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The method of Multistage Mathematical Programming (MMP) has been adapted
for optimal control of the spatial power distribution in nuclear reactors. Changes
in power distribution arise from variations in the operational conditions of the
reactor, and excite oscillations which in large reactors may approach the stability
limit.

The dynamic process giving rise to the oscillations is connected to the pro-
duction, absorption and decay of xenon and iodine isotopes which are produced
during fission of uranium. Using MMP, efficient use of the controllers can be
precalculated to damp these oscillations. Simulations of MMP control on
computer models of large reactors have demonstrated the power of the method.
The ability of MMP to take into account hard constraints on controllers and
state variables is considered an especially important feature.

1. Introduction

To improve the operational flexibility and capability of large light water reactors,
and to minimize the fuel stresses, increasing attention is being paid to strategies for
controlling the spatial power distribution in the reactor core. Oscillations are easily
excited if the total power is changed. Daily load cycling with full power operation
during the day, and reduced power during the night is becoming more and more
desirable as nuclear reactors deliver an increasingly large fraction of the electricity
production to the grid.

Two classes of power distribution control methods have been studied at the
Halden Project. One is the use of feedback methods for control of the power distribu-
tion toward some specified setpoint. Formulation of the feedback control problem
has been made both in the time and the frequency domain, using the State Variable
Feedback and Multivariable Frequency Response methods respectively.

The other activity in the control field has been aimed at developing a method for
optimization of the core behaviour for a period of time ahead, typically 5 to 10 hours.
The Multistage Mathematical Programming (MMP) method has proved to be useful
for this purpose. Especially useful for the application in nuclear reactor power
distribution control, is the ability of MMP to take into account hard constraints on
controllers and state variables. This paper will describe the control problem, the
Multistage Mathematical Programming method as applied in solving the problem,
and results from simulations where MMP has been used.

2. The control problem

The description here applies mainly to the most common reactor type, the pres-
surized light water reactor (PWR), where the spatial effects are fairly strong and which
has been modelled for the simulations.

+ OECD Halden Reactor Project, Halden, Norway.
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2.1. Fundamental PWR core characteristics

The energy is released in neutron induced fissions, in which the fissionable atoms
split into fission products i.e. other atoms. The released energy heats up the fuel pins,
which are cooled by water under high pressure. The water also acts as neutron
moderator, slowing down the speed of the neutrons born in the fission to speeds where
they are more effective in causing new fissions. The migration and absorption of
neutrons depends on the atomic composition and temperatures in the core, which
change continuously during power operation of the reactor.

The fuel pins (4 m high, 1 cm diameter) are assembled together to form fuel
elements. There are about 200 pins in each element and about 200 elements in the
whole core. The coolant flows along the fuel pins from the bottom of the core up-
wards. In certain fuel elements some of the fuel pins are replaced by tubes, in which
strongly neutron-absorbing material can be entered from above into the core. These
absorber pins from control rods, which are moved as syncronized control rod banks
such that all rods in one bank are equally deeply inserted in the core. The control
rods reduce the power generation in their surroundings and can thus be used for
changing both the total power and the power distribution in the core. Another type
of power controller is the soluble boric acid (a strong neutron absorber) concentra-
tion in the coolant. It has an almost homogeneous distribution and uniform effect on
the power. The control rod banks can be operated quickly, but the changing of the
soluble boron concentration is fairly slow.

The reactor is normally equipped with neutron detectors in and outside the core,
and thermocouples in the core. The power distribution in the core can be inferred from
these measurement devices.

2.2. Nuclear reactor core dynamics

The dynamical phenomena in a nuclear reactor are occurring within a wide time
scale from milliseconds up to months. In the millisecond/second range, the reactor
behaviour is strongly influenced by the dynamics of the thermal hydraulics and by the
so-called delayed neutrons which are emitted in the order of seconds after the fission
takes place. Every reactor is designed to be self-stabilizing with respect to these effects.

