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The present paper discusses how the impulse response of an unknown linear
multi-compartment system can be used to identify the system and points out some
of the problems associated with a unigue identification. A method for system
identification has been implemented in a computer program. Simulated data have
been used to study the accuracy of the identification from the impulse response.

1t is shown that accurate identification of a linear multi-compartment system
may require, if no part of the system is known a priori, that the observed impulse
response contains the results of several independent experiments in each of which
several independent combinations of compartments are observed.

1. Introduction

The use of compartment analysis in biology and medicine has beerf described by,
for instance, Atkins (1969) and Jacques (1972). The present paper is restricted to
linear compartment systems. Such systems can be described by a set of linear first-
order differential equations, one equation for each compartment. Several processes
can be described by linear compartment systems. Examples are diffusion across a
membrane and first-order chemical reactions. The fact that many non-linear systems
can be approximated by linear systems is also important. This can often be done
when studying complex biochemical systems through the use of small amounts of
radioactive tracers. ' '

Figure 1 shows a third-order linear compartment system, or a three-compartment
system. The state variables x;, X, and x; give the state of the respective compartments.
The constants k, ; (i, j=1,2, 3) give the relative rates of flow. The constants kg ;
(i=1, 2, 3) give the relative rates of loss.

Using results from linear system theory the paper discusses how to determine the
constants of the system from observation of its dynamic behaviour. Numerical
examples will be given to show how the results may be utilized. The numerical
examples have been generated with the aid of two computer programs. The first
program simulates observations with stochastic errors of a linear compartment
system. The second program tries to identify the system that lies behind the simulated
observations.

2. The problem of system identification
Assume that the system to be identified is of order n (n state variables or compart-
ments). The system may be described by the matrix differential equation
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Figure 1. A third-order multi-compartment system.

where x is the n-dimensional vector of state variables (the state vector) and A is the
(n x n) system matrix. Assume that p different linear combinations of the state variables
are observed. The p-dimensional vector y of observable linear combinations is then
given by y=Cx where C is the (p x n) observation matrix. Assume that an experiment
is performed in which the system is given the initial state x(0)=b,, after which the
system is left to itself. It then follows from linear system theory (Ogata 1967) that the
response y,(¢)=Cexp (At)b, where exp (4¢) is the (nx n) transition matrix of the
system. If g such experiments are performed, this defines the (nxgq) initial value
matrix B=[b,, ..., b,] and the (pxq) impulse response Y(t)=[y(t), -.., p{t)]. The
response of the system to the g experiments can therefore be written

Y(t)=Cexp (41)B )
The problem is to calculate the system matrix 4 from knowledge of the impulse
response Y(¢), the observation matrix C and the initial value matrix B, Knowledge of
C corresponds to knowledge of which combinations of compartments have been
observed, while knowledge of B corresponds to knowledge of the initial values of the
compartments in each experiment.

This problem has been termed ‘the inverse problem’ or ‘the problem of identifi-
cation’ (Monot and Martin 1974, Jacques 1972, Rubinow and Winzer 1971). In
general linear system theory parts of this problem are treated under the name of
‘realization theory’ (Silverman 1971).

In the following, the system with system matrix A, initial value matrix B and
observation matrix C will be termed ‘the system (4, B, C)’ or (A4, B, C). Equation
(2) thus gives the impulse response of the system (4, B, C).

Let P be any invertible (n x n) matrix, and let

A=P-14P Ga)
B=P~'B (3b)
y=CP @Be)

z=P-x B4
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Since y exp (Af)f=C exp (Ar)B (Silverman 1971, Ogata 1967), the systems (A, B, ¥)
and (4, B, C) have the same impulse response. Even an exact knowledge of the
impulse response is therefore not sufficient to determine uniguely the system that
produced the impulse response.

Assume that we have succeeded in determining one possible system (A, B, )
with the observed impulse response. If n experiments are performed and g and B
are known and invertible, (3 a—¢) can be used to obtain A and C through the equations
A=BB~'ABB~" and C=yBB~'. If instead y and C are known and invertible, (3 a—)
can be used to determine A and B through the equations 4=C~'yAy~'C and
B=C"1y8.

