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The control of a continuously operating system for cement raw material mixing
is studied. The purpose of the mixing system is to maintain a constant composition
of the cement raw meal for the kiln despite variations of the raw material com-
positions. Experimental knowledge of the process dynamics and the characteristics
of the various disturbances is used for deriving a stochastic model of the system.
The optimal control strategy is then obtained as a minimum variance strategy.
The control problem is finally solved using a self-tuning minimum variance
regulator, and results from a successful implementation of the regulator are given.

Notation
A(z)=polynomial defined by eqn. (2.2)
a; =system parameter
B(z)=polynomial defined by eqn. (2.2)
b,=system parameter
C(z)=polynomial defined by egn. (2.2)
¢;=system parameter
e=white noise, N(0, o)
F(z)=polynomial defined by eqn. (2.6)
G(z)=polynomial defined by eqn. (2.6)
h=8o" !
K =vector of feedback gains
K =estimated vector of feedback gains
k =discrete time delay
k;=feedback gain
,=estimated feedback gain
L =time delay in the silo model, egn. (4.11) or (5.2)
P=normalized covariance matrix, eqn. (2.11)
g~'=backward shift operator
r(r)=autocovariance function, eqgn. (4.9)
s?=estimated variance
T=time constant
t=discrete time
u=system input, egn. (2.1)
V=accumulated loss
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v=drifting disturbance defined by eqn. (4.4)
v=vector defined by eqn. (2.9)
w=stochastic disturbance defined by eqn. (4.7)
X =silica ratio
Y=Ilime saturation factor
¥5p=set point for lime saturation factor
y=Ilime saturation factor, deviation from set point, ¥ — ¥, ; system output,
eqn. (2.1)
Y4 ¥, yo=measured lime saturation factor at various parts of the system, cf.
Fig. 1 (a)
¥ 4, ¥'s, ¥'c=actual lime saturation factor at various parts of the system used in
simulations, cf. Fig. 1 (a)
Je=estimated silo output given by eqn. (5.2)
Z=alumina ratio
a=model parameter in eqns. (4.11) and (5.2)
o;=model parameter, eqn. (2.7)
&, =estimated model parameter
B=model parameter in eqns. (4.11) and (5.2)
. =model parameter, eqn. (2.7)
f,=estimated model parameter
A=1—g~*
e=residual, egn. (2.7)
A=exponential weighting constant, eqn. (2.11)
o?=variance

1. Introduction

High energy costs have in recent years made the wet method of cement manu-
facturing less profitable and most of the plants are presently being designed for the
dry process. In this process an efficient mixing of the raw material components is
necessary in order to maintain a constant composition of the cement raw meal for the
kiln. This usually requires large investments in homogenization equipment, which
damps variations of the raw material compositions. An alternative is to use a control
strategy for determining the proper feed ratios of the raw material components.
There is, thus, a clear incentive to study the associated control problems and some
applications of advanced methods have been reported (Hammer 1972, Keviczky et al.
1978, Lunddn and Mattila 1974). The disturbances are, typically, of a stochastic
nature and stochastic control theory is, therefore, well suited for the problems in
question.

This paper describes the control of a continuously operating cement raw material
mixing system. The system has no prehomogenization of the raw material. Instead,
efficient mixing is obtained by using a feedback strategy and continuously operating
homogenization silos for raw meal homogenization. In this investigation, knowledge
of the process dynamics and the characteristics of the various disturbances which
affect the system is used for deriving a stochastic model of the system. The regulator
which minimizes the variations of the raw meal composition is then obtained as the
minimum variance strategy.

The objective of the control is to maintain the desired composition of the raw
meal from the continuously operating homogenization silos, despite disturbances.
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A special feature of the control problem is the fact that measurements of the silo
output cannot, for practical reasons, be used for feedback. A strategy minimizing
the variance of the silo input, however, does not give good control of the silo output
as the slow dynamics of the silos do not damp low frequencies. Therefore, the silo
output is estimated from measurements of the silo input and the regulator is designed
for minimizing the variance of the estimated silo output. The silo output is estimated
using a first-order model and it can be shown that the performance of the strategy is
insensitive to the actual residence time of the silos.