On the other end of the time scale we find the slow changes taking place in the
reactor, caused by burning up of the uranium fuel as power is being produced. When
calculating the effect of burnup, all faster effects are assumed to be in equilibrium.

This paper will be concerned with the medium time scale, and discuss the dynamic
phenomena occurring in the hour to day time range. The burn-up effects are then too
slow to be of importance, while, on the other hand, equilibrium conditions may be
assumed between neutron distribution, thermal hydraulics and delayed neutron con-
centration. With these limitations, the neutron distribution in the core can be de-
scribed with sufficient accuracy using the two energy group diffusion equations:

1
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where
¢ is the neutron flux of fast (i=1) and slow (i=2) neutrons
D; is the diffusion coefficient in energy group i
Z,; is the neutron absorption cross section, group i
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%, is the fission cross section, group i
3,, is the removal cross section from group 1 to group 2
v is the average number of neutrons emitted per fission

All cross sections are space dependent. The term V - D;V¢; describes the net diffusion
of neutrons into the volume element considered, while X,$; neutrons are being
absorbed in group i per second, and %,,¢; neutrons loose energy and leave energy
group 1, entering the low energy group. %4, fissions take place in group i, resulting
in the production of vZ¢; neutrons.

These two equations are the conservation laws for neutrons, describing the
balance between the terms increasing and the terms reducing the number of neutrons.
They are formulated as eigenvalue equations, with an eigenvalue k. When describing
a real physical system, the eigenvalue k must be equal to 1. The justification for
neglecting the time derivative of the fluxes, and instead introducing the eigenvalue, is
that for flux changes in the hour time scale the time derivative terms are many orders
of magnitude smaller than the other terms entering the equations.

The cross sections and other parameters change due to the changes in material
composition and temperatures in the core caused by thermal-hydraulic changes and
control actions changing the control poison distribution (control rod positions and
concentration of boric acid in the cooling water).

2.2.1. Xenon-iodine dynamics

The dynamic effects in the time scale of hours-days are caused by one of the
atoms generated through the decay of the fission products. This atom, xenon, has an
extremely large absorption cross section for slow neutrons. In those parts of the core,
where the Xe concentration is high, many of the neutrons are absorbed by Xe atoms
and the power generation is therefore reduced. The formation of Xe is illustrated in
Fig. 1 and the whole xenon—iodine dynamics is governed by the following equations:

dax

7:’= — O+ oxba) Xe+ M +7,S 3)
dr
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where
Xe, I are the xenon and iodine concentrations
vy are Xe and I yields from fission
A, A, are Xe and I decay constants
S=2%¢, +Z,¢, fission rate
o, Xed, slow neutron absorption rate in Xe

Xe is mainly formed from the decay of I'** with a half-life of 67 h. In that time
scale I can be considered to come directly from fission. Xe is removed through decay
(half life 9-2 h) and absorption. The instantaneous Xe concentration thus depends
upon the neutron flux history over the last 30 h or so, and upon the present neutron
flux. In a modern light water reactor core the Xe absorption term and decay term are
close to each other in magnitude leading to the possibility of Xe induced power
oscillations.

If the power for some reason or other would decrease from an equilibrium state,
the Xe-concentration would start increasing, because the Xe production through
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Figure 1. Production of Xe'2$ from fission and by decay of I'3* and destruction by burn-
up and decay.

iodine decay would continue with only a slowly decreasing rate and the removal of
xenon through absorption would decrease. The increasing xenon would mean more
neutron absorption into xenon instead of fissions and thus a further decrease in the
power. Gradually decreasing power would lead to a low iodine concentration and
decay and thus to a smaller xenon production. The xenon concentration would then
pass a peak value and start decreasing. The decreasing xenon would lead to a diminish-
ing absorption, increasing power and increased iodine production. The power,
xenon and iodine would thus start oscillating with typically a 20 to 30 h period. The
power and xenon would have about opposite phases, peak power at the time of
minimum Xenon concentration, while the iodine would follow the power with about
15 degree phase shift.

