + K Vi G * R 1))
+ 3 (X VG o Rigir 1) ORpir 1)) + (X i Vi G (Riis )Gy 1:))T
— 3 XS ex B 5 Ko B 6)) - (1)

where the components of the vector [(xx—Rup)(Xx— i) FexlEip> &)}, and the
elements of the matrices (X, klkaG,,z(fk[b 1)) and (Xip Vi G ox(Rxpr 4)G (R - 1)) are
given by, respectively

[Cer — Ly N — fnn)rfxx(f Kk ) li

i}
1; ! — fm"')(xn "fxlt)a _,);‘ 5 (Ricgis ) (12)
(X w VG2 Rups 1)ia
.3 n aG
= X X X 4 :,,) it Gan ) (13)
5= Py i=

X Vi G o (Bas )G (Rujis 1i)ig
e e 0*Gy;
= HE X Xy V! x> 3 - (Ripes 1) GarfRipi 1) (14)

=1 p.r=1

We have assumed x, and », to be n and s vectors, respectively. Elements of the
matrices Xy, V3, and G are denoted by, respectively, X,**, Vi*, and Gy;.

+ For two symmetric matrices 4 and B, A> B or A—B>0 means that A— B is positive
semidefinite.
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Since we have assumed fourth-order central moments to be negligible, the second
right-hand term in eqn. (11) can be dropped. The remainder of that equation then
constitutes the covariance equation for the one-stage predicted estimate as it appears
in, say, Jazwinski (1970). However, by the previous proposition, the order of magni-
tude of the second right-hand term in eqn. (11) is at least as great as the last term. So
if we assume that the second right-hand term is negligible, it would be not only
illogical but even wrong to retain the last term since the sum of these two terms is
non-negative definite. Neglecting these two terms in eqn. (11) yields

Xier 1 =LCxpr 5 X R 1)+ GRugrs, 1) Vi G (R ks I)
F X VG Rigps 1)) +3(X, ki ViGex(Bagio 1) G R 1))
+3(Xi Vi G Ragas ) GEipr 1))™ (15)

Andrade Netto ef al. (1976) conclude that the truncated filter should not be used
because of the last term in egn. (11) which has a tendency to decrease the covariance
matrix and eventually may force some of the diagonal terms to be negative. Since we
now know that this term is not properly present and that eqn. (15) is the correct
covariance equation, their conclusion can therefore be discarded.

In order to derive the equations for the filtered estimates £, , 1e+1 and Xy gy,
the following form usually appears in the literature

fk+l]k+l='ek+!|k+A(yk+l_yk+I[k) (16)

Xiv1ps1=B+C(y 1= Prs 1) 17)

Furthermore, if C=0 is assumed, the form is usually termed the modified truncated
second-order filter.

Filtering equations of the form given by eqns. (16)-(17) have been derived both
for the truncated and Gaussian second-order filters, ending up with similar expres-
sions for the tensor C in the two cases but with opposite signs. Obviously disquieted
by this, Jazwinski (1970) also suggests forms with C=0, the so-called modified
second-order filters. i

The elaborate derivation of expressions for the matrices 4 and B, and the tensor
C can be found in Jazwinski (1970). A careful computation, applying the previous
proposition, actually reveals that C=0 (see also the next section where the result
C=0 is shown to hold in the continuous-time case). Therefore, the term modified
is quite superfluous and should not be used in connection with the truncated second-
order filter. Assuming that third and fourth order central moments are negligible
will in fact imply that the truncated second-order filter becomes “modified” if we
still may use that term.

The filtering equations are, once C=0 has been verified, quite easily derived by
assuming Gaussian distributions and simply computing the first and second order
moments of the posterior pdf. p(x,, | ¥x. ) by carrying non-linearities in 4 to second
order, see eqns. (20)-(22).

Summing up, the true and only truncated second-order filter is of the following
form:

Prediction
Rt gkt 1 =fFRugp 1)+ 3 X foa B 1)) (18)




A correction of a common error in truncated second-order non-linear filters 191

Xis 15 =S Buppo 1) X T Ragps 1)+ G(Ripps 1) ViG"(Rigir 1)
+ (X ViG> Rupir 1)) + 3 (X Vi G R 1) G (Ripir 1))
+ 3 X ViGee Ripr 1) G Eipis )T (19)

Filtering
Rrvaper1=Rnr 1ot Kir 1 Der 1 =Bt 1o tir 1) — 3w 1 jileeRrs 1310 B 1)) (20)
Xir 1pear == Ker sb(Ris 1100 s 1)) X 11 21)
where

Kiv1=Xir 1" Rer 1 e 1)
X [he(Rics 10 tir ) Xicw 1l Rics 1o B 1)+ Wia 1™t (22)

The ith component of the vector (X, juher(Ri+ 1i> #+1)) In egn. (20) is of the
form

a%h
g i Rt 1o 1) (23)

X % ,f — < X Jt —
Ko 1 hexRrcr 1o B )i LE, FH ! iy

The terms which erroneously have been retained in previous papers on truncated
second-order filters will appear in eqns. (19) and (22). The filter above is almost
identical to what has been termed the modified truncated second-order filter in
Jazwinski (1970). However, another term,

— 3 (X 1 PeaBi s 1710 B VXt 1R 1o T D))"

appears inside the brackets in egn. (22) in that book. Using the previous proposition
we also find that this term should be dropped.