If each compartment is observed on its own, then’ C is the identity matrix and
A=yAy~1. Further, if (A, B,7) is determined in such a way that A is a diagonal
matrix, then y is the matrix whose columns are the eigenvectors of the matrix 4. In
cases where B is an (nx 1) matrix, i.e. only one experiment is performed, this is
therefore equivalent to a well-known procedure for the calculation of the system
matrix 4 (Rubinow and Winzer 1971, Norwich 1977).

Complete mathematical symmetry exists between the observation matrix C and
the initial value matrix B. In spite of this symmetry, B and C are, of course, experi-
mentally obtained in significantly different ways. Situations may be conceived in
which parts of the system being studied are unavailable for observation, but available
for manipulation. In such cases, lack of knowledge of C or of the behaviour of some
compartments may in principle be replaced by independent experiments.

3. The identification of one possible system

The problem remains to identify a system (A, B,y) with the desired impulse
response. The following solution is an application of results which were presented
independently by Kalman (1963) and Gilbert (1963). The solution is restricted to
linear systems whose dynamic behaviour can be described by linear combinations of
exponential functions, but was selected béecause it is readily adapted to a least-squares
fitting of a theoretical impulse response to an observed response with errors of
measurement.

Assume that the impulse response of an unknown system has been observed at the
times t,, £, ..., Ix. We wish to determine an nth order system (preselected value of
n) with an impulse response close to the observed impulse response. Since the impulse
response Y(f) of the unknown system can be described by linear combinations of
exponential functions, we shall fit

n
Y(t)= Y Hiexp(\t) )
i=1
to the observations. Since Y(t) is a (p x g) matrix of functions, H; are (p xX¢) matrices
of coefficients of the scalar exponential functions exp (\#) (i=1, 2, ..., n). Therefore
(4) specifies pq linear combinations of exponential functions. Let r; be the rank (the

number of independent rows or columns) of H,. Gilbert (1963) and Kalman (1963)
showed that the minimal order m of a system with the impulse response (4) is given by

m= ¥ 6)

and that A, is an eigenvalue of multiplicity r;. Since we want m=n, it follows from (5)
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that we must require r;,=1 for all values of i. If some r;> 1, the order (number of
compartments) of the resulting system will be greater than n.

If the impulse response is describing only one experiment (g=1) or contains only
one linear combination of compartments (p=1), then each H, is a (px 1) or(l xq)
matrix, which must have rank 1, and the system resulting from (4) will be of order n.
If, however, p> 1 and g > 1, the ranks r, will in general be greater than 1, and the result-
ing systems will be of too great order.

Let

=Py (6)

with y; a (px 1) matrix and §; a (1 xg) matrix. In this case H, is of rank less than or
equal to 1 (if H;=0 then r;=0). If therefore ¥(¢) is expressed as

YO= 3 vbiexp () ™

the requirement that ¥(¢) should be the impulse response of an nth order system is met.
It follows that the system (A, B, ¥) with A a diagonal matrix A=diag (A, ..., A,),
B a (nxq) matrix with rows By, ..., B, and y a (p x n) matrix with columns y,, ..., ¥,
has the desired impulse response (Gilbert 1963, Kalman 1963).

4. Fitting the theoretical impulse response to observations
An alternative way of writing (7) is

$ek= 3. oo xp Out) ®)

where y; {¢) is the i, jth element of ¥(r), y;, is the i, kth element of y and B, is
the k, jth element of B.