The effect of xenon in the neutron balance eqns. (1) and (2) occurs in the slow
group absorption cross section:

Z.2=2,,"+0 Xe &)

where Z,,° is the absorption cross section without xenon,

The neutron balance and Xe-T dynamics equations are thus coupled through the
fission rate S and the non-linear term (o, Xed,).

A further simplification of eqns. (1) and (2) is introduced to reduce the computa-
tional effort when calculating the flux distribution in the whole reactor. A reduction
from a two to a one energy group problem results if the group 2 neutron diffusion
term is neglected. From eqn. (2) the thermal (group 2) flux is expressed:

Z,

?52=E - ¢ ()
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resulting, after some further simplification, in:
k
— M2V, +¢, =f $4 @

where M? and k« depend on all the parameters of egns. (1) and (2). The simplifica-
tions were with respect to the spatial dependence operator and require the spatial
dependence of the parameters and variables to be sufficiently weak. Physically, the
approximations are justified by the fact that the overall flux shape is primarily deter-
mined by the fast neutrons, which migrate over much larger distances than the slow

neutrons.
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2.2.2. Criticality control

If the eigenvalue k of eqn. (7) is equal to 1 with the given parameters, the solution
represents a real stationary state of the reactor and the reactor is said to be critical.
If k<1 the real flux would be decreasing with time (the source term was multiplied
by 1/k) and the reactor is said to be subcritical. If k> 1 the flux time derivatives would
be positive and the reactor supercritical.

The criticality control of the reactor means that k (the largest eigenvalue) is con-
trolled to be equal to one. In practice that is done by changing the amount of control
absorbers, i.e. control rod banks and boron concentration in the core. Computa-
tionally it is simulated by changing the absorption cross sections 2, and X, and
thereby the parameters M and k of eqn. (7), such that the largest eigenvalue becomes
equal to 1.

2.2.3. Fast responding power feedback effects
The power density is proportional to the fission rate:

P=E(Zq1$1 +Z0292)
E.g: energy release per fission. ®)

Eliminating the thermal flux ¢, from (8) by using eqn. (6), eqn. (7) can be written in
terms of the power density. The parameters of eqn. (7) also depend on the power
density. Physically one of the feedback effects is due to the fuel temperature and the
other due to the coolant temperature. The fuel temperature can be assumed directly
proportional to the local power while the coolant temperature also depends on the
coolant flow. In order to take into account the coolant temperature effects, the core
thermo-hydraulics must be modelled. Both effects have time constants which are much
smaller than those of the Xe-I dynamics, and can therefore be treated with their
equilibrium values.

The core is designed such that the fuel temperature feedback has a negative feed-
back coefficient, i.e. tends to diminish the changes in power and thus has a stabilizing
effect.

The coolant temperature may have a positive or a negative feedback coefficient
changing normally to a more negative value over the core life. The physical mechanism
works through the coolant density, which affects the neutron migration and the ab-
sorption to soluble boron in the coolant.

2.3. Spatially dependent core models

In this section we will go into some more detail of how the spatial dependence
of the neutron diffusion equation is treated. The spatial dependence is complex
because of the strong heterogeneity of the core.

In order to obtain the parameters (called group constants) of (1) and (2) (or (7))
for the core wide calculations, so-called homogenization calculations must be per-
formed. The core is therefore divided into homogenization regions within which very
detailed computations are done. More accurate methods than the diffusion theory
are used and many neutron energy groups and a fine spatial mesh are used. The space
and speed dependent neutron flux is then used for weighting the space and speed
dependent parameters to obtain the group constants. Thereafter the reactor core is
assumed regionwise homogeneous, i.c. the parameters constant within the regions.
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A straightforward spatial discretization of the resulting three dimensional equations
(1) and (2) would, however, require about 107 spatial meshpoints. With special
methods the number of spatial unknowns can be reduced by several orders of magni-
tude. The reactor core is divided into subvolumes or nodes, within which the neutron
flux is approximated with analytical functions. The average nodal fluxes (or power
densities) will then be the unknowns. The number of nodes required is in the order of
magnitude of 103.