3. Continuous-time truncated second-order filter

Consider a system governed by the following set of Itd stochastic differential
equations:

dx(t)=f(x(1), t) dt+ G(x(2), 1) dB(r) (25)
dz(t)=h(x(t), 1) dt +dn(t) (26)

where {B(¢), 1>t} and {n(f),1=1,} are mutually independent Wiener processes,
both assumed to be independent of x(f,). Furthermore, assume E(dB(t) dR"(t))=
W(t) dt and E(dn(t) dn'(t))=W(t) dt.

Define £(|¢) and X(¢|7) to be, respectively, the mean and covariance matrix of
x(t) given Z(t)={z(+), to < 7 <t}. Furthermore, let E, denote the expectation operator
with respect to o(Z(r)). Equations for the evolution of £(z[f) and X(¢|t) are derived
in Jazwinski (1970), pp. 182-184. For the conditional mean £(¢|1) we have

dg(t| )= E(f(x(?), ) dt +[E(x()F"(x(2), 1))
— 2(t| DER"(x(1), )IW 1 (1)[dz(t) — E,(h(x(t), 1)) dt]  (27)
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Proceeding in a similar way as in the discrete-time case, we end up with

d&(t| ) =[f(2(t] 1), 1)+ 3(X(| )22 | 1), 1))] dt
+ K@) dz(t)— [WR(] 1), ) +3(X(1| Db L(2(2|1), )] e} (28)

where
K@)=X(@t |k (R(t|1), yW~1(¢) 29)
- n azf‘
(X | )R D), D))= ] kZ-—- | Xu(tlD) m @®R@|n, 0 30)
n ah,

(X[ Dh(R(| 1), D))= ; EL: Xyl | 1) &[0, ) @3n

Bx Jaxk
The (4, j)th component of X{(¢|¢) will satisfy the equation

dXyy={E(af)) - RE([D]+ [E(f) — R,E(f:)]+ E(GVGT),,
—[Efx:h)— £, E(R)]" W~ [E/(x;h)— %,E,(k)]} dt
HE(xix;h) — Ef(xix))E,(h) — £,E((x k)
—R,E,(x;h) + 28,2, E(W" W= [dz— E(h)dt]  (32)

where all arguments of the functions have been dropped for the sake of simplicity.

First, consider the term in front of [dz— E,(k) dt]. Taking the non-linearities to
second order, we find

[ECeix h) — E(xox))E(h) — £, E,(x jh) — £, E(x,h) + 28,8 ,E ()]

=3E{(x—%,)(x;— £)[(x — £)(x — £)7h,, ]} —3X,(XR,,)  (33)

where the term [(x—£)(x—2)"h,.] has a similar interpretation as the term (Xh,,)
which is defined in eqn. (31). Jazwinski (1966 a, 1970) again neglects the fourth-order
central moments in eqn. (33), whereas the term —1X,,(Xh,,) is being retained, thus
obtaining a random forcing term in the covariance equation. However, the proper
approximation of the right-hand side of eqn. (33) is actually 0 which completely
eliminates the random forcing term from the covariance equation.

Proceeding as previously, we finally end up with the covariance equation being
of the form

S XAD=£EC1, DXC10+ X 0LFE(10), 1)
+GR@ |0, OV()GT(R(2] 1), 1)
VG, 1)
OV, 0G0, 1)
HEUIDOVOGL1, DG 1), )
— X(|ORIE 10, OW ORI, DX (4)

where the matrices (X(¢| )V(1)G,*(R(t|7), 1)) and (X(t| OV (1) G,(R(]2), )GR(t 1), 1))
have a similar interpretation as in the previous section.
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Summing up, the correct form of the truncated second-order non-linear filter for
continuous-time systems consists of the following equations:
d2(t|0)=[f(R(t| 1), )+ (Xt | Mfyu(R(2|2), 1))] dt
+K(){dz(t) — [h(2(2| t), 1)+ 3(X(¢| Db (R(t |2), £))] dt}  (35)

% X(|)=£.R0[0, DXC| )+ X | LT @), 1)
+G(&(t]0), HV(GTR(| 1), )+ (X DV O GHEE ), 1))
HXU|OVOCLR| 1), HGER(|1), 1))
+HHXUDV(OG,(R(e]0), HGE(E| D), D) — KW K@) (36)

K(r)= X (| OBT(2(2 | 1), )W 2(2) G7)

The latter filter is identical to what has previously been called the modified second-
order filter for continuous-time systems. However, as we have pointed out previously,
there is no need to use the term modified.

where

4. Conclusion

We have rederived the truncated second-order non-linear filter for both discrete-
time and continuous-time systems and have shown that previous derivations contain
a significant error. This is due to the fact that an important implication of the assump-
tions has been overlooked in previous papers. The derivations in this paper reveal that
what has previously been termed the modified truncated second-order filter is the
correct form of the truncated filter provided a small correction is made in the discrete-
time case. The term modified can therefore be dropped in connection with the trun-
cated second-order filter.

A truncated second-order filter for discrete-time implicit systems has been derived
by Henriksen (1979). However, in order to obtain a computationally feasible solution,
a stronger set of assumptions than appears in this paper had to be made.
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