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A finite element solution of the Navier—Stokes equations for
two-dimensional and axis-symmetric flow
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The finite element formulation of the Navier-Stokes equations is derived for
two-dimensional and axis-symmetric flow. The simple triangular, T6, isopara-
metric element is used. The velocities are interpolated by quadratic polynomials
and the pressure is interpolated by linear polynomials. The non-linear simul-
taneous equations are solved iteratively by the Newton-Raphson method and
the element matrix is given in the Newton-Raphson form. The finite element
domain is organized in substructures and an equation solver which works on
each substructure is specially designed. This equation solver needs less storage
in the computer and is faster than the traditional banded equation solver. To
reduce the amount of input data an automatic mesh generator is designed. The
input consists of the coordinates of eight points defining each substructure with
the corresponding boundary conditions. In order to interpret the results they are
plotted on a calcomp plotter. Examples of plots of the velocities, the streamlines
and the pressure inside a two-dimensional flow divider and an axis-symmetric
expansion of a tube are shown for various Reynolds numbers.

1. Introduction

The solution of the Navier-Stokes equations forms an important field in fluid
dynamics. The analytic solutions of these equations are limited to regular geometries
where the fluid behaviour is relatively simple. The finite difference method has been
extensively used to solve the Navier-Stokes equations numerically. However, the
finite difference method can only be applied when the geometry of the fluid domain
can be modelled by rectangles. The finite difference method has limitations when
severe non-linearities are introduced into the equations.

The finite element method has been derived and applied to some problems con-
cerning fluid flow (Hood and Taylor 1974) and has been shown to be superior to the
finite difference method (Zienkiewics 1971, Taylor and Hood 1973). At present there
exists several formulations of the Navier-Stokes equations. The formulation chosen
in this work is the one given by Hood and Taylor (1974).

In most of the literature on the subject the finite element equations are only given
explicitly. To obtain solutions for non-linear problems the Newton-Raphson method
is most commonly applied and the finite element equations are therefore given in
this form.

In the present work special attention has been paid to the equation solver. Finite
element analysis requires rather large storage in the computer and long computer
times. An efficient way of reducing the amount of fast memory is to use the sub-
structuring technique. In this method only the data belonging to one substructure
resides in the memory at one time while the data of the others are temporarily stored
on disc files. As substructuring implies that the global element matrix becomes
block diagonal a special equation solver is designed.
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The large amount of input data, as well as output data, in finite element analysis
has led to the construction of both a pre- and post-data processor to reduce the
possibility of introducing errors in the finite element models. The pre-processor
reduces the input data considerably and the post-processor converts the numerical
output into graphical plots.

In this present paper the finite element method is demonstrated by solving the
Navier-Stokes equations for a two-dimensional flow divider and an axis-symmetrical
expansion tube. It is hoped that the method would have a particular application in the
analysis of flow and pressure patterns in the cardiovascular system,

2. Mesh generation

The input data to the pre-processor consists of the coordinates of eight nodes which
define a quadratic rectangular substructure and the boundary conditions on each side
of the substructure. These nodes are situated at the corners and sides of the sub-
structure, thus permitting curved boundaries. The coarseness of each substructure
is defined by two parameters which specify the number of divisions wanted in both
directions. Figure 1 shows an example of substructuring and the mapping used to
obtain curved sides. Denoting the quadratic rectangular shape functions as M, the
coordinates of the substructure are defined by

x=E M.*x‘
)’=E My,

where x; and y, are the coordinates of the eight nodes. The substructuring technique
has been used for some time in mechanics. The way of substructuring described here
is designed to suit hydrodynamic problems.
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Figure 1. The mapping and division of a substructure by isoparametric elements.

3. The Navier-Stokes equations

The equations governing two-dimensional and axis-symmetric steady flow are the
well-known Navier-Stokes equations (Sabersky er al. 1971). In the two-dimensional
case these are
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where w=velocity in the x direction, v=velocity in y or r direction, p=pressure,
p=density and p=kinematic viscosity. The flow described by these equations is
assumed to be laminar, steady and isothermal and the fluid homogeneous, incom-
pressible and Newtonian.