We want to fit (8) to the K= Npg observations §; (1,) (i=1, ..., p; j=1, ... q;
I=1, ..., N). A unique correspondence between s=1, ..., K and the trlples i, j,1
can be specnhed giving £,=y; {(t;) and £.=9, ). Let the number of parameters
defining (8) be M, where M =n+ np +nq. We can then specify a unique correspondence
between w, (v=1, ..., M) and A, B, ; and v, (i, j and k as above). Equation (8) may
now be rearranged into the set

€= ‘1’1(0‘-'1, ey ‘-“M)
: ®)

£k =¢K("’.11 ey wM)

Equation (9) can be linearized around some set of values of the w,, say w,. This
gives for s=1, ..., K

Aw, O
o0 20w 1
§s'~v(1),(w‘”)+[&: ,...,—’][ : :| (10)
1

By Awp P

where

WP =[w, D, ..., wyP]T and AwP=w—w
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The problem is now to minimize

Aew, W 2
X PR a0 W 1 .
o | —=—, ...— : + O (wP)—¢ 11
s§| {[ Oy Cewpy ][ Aw,,‘”] (= A

with respect to w. o, can for instance be 1/var (€,) where var (£,) denotes the variance
of the observation £;.

Let 6, be the (K x M) matrix of partial derivatives, i.e. the Jacobian matrix with
the s, Ith element &®,/éw,. The minimization of (11) can now be done through the
iterative procedure

6,7 20,Aw =0, ZAFD (12a)
WUt D =@ 4 Ay, (12 b)

where
S=diag (o1, ..y 0x) and AEP=[@y(w?)—E)), .., @k(@?)—EQ]T

The above iterative method is essentially the minimization of

K

H(w)= g} Us{‘l)s(w)_és)z 13
by solving the set

aJ

a):(w)=0 (=1, ... M) (14)

Since (14) is non-linear, it must be solved iteratively. The resulting linearization gives
a set of equations including the second derivatives #?®/dw,;éew, (i, j=1, ..., M), which
are tedious to determine. It is easy to show that if the terms including the second
derivatives are neglected, the resulting set of equations is identical to (12 a).

The use of (12 a) requires that the matrix 6," 26, is invertible at each step j
of iteration. Unfortunately this is not true in the present case because the factorization
in (6) is not unique. If (6) is true, then so is H;=(yi/p;)(psy:) where p; is any number
different from zero. Because of this (12 @) does not have a unigue solution. This also
applies to (14). Since there are n non-unique factors p;, the rank of the (M x M)
matrix 6,7 26, will be less than or equal to (M —n). However, (12 a) can be solved
by using the generalized inverse (Penrose 1955, 1956, Jackson 1972). The generalized
inverse is computed using an IMSL-library routine (IMSL 1977) for the singular value
decomposition of a matrix (Golub and Reinsch 1970). A rigorous treatment of the
convergence of the Newton-Raphson method when the Jacobian matrix is non-
invertible and the generalized inverse is used, has been given by Ben-Israel (1966).

It should be noted that (12 @) can be replaced by the overconstrained set

TU20 At = BUZAED 15)

At each iteration (15) could be solved directly by using the generalized inverse. This
reduces rounding errors compared to (12a) Golub and Reinsch 1970). Equation
(12 @) was used in the present case, however, because the (Kx M) matrix x2g;
would have required a very large space in the computer. Since M is much smaller than
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K the (M x M) matrix ;" 26, requires much less space. If the latter consideration
does not arise, however, (15) should be used instead of (12 a), in particular when
(12 @) (and (15)) is ill-conditioned.

5. Results

Numerical examples were constructed by simulating the impulse response of a
given system (4, B, C). Stochastic errors were introduced by multiplication with
normally distributed pseudo-random numbers with mean 1 and selected standard
deviation. Exponential functions were then fitted to the simulated impulse response as
indicated in §4. The system matrix was, when possible, calculated according to
(3 a-<).

20N

10 01

\0,5

Figure 2. The test system used to investigate possible practical results of the mathematical
analysis. There are losses from compartments 1 and 4, but not from 2 and 3. There
are direct connections between all compartments except between 2 and 3.

The test system is presented in Fig. 2. This system corresponds to the system
matrix

—4-2 0-5 05 0-1

100 -07 00 01
A= (16)
10 00 -07 01

0-2 0-2 0-2 —08

with the four eigenvalues —0-322, —0-700, —0-911, —4-467.