The stochastic system model has also been used for simulation purposes and the
performance of a number of regulators has been investigated. It was decided to solve
the control problem using a self-tuning minimum variance regulator (Astrom and
Wittenmark 1973, Astrom et al. 1977). The system model implies that a self-tuning
regulator, in which three parameters are estimated, should be used. However, simu-
lations show that, when using a regulator in which only two parameters are estimated,
the loss of the transient period is considerably reduced and the asymptotic average
loss is only slightly larger than that of the optimal regulator. For the studied system,
the transient properties of the self-tuning regulator are important owing to the
extremely long sampling interval (1 hour). The simulations, therefore, indicate that
in practice it is probably preferable to use a self-tuning regulator in which two para-
meters are estimated.

Finally, a successful implementation of the self-tuning regulator is described. In
the implementation, a priori knowledge of the process is used by assuming that the
deterministic part of the system is constant and known. Then, only those parameters
which depend on the characteristics of the disturbances, which are less well known and
probably time varying, are estimated.

The paper is organized as follows. In § 2, a brief description of the minimum
variance strategy and the self-tuning regulator is given. The mixing system is described
in § 3 and a stochastic model of the system is developed in § 4. In § 5, the performance
of a number of regulators, including the self-tuning regulator, is investigated by
simulations. Finally, results from the implementation of the self-tuning regulator are
given in § 6.

2. A self-tuning regulator

In this section, a brief description of the minimum variance strategy and a self-
tuning regulator based on this strategy is given.

The system model
Consider a linear discrete time single-input, single-output stochastic system

described by
yO)+ay(—=1)+...+ay(t—n)=bou(t—k—1)+...+b,_u(t—k—n)
+e(t)+ce(t—1)+...+ce(r—n)  (2.1)
where y is the output, u is the input, {e(r)} is a sequence of independent normal (0, ¢?)

random variables, and k is the time delay. Introduce the backward shift operator
g~*, defined by

g~ "y(1)=y(—1)
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and the polynomials
A(Z)=1+4+a,z+... +a,z"

B(z)=bo+byz+...+b,_z"", by#0 (2.2)

C(@)=14cyz+... +¢,z"
Equation (2.1) can then be written in the compact form
Al )y(6)=B(g~ u(t—k—1)+Clg~")e(t) (2.3)

The model (2.1) or (2.3) is a canonical representation of a sampled finite dimensional
single-input, single-output dynamical system with time delay and disturbances which
are Gaussian random processes with rational spectral densities (Astrém 1970).

The minimum variance strategy
In the minimum variance strategy the criterion is

min Ey(t+k+1)>* (2.4)
u(ty

where E - denotes the expectation operator. The optimal strategy is then given by
(Astrém 1970)

Glg~") @.5)

0= " wa i

where the polynomials
Fiz)=1+4fz+ ...+ fi2*
G(z)=go+g1z+...+gu_12" !
are then defined by the identity
C(z)=A(2)F(z)+Z** ' G(2) (2.6)
The following conditions are necessary:

(1) The polynomial B(z) has all zeros strictly outside the unit circle. Thus, the
only non-minimum phase property of the system (2.1) is the time delay k.

(2) The polynomial C(z2) has all zeros strictly outside the unit circle. This condition
is not very restrictive (cf. the spectral factorization theorem (Astrom 1970)).

If these conditions are not satisfied, suboptimal strategies must be used (Astréom
1970).

A self-tuning minimum variance regulator

Self-tuning regulators (STR) have been proposed for control of systems with un-
known and possibly time-varying parameters (Astrém ef al. 1977). A self-tuning
minimum variance regulator has been given by Astrém and Wittenmark (1973).
In this approach, the parameters of the model

Wt+k+ D) +eap(O)+... +oy(t—m+ 1)=Bo[u(t)+Bu(t—1)
+...+pu(t—D]+e(t+k+1)  (2.7)
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where m=n and /=n+k+1 are estimated on-line by the recursive least-squares
method. The estimates {&;}, {#;} are then used in the corresponding minimum variance
strategy,

Ut) = (R (O)+ o + 8yt —mt )]~ ot — )= .. —fae—T)  (2.8)

In order to avoid non-identifiability due to closed-loop operation it has been
suggested that the parameter B, is held constant (Astrém and Wittenmark 1973).
The parameter B, is an estimate of the system parameter b, in (2.1). It has, however,
been shown that the choice of B is within certain limits, not critical for the behaviour
of the algorithm (Astrom and Wittenmark 1973).