The neutron diffusion equation (7) can be written in the form

kP=KLP &)

where P is a vector of the nodal power densities, K is a diagonal matrix with ele-
ments k=, and L describes the coupling between nodes. For a certain core configura-
tion, nodal division and spatial discretization method, the operators K and L can
finally be evaluated as numerical matrices. The power distribution can then be
determined using iterative techniques.

Changes in the power distribution are particularly strong when the total power
of the core is changed. The increasing share of nuclear plants in an electrical grid
will make it necessary for them to follow the daily load variations and perhaps also
shorter term variations to stabilize the grid. As the time constants of the Xe-I
dynamics are in the same time range, they will play a very important role in the daily
operation.

For power level changes both the control rod banks and the boron control are
used. When boron is used as controller, the changes in power distribution are smaller
than if control rod banks are being used. It is considered advantageous not to perturb
the power distribution too much, as large local changes in power may lead to fuel
failure. On the other hand, the boron control system has technical limitations on the
speed of boron concentration changes, and economical constraints connected to boron
dilution. Combined use of the different controllers is thus needed to operate the
reactor efficiently.

3. The multistage mathematical programming method

The Multistage Mathematical Programming Method (MMP) has been developed
to calculate optimal control for pressurized water reactors. It answers the question,
how to move the controllers for the next few hours, when the total reactor power is
given and it is desirable to get and keep the power distribution and perhaps some
other variables near some given values. Because the controller movements are calcu-
lated beforehand, MMP is an open loop method, there is only indirect feedback.

The main control objectives are the desired power distribution and the total power.
The control elements are the control rods, which mainly affect the local power density,
and the soluble boron concentration in the cooling water. The state variables are the
xenon and iodine densities. In this simple model the power density is a dependent
variable, that can be calculated, when the xenon density, controller positions, and
some other auxiliary variables (as coolant input temperature) are known,

This optimal control problem is described as finding, for some hours ahead in time,
the controller movements that minimize a given objective function, while maintaining
the total reactor power at desired (variable) level. The objective function describes the
deviation of the power distribution, possibly the xenon and iodine distributions,
controller positions, etc. from some desired values. Additional requirements are that
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some limiting values for power density, controller positions, etc. must not be violated.
These requirements are called hard constraints, stressing their strictness.

3.1. Problem formulation

The main features of the mathematical formulation of the control problem wilt be
given here. A more detailed description can be found in Karppinen et al. (1979).

The optimal control problem in MMP is described as finding the minimum of a
given quadratic objective function, subject to linear constraints (quadratic program-
ming formulation). The constrained minimum gives the movements of the controllers
over the whole control period. The objective function and constraints are calculated
using a linear core model, that is based on a 1} group formalism reactor simulator
code. For this control model the reactor is divided into relatively few (less than a
hundred) boxes, called nodes, which may coincide with the nodes of the core simu-
lator, or the control model nodes can be formed by combining several simulator
nodes. All variables are averages over these nodes. The state variables are the xenon
and iodine densities (e.g. in units atoms/cm?®) and controller positions. The power
densities (W/cm?) are also used, because they are the most important variables to be
controlled. The control variables, i.e. the unknowns, are the controller movements.
The typically 5 to 10 hour long control period is divided into discrete time steps,
typically 0-5 ... 1 hour long. All variables are assumed to change linearly during each
time step, and the values for the state variables are taken at the end of each time step.
The derivation is made in two parts, first the linear core model is set up, and then
the control problem is transformed into quadratic programming form.

3.2. The linear core model

To reduce the computational effort in solving the optimization problem, a
linearization of the non-linear reactor core model must be introduced. The main
non-linearities in the behaviour of a PWR core are the neutron flux (or power)-xenon
density product term in the xenon-iodine equation (3), the dependence of the core
properties on power through thermal feedback, and the effect of the control rods on
the power distribution. The control rod movements change the power densities most
near the tips of the rods.