4. The finite element formulation

There exist several ways of deriving the finite elements form of the Navier-Stokes
equations. The one used in this work is the pressure-velocity formulation with the
Galerkin method to form the equations. The main advantage of this formulation is
that only velocity needs to be specified on the external boundaries. Let N; denote the
quadratic shape functions for the velocities and L, the linear shape functions for the
pressure. The velocities and pressure over a triangular element can then be expressed as

u=Z N,
U=E N;U;
p—_—z L;p,

where 1, v; and p; are the nodal values of velocities and pressure. Inserting these
expressions into the Navier-Stokes equations and applying the Galerkin method, the
finite element equations take the following forms:

Two-dimensional flow:

BNI ,‘ 3N,— N, an,
ru= [ (R R TR T ) 8| @M 5

I
1 oL,
-

éN, éN,
+Q N,‘vt)Z—a—“ Uy E;Pu]] dxdy—ij;Za—;uk ds=0 (7)

&N,

s (e ) mrn

an, ¢l aN,
+(2Nkvk)2 v —E—"p,,]]dxdy IP’NIE ”kds =0 (8)




108 S. 0. Wille

Ny

Fy= .“ L; (E
Axis-symmetric flow:
Ni 2N, éN; o, @N, BN éN,
e[ i )

or ox
oL,

&N, an, 1
N; [(Z Niiiy) Zﬁ_; "u'l'(z Ny) 2?: u+ Ea—xpk]] dx dr

&N,
+Ea—;v,‘) dx dy=0 ©)

—§eN Z——- wds  (10)

2N, aN, N, &N, 2N, )
v+ K

Fy= ﬂ[ (—— — g+ ENg v, + o W Trv
cN,L
+N; [(Z Nk“ﬁ)z—vk+(2 Nkvk)E l E%ﬁpk]] dx dr
—f uN, Z% veds  (11)

N,
F3;= “Li( Y Ny + Z———u,; Z?:vk)dxdr (12)

Differentiating and ordering the equations according to the Newton—Raphson
method, the equation system takes the form
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Two-dimensional flow:
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Applying the Newton—Raphson solution technique, the correction of the solution
vector is obtained at each step. Thus,

uy=u;" + Au;
v,=v;' + 00,
pi=p;' +p;

where u;, v;' and p;! are the solutions obtained at the previous iteration. The con-
vergence criteria chosen is

€tr=(max (Au2+m;2))”2 an

max (42 +v?)

_max |Ap|

p=

max |p| %)
When the relative errors ¢, and ¢, are sufficiently small, the iteration is stopped.
Typical values of €, and ¢, are 107*. The speed of the convergence depends on the
closeness of the start vector to the final solution value, but more than five iterations
are seldom necessary. To obtain solutions at higher Reynolds numbers the solution
at a lower Reynolds number is used as start vector and the Reynolds number in-
creased by lowering the kinematic viscosity.

When the velocity field is found the streamlines are calculated by the following
equations

Two dimensional flow:

The streamfunction is defined by

u:——% U:@
&y’ ox

Differentiating these expressions and applying the Galerkin process the following
equation system is obtained

oN, &N, e, aN, Remstd | w o
["""(dx 3x ay dXd ll’j&!NiadS {‘Ni 5; a’ dxdy (33}

Axis-symmetric flow:

The streamfunction is defined by

The streamfunction equation becomes
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These equations are linear and easily solved.
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5. Block diagonal equation solver

As the entire finite element domain is divided into substructures, a local element
matrix corresponding to each substructure can be calculated. Figure 2 shows two
examples of substructuring and the local numbering of the nodes in each substructure.
Local numbering of the nodes has to be made so that the highest numbers are found
on the border to the proceeding substructure. The size of the global element matrix
of the entire flow domain will be of a size equal to the total number of degrees of
freedom. Substructuring implies that the global element matrix can be replaced by
three smaller local element matrices corresponding to each substructure.

3 G a /13 e 9/[3 & g
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Figure 2. Examples of substructure linking.

Figure 3 shows the global element matrix and the local element matrices of the
substructures. The dotted lines show the corresponding banded matrix. The area
outside the submatrices contains only zeros. From the figure it is seen that the banded
matrix needs less storage than the global matrix and that the submatrices need less
storage than the banded matrix. An additional disadvantage of a banded equation
solver is a temporary extra storage of half the bandwidth, which is needed during the
elimination. When designing each substructure it is important that this is done in a
way that leads to the fewest possible zeros in the local matrices. In this way both
storage and computer time are reduced.

The local element matrices contain internal and external degrees of freedom. The
external degrees of freedom are those of the nodes connected to the proceeding
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Figure 3. The global element matrix with the local element matrices situated on the diagonal.
The dotted lines indicate the bandwidth of the global element matrix.

substructure. The internal degrees of freedom are those of the nodes which are not
contained in the proceeding substructure.