Astrom and Wittenmark (1973) have shown that if the regulator has the correct
structure and if the parameter estimates converge to such values, that the poly-
nomials

&y +8,z+ ... 482" " and 1+f,z+...+fi2'

have no common factors, then the control law (2.8) converges to the minimum variance
strategy (2.5) which could be determined if the system parameters were known.

As the parameter B is held constant and is not estimated, it is convenient to rewrite
the model (2.7) in the form (Toivonen 1977)

u(t)y=hy(t+k+ 1)+ Ko()+&ar+k+1) (2.9)

where h=8,"",
() =[y(1), ..., W(t—m+1), u(t—1), ..., u(—D)]"
and K is a vector of feedback coefficients,
K=[o1/Bo, ---s @mlBos —B1s s —Bi)
=[kyy coes Ky K 15 <3 Kms1]-
The minimum variance strategy is then simply
u(t)=Ko(t) (2.10)

The STR algorithm, based on the model (2.9), can now be summed up as follows:

(1) Estimation. At each sampling instant, determine the least-squares estimate of
K in the model (2.9). Using the recursive least-squares method with exponential
forgetting of past data, the estimate is obtained from the equations (Eykhoff 1974).
v(t—k)"P(1)
1+o(t—Kk)"P()e(t—k)
P(t)o(t —k)(t—k)"P(t)
1+ o(t—Kk)TP(t)e(t—k)

where A is the exponential weighting constant.

K(t+1)=K(t)+ [u(t — k) — hy(1+ 1) — K(t)o(t — k)]
(2.11)

P+ 1= [P(r)—

(2) Control. Determine the control signal from
u(t)=K(O(t) (2.12)
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It has been demonstrated that the self-tuning minimum variance regulator has
good convergence properties (Astrom and Wittenmark 1973, Astrém et al. 1977).
Several successful practical applications of the regulator have been reported (Astrém
et al. 1977). These include paper machines (Borisson and Wittenmark 1974, Cegrell
and Hedqvist 1975), an ore crusher (Borisson and Sydmng 1976), an enthalpy ex-
changer (Jensen and Hansel 1974), a supertanker (Killstrom er al. 1978), a binary
distillation column (Sastry et al. 1977) and a batch cement raw material blending
process (Keviczky et al. 1978).

3. The cement raw material mixing system

The cement raw material mixing system considered in this paper belongs to the
company Oy Partek Ab and is located in Pargas, Finland. The mixing system has
previously been discussed by Lunddn and Mattila (1974) and Laurén (1978). A
schematic picture of the mixing system is shown in Fig. 1 (@). In this process, a flow
of 190 tonsfhour raw material from the quarry is ground in the ball mill. The resulting
cement raw meal is fed into continuously operating homogenization silos where high-
frequency variations of the raw meal composition are efficiently damped. The
homogenized raw meal is then preheated and fed into the cement rotary kiln. The
ball mill is fed from raw feed silos containing five raw material components of different
compositions. The raw meal composition is controlled by adjusting the frcd ratios of
the raw material components. The control problem arises from the fact that the
compositions of the raw materials vary from time to time and they are not measured
directly.

The quality of the raw meal is characterized by the following three quantities listed
in the order of decreasing priority:

C = C
Y= s TasAso6sr 0 lime saturation factor
S
X=— . .
A+F silica ratio
A - -
Z=};' alumina ratio

where
C=weight-% CaO
S=weight-% SiO,
A=weight-% Al,04
F=weight-9, Fe,0,

In order to obtain good control of the raw meal quality, it is important to have an
efficient method for analysing the raw meal and raw material compositions. Earlier,
laborious wet chemical methods were used. The process of Oy Partek Ab employs a
special analysing system, Cemixan (Cement Mixing Analysis), which has been des-
cribed by Lunddn and Mattila (1974). In this system, the calcium and iron contents
are determined by an X-ray fluorescence technique and a neutron activation technique
is used for the determination of the silica and alumina contents. The time needed for
sample transport, sample preparation, activation and measurement is approximately
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Figure |. (a) Flow sheet of the cement raw material mixing system. (b) Control configuration.