The linear core model consists essentially of two parts. First the dependence of the
power density distribution on controller movements, changes in xenon densities etc.
is derived, and then the nonlinear xenon-iodine equation is linearized and solved in
discrete form, which finally leads to the desired linear model.

3.2.1. Dependence of power distribution on changes in the core

Controller movements, changes in xenon density etc. change the power density
distribution in the core. The power density is calculated through the infinite multi-
plication factors (k= in (7)) that in each node depend on the controller movements,
xenon density etc. In the control model it is assumed that all changes are slow, the
time scale is from tens of minutes to hours. Then the power density distribution can
be calculated from the steady state equation in the form of an eigenvalue equation.
The equation was given in § 2 (eqn. (9)) and is repeated here:

kP=KLP (10)
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The eqn. (10) is obtained from the diffusion equation (7), by changing it into an
integral equation and integrating over the nodes (Locke and Blobel 1974, Silvennoinen
1976).
The components of the eigenvector P are the average power densities in the nodes.
K is a diagonal matrix, with elements ke (denoted in the following by k;), the infinite
multiplication factors in the nodes. k, depends mainly on -the neutron absorption
properties of the materials in the node. It tells how many neutrons from one fission
are available for generating new fissions. k is the eigenvalue, that in steady state is
equal to one. The matrix L describes how coupling between nodes affects the power
distribution. The coupling comes through neutron currents between nodes. Only
coupling to the six nearest neighbours is included in L. The off-diagonal elements of
L are:
L;,=-—ﬁ-fl‘ k,.—kf_l_M”: k;+k, an
i Zhy 2 B 2K
M;; is the average of the migration lengths M (eqn. (7)) for nodes i and j. k; and k;
are the infinite multiplication factors for nodes i and J- hy; is the distance between the
centres of the nodes i and j. The diagonal element of L are

Ly=(1- ;Lﬁ) (12)

where the sum goes over the six nearest neighbours of the node i. The reflector nodes
which are surrounding the core are not included, but for the diagonal elements (12)
the coupling coefficient L~ for reflector node J may be needed. It is

L r=%__2£_
i by kA +hy;)

where A; is the extrapolation length. It is typically 25 cm.

The dependency of the migration length M on controllers, xenon etc. is negligible,
and thus the changes in power density can be calculated through k;, the infinite multi-
plication factors in the nodes. To calculate the changes, the eigenvalue equation (10) is
differentiated, that is, linearized around some suitable linearization state. The eigen-
value k remains equal to one. This is not a mathematical assumption, but arises from
the physical nature of the problem. If some changes are made in the reactor, the
power level and power distribution adjust to a level where the eigenvalue k is equal
to one. Keeping the eigenvalue k equal to one, when differentiating (10), gives

8P=8(KL)P+ KLSP (14)

The matrix KL depends on changes in power density through thermal feedback, and
so the vector (8KL)P in (14) depends on SP. For one component [(8KL)P]; the
dependence on small changes in power density &P is (index p refers to power feedback)

(13)

L)im
(KDY= . 550 b= — Yo, as)

when a linear dependence is assumed. F,, is the component (if) of the feedback
matrix F:

ﬂ1= . E a(KL)im

P 16
2. —p, Fn (16)




Nuclear reaction control by multistage mathematical programming 127

The most important feedback arises through the fuel temperature. The moderator
temperature effect is much smaller, but through it the power change in one node
can affect the properties of other nodes. If this is neglected, assuming that changes in
the power density in one node affects only the properties of the node itself, and
further the changes in the coupling matrix L are neglected, the feedback matrix F
is diagonal. Using (10) its elements are

kP,
Fy= ~oP. K, (17)