The first test was made on an impulse response with an accuracy of three digits.
An observation matrix corresponding to independent observation of each compart-
ment was used. The initial value matrix that was used corresponds to four experiments,
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in each of which a different compartment is given the initial value 1, the others the
initial value 0. This is achieved if the observation matrix C and the initial value matrix
B both equal the identity matrix. The resulting impulse response is indicated in Fig. 3.

1. experiment 3.experiment
Y11 *q N\ %3 1 3 ¥4,3 1
¥2.1 *2 i \.\ z 3 ¥2,3| . |2
¥3,1 X3 "\_ 3,3 ¥3,3 *5
Ya,1 X4 4,3 3'-5 3 *q
~,
~
— -“"""‘--..
—
L Xy
________ ) PP ¢
1 — P S
1 P L 1 PR |
2. experiment 4L experiment
. £1,2 Yo,z 1 L By, Vi, |
NXo b2,21 - v2,2t - 172 X, “; 4 ¥2,a| . |*2
L O hi-l.? ¥3,2 *3 e b 3,4 ¥3,4 *q
Dl 4,2 4 Bs.4 Y4,4 %4
~
b~ S o -
"“-..
L H"“"-._-__
"'h—‘--
L )(‘. L T
L e X X =X
N s 23 %
— ] L 1 L L PR I -

Figure 3. The impulse response of the four-compartment system of Fig. 2. The curves
show the simulated responses of each compartment after four independent experi-
ments. In each experiment a different compartment is given the initial value 1, the
remaining compartments the initial value 0.

The computed impulse response matrix A4, is
[ —4-19966  0-49976  0-49976  0-10002
0-99984 —0-69983  0-00007  0-10001

A= a7
0-99984  0-00007 —0-69983  0-10001

0-20002  0-20000  0-20000 —0-80016 |

The 16 curves were each sampled at 51 points, a total of 51 x 16=816 points. When
compared, (16) and (17) shows a near identity. The method of the present paper there-
fore seems to give good results, at least when the system is readily accessible for
accurate measurements.

M.LC. E
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Example  Observation matrix

Computed system matrix

110
1 0 0 1

000

110
2

00 1
3 m1o0
3b ni1o
4 moo
5 m 11

110
6 00 1

000

0]

0]

0]

1]

—4-013
0-941
0-960
0-199

—4-100
0-961
0-961
0-294

—4-150
0-995
0-309
1-274

—4-103
0-978
0-249
1-363

—4-187
3-612

—1-656
0-331

—3-406
1-503

—0-031
0411

—4166
0-989
0-993
0-200

0-461
—0-684
0-009
0-194
0-487
—0-697
0-000
0-215
0-486
—0-699
~0-121
0-414
0-441
—0-683
0-100
0-071
0-494
—0-878
0-165
0-238
0-374
—0-782
0-181
0-145
0-493
—0-697
0-002
0-199

0-451
0-018
—0-687
0-193
0-567
—0-044
—-0-753
0-370
0-547
—0-035
—0-380
—0-229
0-552
—0-034
—0-556
0-035
0-510
—0-635
—-0-202
0520
0-294
—0-344
—-0-110
—0-011
0-488
0-004
—0-697
0-199

0-0957
0-101
0-102

—0-803 |
0-1117
0-097
0-098

~0-804
0-0957
0-104
0-195

—0-960 |
0-101
0-105
0-043

—0-732
0-098
0-084
0-145

—0-864

—0-4737
0-026
0-442

~0-717 ]
0-099"
0-100
0-100

—0-800 |
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The program was then tested on simulated data with a relative standard deviation
of 5%. The results are given in the Table. The same system matrix and the same
initial value matrix, but different observation matrices were used in the Examples of
the Table (except for Examples 3 and 3 b). The total number of observations (the
number of experiments x the number of observed curves per experiment x the number
of samples per observed curve) was approximately constant (from 484 in Example 5
to 496 in Example 1). The empirical standard deviation was computed from the
difference between the computed and the observed impulse response after each least
squares fit of the model to the data. In each case the empirical standard deviation
was not significantly different from the standard deviation of the simulated errors.