30 min. It has been found suitable to use a sampling period of 1 hour. The Cemixan
analysing system is equipped with a PDP-11 minicomputer with 12K memory, a
decwriter and interfaces to the analysers and the process.

It is technically and economically impractical to obtain representative samples of
the highly heterogenous raw material components in the raw feed silos. In the Cemixan
system the raw material compositions are, therefore, estimated from raw meal analysis
(taken at point B in Fig. 1 (a)), and knowledge of the feed ratios (Lundédn and Mattila
1974).
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The feed ratios of the raw material components are determined as follows. A
control strategy generates the desired composition (lime saturation factor, silica ratio
and alumina ratio) for the total feed into the ball mill during the next sampling period.
The feed ratios are then determined on the basis of the estimated raw material com-
positiond so as to generate the desired composition of the total feed. However, as
there are five raw material components and only three controlled variables, there is a
degree of freedom. The feed ratios are, therefore, selected by minimizing a loss function,
which also puts weights on the relative costs of the raw material components (Lunddn
and Mattila 1974).

The control configuration of the Cemixan system is shown in Fig. 1(b). The
purpose of the present study is to investigate control strategies which calculate the
input (desired composition of the total feed) on the basis of raw meal analysis.

4. Stochastic modelling of the mixing system

In this section, an approximate stochastic model of the mixing system described in
§ 3 is developed. The dynamics of the ball mill and the homogenization silos were
available from previous studies (Nyman 1976). An experimental investigation of the
characteristics of the disturbances was also available (Laurén 1978).

The process is modelled so that the control signals are the desired lime saturation
factor, silica ratio and alumina ratio of the total feed to the ball mill. The optimization
algorithm will then calculate the proper feed ratios of the raw material components,
as described in § 3. The outputs are the corresponding modules of the raw meal.
Now, assume that the raw material silo contents have been correctly estimated. The
system can then be modelled as a decoupled multivariable system (Lunddn and Mattila
1974, Nyman 1976). Thus, if for example the desired lime saturation factor (LSF)
of the feed is changed, this will affect only the LSF and not the other modules of the
raw meal. As the LSF is the most important criterion of the meal quality, only the
model for this quantity will be discussed here.

Let the LSF at the sampling instant 7 be denoted by Y(¢), and let Y be the set
point. It is then convenient to introduce the deviation from the set point,

y)=Y({t)— Ys

It is also convenient to make a distinction between the measured quantity, 3(f), and
the actual quantity, y'(t). These are not equivalent because of measurement errors.
The LSF at a given point in the system will be indicated by a lower index; Y, Vg, Y.
(See Fig. 1 (a).)

The dynamics of the ball mill can be described by a second-order transfer function
with two equal time constants T~9 min (Nyman 1976). Assume that the input to the
ball mill is constant during the sampling period. The system may then be sampled.
Using a sampling peried equal to 1 hour and allowing for a 30 min delay in the control
loop, the sampled system can adequately be described by

V' elt+ 1) =boy () +b,y 41— 1) @1

bo=0-76 and b,=0-24
Owing to measurement errors, the measured ball mill output is
yu(t)=y's(t) +eyt) 4.2)
where e,(?) is white noise with the standard deviation ¢,=0-9 (Laurén 1978).

where
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Owing to variations of the raw material compositions, there is an error in the
determination of the mill input. The relationship between the desired input, u(t);
and the actual input to the ball mill, ' (), can approximately be given by

Y a)=1u(t)+ 1) +er) 4.3)

where e,(t) is white noise with the standard deviation o, =8 and v(¢) is a drifting distur-
bance, which can be characterized by

ut)=v(t—1)+eft), o,=I 4.4)

It may be observed that the sampled model (4.1) was obtained assuming that the
ball mill input is constant during the sampling period. We have, thus, made the
approximation that the disturbance at the input is constant during the sampling period.
The limited experimental data available did not make it possible to give a more
precise description of the disturbances. However, it is believed that this approximation
is not too serious in comparison with other approximations made in the modelling
of the system.