Also in (14) the changes in the coupling matrix L can be neglected because they are
small compared to changes in K. This can be seen from (11). In the control model the
nodes are rather large, and the ratio M;/h;; is small, about 0-1 ... 0-2, With this
approximation, using (19) in form LP=K""'P and including the feedback effects, the
change in the power density P can be solved from (14):

$P—(I+F—KL)~'PK~'8K, (18)

where I is the identity matrix. P is now a diagonal matrix, with the same elements
as the vector P. The elements of the vector K ~18K, are 8k,/k;, the relative changes of
the infinite multiplication factors in the nodes due to other reasons than thermal
feedback. Equation (18) gives thus the changes in power density due to changes in the
multiplication factors, which again depend on controller movements, xenon density,
etc.

The changes in k; due to changes in xenon density 8Xe can be calculated straight-
forward, 8k,=0k;/dXe; - 8Xe;, where Xe, is the xenon density in node i and 8Xe, its
small change. Thus changes in power density due to xenon are

6P=(I+F—KL) 'BsXe (19)

where B is a diagonal matrix, with elements By, =Py/k; - ok;/0Xe;. The power level
dependence of the matrix (/+F— KL)~'B through the power densities could be taken
approximately into account, but this would complicate the solution of the xenon
jodine dynamics equation. As the dependence is rather weak, it is neglected in the
model.

3.2.2. The controllers

The calculation of the changes in power density due to controller movements is
more complicated, because the control rods change the power density most near their
tips and the movements of the rods can be large. The main principle is to linearize the
effect of the control rod in the node containing the rod tip, and neglect possible
changes in other nodes. The change in k; due to movement u, (or deviation from the
linearization point) of controller r, is

ok; ok; ey

— U=
ou, = dci u,

where the control fraction ¢, is introduced (i=node, r=controller), 0<¢;, <1,
corresponding rod r out of node i and complete penetrating node i. For several
controllers and all nodes the terms P;8k;/k; of (18) can be written in matrix form

PK~'8K,=[R+Glu=Du (21)

Sky= (20)
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where * denotes direct multiplication, i.e. the element (if) of matrix R is multiplied
by the element (ij) of matrix G to get the element (if) of D. The elements of the matrix
R are Ry;=P,k; - 0k;/0c;;. G is a so-called geometrical matrix, its elements are
Gy;=0c;;/0u;, that are non-zero only in nodes where the rod tip is or where it moves
to. In this way the matrix R can be calculated beforehand, and the geometrical matrix
G can be adjusted iteratively to correspond to the rod movements.

The matrix product (I4+F—KL)~'D (needed in (18)) depends on power, because
both F and D contain the power densities. To approximate this dependence, the
matrix product can be written

(I+F-KL)"'DxCo+ C,P, (22)

where P, is the average power density in the whole core.
Finally, the changes in the power density due to xenon and controllers can be
written, from (18, 19, and 21)

8P=(I+F—KL)~'B8Xe+(Co+ C,P,)u (23)

Other effects affecting k; could be included similarly.

3.2.3. The coupling coefficient matrix I.

MMP is used together with a reactor simulator. If the nodes in the reactor simu-
lator and in the MMP control model coincide, the coupling coefficients matrix L
can be obtained directly from the simulator. However, because for accuracy it is
desirable to have several small nodes in the simulator, the control model nodes often
comprise several simulator nodes. The coupling coefficients must be calculated from
the coefficients used in the simulator. The coupling arises from neutron currents
between nodes. From (10) and (12) the neutron current J;; between simulator nodes
iandjis

Jiy=V;LijP;— Vil P (24)

where V;=V; are the volumes of the nodes.

The coupling coefficients for the control model are calculated by demanding that
neutron current between control model nodes can be expressed similarly as (24) using
power densities for the control model nodes, and that the neutron currents are the
same in the simulator and in the control model for the linearization state. Another
requirement is, that the error in the current in the control model compared to the
simulator model is small on average, when the power densities change.