The element matrix of each substructure may then be divided into four parts as in
Fig. 4. Here the submatrix 4;; represents the internal degrees of freedom. 4,, and A
are the coefficients associated with the connection of internal and external degrees of
freedom. 4., represents the external degrees of freedom. Similarly X, and B;, X, and
B, represent the internal and external degrees of freedom in the solution vector and
the right-hand side. The elimination procedure is started by eliminating the internal
degrees of freedom. The algorithm replaces 4., and B, by

Zeeere""AelAll—l Ao (35)
Bez-Be""AeiAii-l BI (36)

Ay~ ' A, is calculated by solving the equation system with A4,; as coefficients and the
columns in A,, as right-hand sides, The matrix inversion of Aj;, which is a time con-
suming process, is thereby avoided. The next step is to add A, and B, to the corres-
ponding coefficients in the element matrix and the right-hand side vector of the
proceeding substructure. The following substructure is eliminated in the same way.
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Figure 4. A local element matrix with submatrices of external and internal degrees of
freedom.
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In the backward substitution, the solutions of the common degrees of freedom
from the proceeding substructure are substituted into X,. The right-hand side is then
replaced by

Bi=Bi""AliXe 37)

The equations to be solved for this substructure are now
A i i‘*’l e Bi (3 8)

and the complete solution is found. The algorithm for linking several substructures
follow the same procedure.

6. Numerical examples
Two-dimensional case

As an example of the two-dimensional analysis a flow divider may be considered.
It consists of a tube dividing into two identical branches of total diameter equal to
that of the input tube. As the flow divider is symmetrical it is only necessary to simu-
late the upper half. The mesh chosen for the divider is shown in Fig. 5. The flow
domain has been divided into twenty substructures. The inlet boundary conditions
are a parabolic velocity profile in the longitudinal direction (#=0-2(1—y?/R?)) and
zero velocity in the transverse direction (v=0). On the wall both the velocities are
zero (u=0, v=0) to fulfil the no-slip condition. At the outlet the normal derivatives
of the velocities are zero (éujén=0, év/én=0) and along the line of symmetry in the
main tube the normal velocity (¢v=0) and the normal derivative of the tangential
velocity (éu/én=0) are zero. The pressure is specified to be zero at one node at the
outlet wall.
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Figure 5. The mesh and boundary conditions of the flow divider. Each substructure
consists of the triangular elements between the vertical lines. The inlet radius is 0-01 m.

The results of the simulation for Reynolds number 100 are shown in Fig. 6.
In Fig. 7 the pressures along the outer wall and the line of symmetry are plotted
separately.

Axis-symmetrical case

As an example of the axis-symmetrical analysis an axial expansion of a tube may
be considered. The equivalent finite element representation is shown in Fig. 8. The
mesh consists of eighteen substructures and isoparametric elements are used to
describe the boundary. The boundary conditions are indicated on the figure and they
are of the same kind as for the flow divider. The results of the simulations for Reynolds
number 10 and 200 are shown in Figs. 9-12.
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Figure 6. The results of the simulation of the flow divider for Reynolds number 100,
The pressure plot shows isobars and the streamline plot shows equally spaced stream-
lines. The velocity plot shows the direction and magnitude of the velocities. The mean
inlet velocity is 0-133 m s~* and the viscosity is 2:67 x 10~ 5 m?s~!.
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Figure 7. The pressure along the outer wall and the line of symmeiry for Reynolds number
100. The apex of the flow divider is indicated by a dashed line in the abscissa.
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Fig. 8. The mesh and boundary conditions of the tube expansion. Each substructure con-
sists of the triangular element between the vertical lines. The inlet radius is 0-01 m.
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Figure 9. The results of the simulation of the expansion for Reynolds number 10. The
mean inlet velocity is 0-5m s~ and the viscosity is [ x 1073 m?s~".
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Figure 10. The pressure along the symmetry axis in the expansion model.
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Figure 11. The results of the simulation for the expansion for Reynolds number 200,

The mean inlet velocity is 0-5ms~* and the viscosity is 5 x 10~ 5 m2s~1,
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Figure 12. The pressure along the symmetry axis in the expansion model.

7. Conclusion

This paper has dealt with a finite element method to analyse two-dimensional
and axis-symmetric flow. The discretization procedure has been based on the Gallerkin
approach. The shape functions used are the complete quadratic polynomials for the
velocities and linear polynomials for the pressure. The solution method chosen is the
Newton-Raphson method and the equation system is expressed in this form.

A substructuring technique has been described and compared to the traditional
finite element formulation. A block diagonal equation solver to suit the substructuring
has been designed. The analysis has been carried out for two-dimensional and axis-
symmetrical configurations and the results presented in terms of flow and pressure
patterns.

In future papers results obtained by this computer program on models of arterial
systems will be presented and discussed from a physiological point of view.
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