Eliminating the drifting disturbance ©(¢) from eqn. (4.3) gives

Ay’ (H)=0u(t)+e () +eft)—eli—1) @.5)
where

AY (D)= a(t) =y at-1)
Au(t)=u(t)—u(t—1)
Equations (4.1), (4.2) and (4.5) give
ye(t+ D)=y +boAu(®)+ by Au(t— 1)+ w(t+1) {4.6)
where
w(t+ 1) =e(t+1)—e)(t)+boe(t)+biet — 1)+ bget)
—(bo—by)eft—1)—bye(t—2) 4.7)

According to the spectral factorization theorem the disturbance w(t) can be written
in terms of a stable linear filter driven by white noise (Astrom 1970),

w(t+1)=e(t+1)+c e(t)+ce(t—1) (4.8)

where Ee(t)? =o?. The parameters c;, ¢, and o are obtained from the autocovariance
function
r(0)=Ew(t)?=20,2 4 (bo* +b,2)0, 2+ 2(bo? + b2 —bob,)o,? |
=o*(l+c2+¢,?)

r(Dy=Ew(t)w(t—1)= —o,,z +boblo,,2—-(bo ——bl)zo',,z

=0*(cy+102) (

(4.9)

r(2)=Ew(t)w(t—2)= —bob,0,2=0%c,

r3)=r(d)=...=0
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The solution to these equations is not unique, but the solution for which the zeros of
the polynomiial

14¢,z4¢,22
are outside the unit circle is

cy=—058, c,=—027, 0?=43

The final model relating the measured LSF at point B to the desired LSF of the total
feed is thus

Yt + 1) =pp(t) + boAu(t)+ b, Au(t— 1)+ e(t+ 1) +c,e(t) + c,et—1)  (4.10)

The dynamics of the homogenization silos can approximtely be described by a
first-order system with time delay (Nyman 1976). If it is assumed that the silo input is
constant during the sampling period, the system may be sampled. The sampled model
for the silo dynamics is

Ylt+L+1) =y (t+L)+By s(t) 4.11)
In the present investigation, the following numerical values are used:
«=0-93 and B=0-07

which correspond to a time constant 7= 14 hours. The time delay L is varying in the
region (10-20) hours owing to different operating conditions of the homogenization
silos.

5. Simuilations

Extensive simulations were carried out in order to evaluate the performance of
different regulators for the cement raw material mixing process. Specifically, the
performance of the self-tuning regulator, described in § 2, was investigated. In the
simulations, the process was modelled by eqns. (4.1-4.4) and (4.11).

A simulation of the uncontrolled system is shown in Fig. 2. The desired input u
to the ball mill was, in this simulation, held equal to zero. The simulation shows that
the disturbances pass the ball mill undamped. The homogenization silos damp high
frequencies effectively, whereas low frequencies pass undamped. A successful control
of the system should, therefore, be able to damp low frequency disturbances.

Minimum variance after ball mill

Firstly, regulators designed to minimize the variance of the ball mill output )’
are considered. From eqn. (4.2) it follows that

Ey' (1) = Eyy(t)? — 0,2

where o, is the variance of the measurement error. It is thus, equivalent to find a
strategy which minimizes the variance of the measured output yg.
The minimum variance strategy for the system described by (4.10) is

l+c

M=~

1 Ca b,y
y»(t)—b—0 yn(r—l)—b—o Au(t—1)

= —0-56y5(t)+0-36y5(t — 1) —0-32Au(t — 1) (5.1)
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Figure 2. Simulated response of the uncontrolled mixing system.