3.3. Control problem dynamics

The dynamics of the control problem is governed by the behaviour of the fission
products xenon-135 and iodine-135, as described by eqns. (3) and (4). These equations
are linearized around the linearization state. In this state the xenon and iodine densi-
ties are given by vectors X, and I,. The state can be a nonequilibrium state, where
the time derivatives of the xenon and iodine density vectors X, and I, are non zero.
The power density is substituted for the fission rate S and thermal flux ®,. There is
one to one correspondence between the fission rate and the power density, but for the
thermal flux this substitution is only approximate (see eqns. (6) and (8)). The changes
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in power density are expressed using eqn. (23). Finally the xenon-iodine equation
becomes

d x(t) Axx Axi .\.‘(f) an(') XD
7 = + uy+| (25)
i(t) Aix Ay i(t) Cult) I,

Here x(f) and i(f) are vectors describing the deviations from the linearization state
xenon and iodine densities X, and I,. The C,, and C;, matrices are

Cr=A(Co+CP1)), Ciy=Ai(Co+C, Pi(t)) (26)

C, and C, are defined in eqn. (21). All the A-matrices in (25) and (26) can be calcu-
lated rather straightforward from eqns. (3, 4, 6, 8. and 23). The components of the
control vector u(t) are the controller movements.

The variables giving the power, xenon, and iodine densities are factored into the
product of two parts, one giving the average level over the whole core, and the other
giving the normalized distributions. For example, P=P;p, where P is the power
density vector, P, the average power density, and p is the normalized power density
vector. The xenon and iodine vectors are factored similarly. The calculational state
vector is chosen to be of the form (for power here) P, Ap, where Ap is the difference
between the normalized power distribution as a function of time and the normalized
power distribution at the linearization point. The same notation is used for the xenon
and iodine vectors. The state vector Z is then, at time step m

[ P Ap(m) )

Xylt(m)
Z(m)= @7
1, Ai(m)

u(m)

where P,, X, and I, are the power, xenon and iodine levels or average densities, and
u(m) gives the controller position deviations from the linearization point. The power
level P, is known, because the total power is assumed to be given. The xenon and
iodine levels can then be calculated using a non-linear xenon-iodine equation for the
average levels. This equation is obtained by integrating eqns. (3) and (4) over the whole
core, assuming that the distributions do not change very much. By this choice of the
state variables, the non-linearity of the xenon-iodine dynamics can be taken into ac-
count in some way. Also the construction of the linear model becomes slightly simpler
when the level factors and distributions are separated.

After substituting the new variables into eqn. (25) it is solved to give the xenon and
iodine densities (in the calculational state variables) at time step m, as a function of
the xenon and iodine densities at time step m— 1 and the controller movements during
the time step. The solution is only approximate, because a totally accurate solution
is too complicated. For details, see (Karppinen et al. 1979). Equation (22) is then used
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to give the power densities, which completes the derivation of the linear model. The
result is:

L 0 pr GN Gm i i Cp | i gp i
0 Gxx Gxi Gxu Cx 8x
Z(m)= Zm—1)+ Au(m)+ (28)
O Glx G;; G;u C( 4]
0 0 0 I | | 1] | 0 |

The state vector Z was defined in (26). The components of the vector Au(m) are the
movements of the controllers during the time step m. The G matrices and g vectors
follow from the derivation outlined above. From (28) it can be seen that the power
density is not a real state variable. The linear model can be expressed in the form (28)
when the control problem has first been defined, because the G,,, G,, and G,, matrices.
C matrices and the g vectors depend on the level factors.

3.4. Transformation to quadratic programming form

Using eqn. (28) recursively, the state of the reactor at any time step m can be
expressed as a linear function of the initial state and the control movements up to
time step m.