In Example 1, the computed system matrix is in good agreement with the answer.
The three rows of the observation matrix indicate observation of three different
combinations of compartments; the sum of compartments 1 and 2, compartment 3
alone and compartment 4 alone. In Examples 2 and 3 compartment 4 and compart-
ments 3 and 4 respectively are not included in the impulse response. Row 4 in Example
2, and rows 3 and 4 in Example 3 show little or no agreement with the true answer.
In spite of the fact that the fofal number of observations is approximately the same in
the three Examples, the agreement between the computed system matrix and the
test system is therefore reduced when the test system is less available for direct
observation.

Example 3 b is a repetition of Example 3, but with different initial values for the
iterations of (12 @, b). Rows 1 and 2 are in good agreement, but rows 3 and 4 show
no agreement in the two examples, demonstrating that the latter rows cannot be
determined accurately from the simulated observations of Examples 3 and 3 b.
The goodness of the least-squares fit is almost independent of rows 3 and 4 in the
system matrix.

The computed system matrix of Example 5 shows no agreement with the correct
answer. In this example the observation matrix corresponds to the observation of the
sum of all compartments, for instance total radioactivity in a tracer experiment.

Example 6 is similar to Example 1, except for the errors in the simulated observa-
tions. In Example 6 the relative standard deviation is 19, as opposed to 59 in
Example 1. The difference between the computed system matrix and the test system is
correspondingly reduced.

6. Discussion
It is important to distinguish between the following parts of compartment
analysis:

(i) to describe a system as a multi-compartment system and simulate the system
(solve the differential equations) in order to investigate the behaviour of the
system; and

(ii) from observation of the behaviour of an unknown system, to identify the
system (find the differential equations describing the system).

These parts are significantly different both in their nature and in their degree of
difficulty. When the system, or a set of assumptions describing the system, is known,
(i) is in principle straightforward. Part (ii) is the non-trivial part of compartment
analysis. In general a system which is consistent with the observations can be found.
The difficult part of the problem is the uniqueness of the solution. This is of general
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importance in the use of mathematical models to describe natural systems. It is
important to realize that several models may fit a given set of data equally well.
For instance, a different linear model with an identical impulse response can always
be found by increasing the order (the number of compartments) of the model. Only a
minimal system (a system with the minimal number of compartments, or equivalently,
an observable and controllable system) can, at best, be uniquely determined.

Most methods for system identification only utilize a single experiment (the initial
value matrix is an (n x 1) matrix). In such cases, unique identification of the system
requires, if no part of the system matrix is known a priori, that n independent combina-
tions of compartments are observed (the observation matrix must be invertible).
The present work indicates, however, that a significantly better identification can be
achieved if the model is simultaneously fitted to different experiments. The numerical
examples suggest that one may expect to identify the system with the same accuracy
as the data if the entire (or ‘almost’ entire) impulse response has been observed. For
an n-compartment system, the entire impulse response corresponds to n independent
experiments, in each of which n independent combinations of compartments are
observed. As shown in § 3, this puts restrictions on how theoretical curves should be
fitted to the observations.

In all the numerical examples in § 5 the initial value matrix B is the (4 x 4)-identity
matrix. In terms of linear system theory all the test systems are therefore controllable.
In Examples 4 and 5 one of the eigenvalues (—0-7) is not present in the simulated
impulse response. In terms of linear system theory these test systems are therefore
not observable. Example 4 indicates, however, that parts of an unobservable system
may at least occasionally be uniquely identified. Example 4 consists of four experi-
ments in which each compartment in turn is given the initial value 1. Assuming that the
initial slope of the curve describing compartment 1 is known in each experiment, we
obtain

%1,100)= —(ky,1 +kz,1 + k3,1 + ke, 1)
%1,2(0)=k, >
£1.3(0)=k1.3

331,4(0)=k1,4

where X, ,0) (i=1, 2, 3, 4) denotes the four initial slopes. If these initial slopes can
be determined with reasonable accuracy, the first line of the system matrix can be
found. This example may seem obvious, but it shows that observability need not be a
requirement for partial identification.
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