For this strategy, the ball mill output is asymptotically a white-noise sequence with
variance

Eyg(t)?=0>=43
and
Ey' (t)*=0*—0,2~42

The output from the homogenization silos will be a drifting process with variance

Ey'c(r+L+l)2=E|: _i Pt y’.;(s):I2

= B> —0,2)[(1—o?)~1-5

Figure 3 shows the result when the strategy (5.1) was simulated for the mixing system.
Control of the ball mill output is good but the silo output is still drifting. It is obvious
that this strategy is not well suited for control of the silo output.

Minimum variance after silos

The object of the mixing system is to minimize the variance of y’¢, the output from
the homogenization silos. However, owing to the long and time-varying time delay of
the silos, it is not possible in practice to use measurements of y. for feedback. There-
fore, an estimate of yc is used instead. From the knowledge of the silo dynamics
discussed in § 4, an estimate of the silo output is given by

Yt +L+1)=e(t+L)+Bys(t) (5:2)
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Figure 3. Simulated response of the mixing system when using the strategy (5.1) for
minimum variance after ball mill.

Combining egns. (4.10) and (5.2) gives
Pe(t+L+2)=(1 + )Pt + L+ 1)—opc(t+ L)+ BboAult)
+Bb,Au(t— 1)+ Blett + D) +cre(t) +cae(t—1)]  (5.3)
and the strategy minimizing Ef¢(t)? is

1 ) _
D)= —%ﬁc(r+L+l)—c;b *
0 4]

— 25451+ L+1)+22:69t+L)—0-316Au(t—1) (5.4)

,]’JC(I+L)—£l Au(t—1)
bo

It is convenient to use a control law in which only yg and Aw are fed back. Multi-
plying (5.4) by (1 —eg~') and using (5.2) gives

Au(t)= —

Lhate, o @78 0 e (we20) Au—1)+222 aue-2)
b b b, by

— — 178y,(t)+ 1-58pu(t — 1)+ 0-614Au(t — 1) +0-294Au(t —2) (5.5)

As the zero of 1 —az is outside the unit circle, the control law (5.5) is asymptotically
equal to (5.4).

When using the strategy (5.4) or (5.5) the estimated silo output j¢ is asymptotically
a white-noise sequence with variance

Ej(t)*=p*e*=0-21
The variance of the ball mill output will be
Eyp(t)* =79

which can be computed by the methods described by Astrém (1970).
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Figure 4. Simulated response of the mixing system when using the strategy (5.5) for
minimum variance after silos.

The result, when the strategy (5.5) was simulated for the system, is shown in Fig. 4.
A self-tuning regulator can now be based on the model

Au(t) =hye(t + L+2)+ Ko(t)+ &t-+L+2) (5.6)
and using the control
Au(t)=Ku(t)

The table shows the performance of self-tuning regulators with different structures.
Asymptotically the optimal regulator structure (1) gives the best performance.
However, the Table also shows that the loss of the transient period is considerably
smaller when using regulators with only two estimated parameters. As the dynamics

V Vmin
Regulator structure t=100 500f 1000 5000 =)
(1) Au(t)=k,Au(t— 1)+ Epct+L+1) 526 191 149  1-12 100
+k3p(t+L)
(2) Au(t)=k,yg(t)+koye(t—1) 329 1-54 1438 1-19 111
(3) Au(t)=k,Au(t—1)+k,yg(r) 865 255 1-82 118 102
(@) Au(t)=k,ys(t)+kopc(t+L+1) 1:69 164 159 1-58 1-62

(5) Aut)=k Pt +L+1)+k,pc(t+L) 1-64 1-57  1-57 158 162
(6) Au(t)=k,Au(t—1)+k,pt+L+1) 6-83 322 281 239 2:42
(7) Aut)=k,yx(t) 1-82 1445 139 1-35 1-38

Simulation of self-tuning regulators based on (5.6) for minimizing the variance
of the silo output. The regulators were applied with k,(0)=0, # =20, P(O)=1,
!

A=0:99. The accumulated loss is = Y '(s)? and ¥, is the accumulated
=0

loss when using the optimal strategy (5.4) or (5.5). The values in the table
represent the mean of ten simulations. The asymptotic loss was calculated by
methods described by Astrém and Wittenmark (1973).