The control objective is to get and to keep the reactor state near some desired state
at each time step, and to fulfil certain constraints. Both the desired state and the
calculated state of the reactor can be expressed using the calculational state variables.
The objective function, that measures the distance from the desired states, becomes
then

MM
J= Y (Z(m)—Zm)) W, (Z(m)— Z(m))+ Au,T R,Au, (29)

m=1
where the sum goes over all time steps from 1 to M. Z,(m) is the desired state and
W, is a weighting matrix. The latter term in (29) gives also some weight to the con-
troller movements. When the state Z(m) is expressed as a function of only the initial
state and the controller movements, the objective function can be written in the

standard form

J=XT0X+CX (30)

where O and C are weighting matrices depending on W,, and R,, in (29). The vector
X contains all the controller movements,

XT=(Aa™(1) ... Au™(M)).

Constraints, like limits for the power density, axial imbalance, controller posi-
tions, etc. can be directly expressed as linear functions of the controller movements.
Constraints for the rate of change of the power density can be approximated by finite
differences, and become thus also linear functions of the controller movements. The
constraints are then of the form
A X= b,} 61
AX>b,

Thus the control problem has been transformed into that of finding the minimum of a
quadratic objective function, eqn. (30), subject to linear constraints, eqn. (31). The
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minimum gives the unknown vector X, that contains the controller movements.
Standard methods are used in the search for the minimum.

3.5. The use of MMP

The use of MMP requires a large amount of computing power in terms of memory
and time. If large changes in total power take place during a control period, more
than one linear model is needed to ensure high accuracy in the MMP calculation,
These models are generated with a reactor simulator using some guessed or previously
obtained control sequences. Further, the power demand during the control period
must be specified and the initial reactor state known, for example by a state estimator
based on measurements. The desired distributions must also be specified. Then the
control problem can be formulated as outlined above. The solution of the minimiza-
tion problem gives the controller movements for the control period. The solution
can then be iteratively improved, mainly by better describing the effect of the con-
trollers. This is done by updating the geometrical matrix G in (21). The resulting
controller movements are then simulated in a reactor simulator and then either
applied or further improved by generating new linear models that correspond better
to the expected state of the reactor during the control period.

3.6. Example

MMP has not yet been applied to a real reactor. One calculated example is given
here. For more examples, see Karppinen and Blomsnes (1976) and Karppinen et al.
(1979). In this example the reactor is to be controlled over 24 hours with variable
power, totally 14 hours at full power, with a 6 hour period at half power, with 2 hour
fall and rise times, see Fig. 2. The three-dimensional (1/4 core) reactor model is divided
into 36 control nodes, while the non-linear simulator uses 1240 nodes. Two controllers
(one control rod bank and boron) are used. Two kinds of control objectives were
studied, one to keep the power distribution near the equilibrium distribution (‘constant
shape’) and the other to minimize the use of boron, with some weight also for the
power distribution (‘minimum boron®). The calculation was made in three control
periods of 8 hours, always simulating with the non-linear simulator the control
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Figure 2. Reactor power as function of time.
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movements for the previous control period to get the initial state for the next period.
The initial state for the first control period was the equilibrium state.

The results are given in Fig. 3 for the controller movements, and Fig 4 for the
axial shape index. The axial shape index is a measure of power distribution (axial
shape index =power in lower half of the core minus power in upper half, divided by
the total power). In the ‘constant shape’ control the control rod movements are
small, and the power distribution remains rather constant. In the ‘minimum boron’
control the rods are used extensively and so the power distribution changes much
during the control period. As can be seen the control rod movements depend strongly
on the relative weights given for the power distribution and the use of boron.
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Figure 3. Control bank position as function of time.
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Figure 4. Axial shape index as function of time.
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4. Conclusion

The use of Multistage Mathematical Programming for calculation of optimal
power distribution control strategies in nuclear reactors has been described. Even if
the physical system contains strong non-linearities, the use of more linear models has,
through simulation studies, proved to represent the real system well. The present
model is believed to be directly applicable for off-line control strategy calculations for
pressurized water reactors. Adaptation of the model for on-line application at nuclear
plants will be made in the future, if the problem of on-line matrix inversion can be
solved for a large number of nodes.
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