30 T. Westerlund et al.

of the process can be expected to change with time, and as the sampling interval is
long (1 hour), it is important to have a regulator with good transient properties,
which can adapt to changing process dynamics in only a few samples. The simulations,
therefore, indicate that it is doubtful whether anything can be gained by using a
regulator in which more than two parameters are estimated. The result, when the self-
tuning regulator (2) of the Table was simulated for the mixing system, is shown in
Fig. 5.

m T T T T T
¥ !
bl :
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Figure 5. Simulated response of the mixing system when using the self-tuning regulator (2)
of the Table for minimum variance after silos. ’

As the regulator uses a model of the silo dynamics, it is relevant to investigate how
sensitive the performance of the regulator is to the choice of the silo model. This can
be done by calculating the variance of jc for different time constants 7 for the silo
when using, (i) the optimal strategy which can be calculated when 7 is known, and
(ii) the strategy (5.4) based on 7,~ 14 hours («=0-93). It turns out that the perfor-
mance of the strategy (5.4) remains close to the optimal even for large variations of the
time constant 7. Thus, for 7,=3 hours the optimal strategy gives the variance 33
whereas the strategy (5.4) gives the variance 3-8, and for 7;=30 hours the corres-
ponding variances are 0-046 and 0-047. It can thus be concluded that the choice of the
silo model is not a critical step in the design of a regulator for the system.

Comparison with other strategies

It is of interest to compare the performance of the minimum variance strategies
and the self-tuning regulators with other strategies, which have previously been
considered for the mixing system.
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The process was originally controlled by the digitalized Pl-regulator
Au(t)y= —0-65y5(1) +0-5y4(t—1) (5.7

Hammarstrom et al. (1978) have attacked the control problem using deterministic
control theory. Two regulators which were considered by Hammarstrom et al.
(1978) are

Au(t)= —0-94y (1) +0-02y (r — 1) —0-30Au(t — 1) (5.8)
Ault)= — yg(t)+0-08pg(t — 1) —0-20As(z— 1) (5.9)

The control law (5.8) was derived using optimal deterministic control theory, and the
strategy (5.9) is a Higham controller (Higham 1968) for time delay systems. The
strategy (5.9) was found to give better control of the silo output than the original
Pl-regulator, and the strategy has, therefore, been implemented in the process.

The regulators (5.7-5.9) were simulated for the mixing system. The accumulated
loss

v= ,;0 y(S)z

of the ball mill output and the silo output is shown in Figs. 6 and 7 when using
different strategies. It is interesting to observe that the original Pl-regulator is well
tuned for minimizing the variance of the ball mill output, but it does not give good
performance at the silo output.

6. Experimental results

The self-tuning regulator considered in § 5 was implemented in the cement raw
material mixing system of Oy Partek Ab. It was decided to use a regulator in which
only two parameters are estimated. The simulations of § 5 indicated that probably
nothing could be gained by estimating more parameters. A priori knowledge was
included in the regulator by assuming that the deterministic part of the system is
constant and known. Then only those parameters which depend on the stochastic
part of the system were estimated. Several regulator structures were tried. The results
were very encouraging and two examples are given below. An example showing the
result when a regulator with fixed parameters was used is also given.

The performance of the regulators was evaluated by calculating the variances of
the ball mill output and the estimated silo output. The actual silo output was, in these
experiments, disturbed by a side flow of dust of varying size from electric precipitators
which could not be compensated for. The variance of the silo output is, therefore, not
given.

Example | (November 1977)

This example shows the result when using a regulator with fixed parameters. The
strategy given by eqn. (5.9) was used. Figure 8 shows the ball mill output Y5, the
estimated silo output ¥, and the measured silo output Y. for this example. Observe
that the measured silo output, Y., is directly affected by the measurement noise
(c=0+9) contrary to the estimate of the silo output, Y. Furthermore, the mean and the
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Figure 6. Accumulated loss of the ball mill output when using different regulators.
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Figure 7. Accumulated loss of the silo output when using different regulators.
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Figure 8. Results from Example 1. The silo output Y. was disturbed by a side flow of dust
from electric precipitators which could not be compensated for.

variance of the measured silo output, Y, is affected by the side flow of dust from
electric precipitators. The variance of the ball mill output was

1 N
= i)>’=116
S =gy &, ¥od
and the variance of the estimated silo output was

2=
<
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=
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Example 2 (June 1978)
In this example, two regulator parameters were estimated, and a third was assumed
to be known. Using eqn. (5.2) the strategy (5.4) can be written

Au(t)=k,ys(t) +k,Jclt + L+ 1)+ ksAu(t—1)
where
o? +acy+c; b,

k2= _W' k3=—b—oz —0-32

a—0Cy

_ab(,’

kl__"

Here the parameter k5 is determined by the ball mill dynamics, eqn. (4.1), which is
well known from experiments. The parameters k, and k, depend, through ¢, and ¢,
on the characteristics of the disturbances, which are less well known and may change
with time. It therefore seems reasonable to use a self-tuning regulator in which only
k, and k, are estimated and the parameter k5 is assumed to be known.

B2
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In this example, the parameters k, and k, were estimated from the model
Au(t)y=hpc(t+L+2)—0-328u(t — 1)+ k, yp(t) + k2 pc(t+L+1)
and the control signal was determined from
Au(t)=—0-320u(t — 1)+ kyyp(t) + k25t + L+ 1)
The regulator parameters were
h=20-0 and A=0-96

The result is shown in Fig. 9. The variances of the ball mill output and the estimated
silo output were

8y,2=59-0 and s55.2=0-51
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Figure 9. Results from Example 2. The silo output ¥ was disturbed by a side flow of
dust from electric precipitators which could not be compensated for.

Example 3 (August 1978)

In this example, the regulator structure (5.4) was used. Again, it was assumed
that the parameters b, and b; are known. The regulator was thus

Au(t)= —0-328u(t — 1)+ k, $(t + L+ 1) + ko3t +L)
where k, and k, were estimated. The regulator parameters were

h=20-0 and A=0-99
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Figure 10. Results from Example 3. The silo output ¥ was disturbed by a side flow of
dust from electric precipitators which could not be compensated for.

The result is shown in Fig. 10. The variances in this example were
5,,2=104-0 and s5pc%=0-57

Figure 11 shows the trajectory of the parameter estimates. The shaded area shows
the region in which the estimates were during the practical experiment. Level curves
for the ratio (variance after silo)/{(minimum variance after silo) calculated for the
system model (5.3) are also shown (cf. Westerlund 1979). The figure shows that the
regulator parameters were quite close to the optimal parameters for the system model
(5.3), during the experiment. '

The experience obtained from practice has been that the self-tuning regulator, on
average, gives better control performance than a regulator with carefully tuned fixed
parameters. As it is difficult to tune the regulator parameters manually, especially
when the process dynamics are changing, it is clearly advisable to use a self-tuning
regulator. After the first practical experiments had been performed, the self-tuning
regulator used in Example 3 above has been in continuous use.

7. Conclusions

Stochastic modelling and control of a continuously operating cement raw material
mixing system have been considered. A special feature of the control problem is the
fact that measurements of the controlled variable, the composition of the silo output,
cannot be used for feedback owing to the long and changing time delay of the silos.
Instead, the composition of the silo output is estimated from measurements of the
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Figure 11. Phase plane of the regulator parameters in Example 3. The shaded area shows
the region in which the parameters were during the practical experiment. Level curves
for the ratio Efc(r)?/min Ej(t)? calculated for the system model (5.3) are also shown.

silo input, using a first-order model for the silo dynamics. The regulator is then
designed for minimizing the variance of the estimated silo output. The performance
of the regulator is not sensitive to the choice of the silo model when the silos are
sufficiently large.

The feasibility of the self-tuning regulator for control of the mixing system was
investigated by simulations. From the simulations it was concluded that, for the
system under study, it is preferable to use a self-tuning regulator in which a fewer
number of parameters is estimated than the optimal regulator would require. This
was motivated by the superior transient properties of the simpler regulator in combi-
nation with the large sampling interval (1 hour).

Finally, results from the implementation of the self-tuning regulator are given.
The results show once more the practical applicability of the self-tuning regulator.
The control performance was so good that the regulator has been permanently installed
in the system.
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