“Modeling of Human Arm Energy Expenditure for Predicting Energy Optimal Trajectories”

Authors: Lelai Zhou, Shaoping Bai, Michael R. Hansen and John Rasmussen,
Affiliation: Aalborg University and University of Agder
Reference: 2011, Vol 32, No 3, pp. 91-101.

Keywords: Metabolic cost, Human arm motion, Musculoskeletal model, Biomechanics

Abstract: Human arm motion can inspire the trajectory planning of anthropomorphic robotic arms to achieve energy-efficient movements. An approach for predicting metabolic cost in the planar human arm motion by means of the biomechanical simulation is proposed in this work. Two biomechanical models, including an analytical model and a musculoskeletal model, are developed to implement the proposed approach. The analytical model is developed by modifying a human muscle expenditure model, in which the muscles are grouped as torque providers for computation efficiency. In the musculoskeletal model, the predication of metabolic cost is conducted on the basis of individual muscles. With the proposed approach, metabolic costs for parameterized target-reaching arm motions are calculated and utilized to identify optimal arm trajectories.

PDF PDF (670 Kb)        DOI: 10.4173/mic.2011.3.1

DOI forward links to this article:
[1] Daniel K. Zondervan, Jaime E. Duarte, Justin B. Rowe and David J. Reinkensmeyer (2014), doi:10.1007/s00221-013-3819-3
[2] Jingtao Chen, Peter Mitrouchev, Sabine Coquillart and Franck Quaine (2016), doi:10.1007/s00170-016-8827-6
[3] Lelai Zhou, Shaoping Bai and Yibin Li (2017), doi:10.4173/mic.2017.1.2
[4] Ignasi Cos (2017), doi:10.1371/journal.pbio.2002885
[5] Maria Eugenia Cabrera and Juan Pablo Wachs (2018), doi:10.1109/FG.2018.00016
[6] Chengzhu Zhu, Jian Jin, Yunhao Sun and Anbing Zheng (2012), doi:10.1007/978-3-642-34381-0_50
[7] Kun Yang, Yibin Li, Lelai Zhou and Xuewen Rong (2019), doi:10.3390/en12132514
[8] Jeff Searl and Stephanie Knollhoff (2019), doi:10.1016/j.jcomdis.2019.105937
References:
[1] Abend, W., Bizzi, E., Morasso, P. (1982). Human arm trajectory formation, Brain, 105:331--348 doi:10.1093/brain/105.2.331
[2] Alexander, R.M. (1997). A minimum energy cost hypothesis for human arm trajectories, Biological Cybernetics, 7.2:97--105 doi:10.1007/s004220050324
[3] AnyBody. (2010). AnyBody Modeling System, Available from: www.anybodytech.com.
[4] Atkeson, C.G. Hollerbach, J.M. (1985). Kinematic features of unrestrained vertical arm movements, Journal of Neuroscience, .9:2318--2330.
[5] Chaffin, D.B., Andersson, G. B.J., Martin, B.J. (2006). Occupational Biomechanics, John Wiley and& Sons, New York, 4 edition.
[6] Fagg, A.H., Shah, A., Barto, A.G. (2002). A computational model of muscle recruitment for wrist movements, Journal of Neurophysiology, 88:3348--3358 doi:10.1152/jn.00621.2002
[7] Flash, T. Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model, Journal of Neuroscience, .7:1688--1703.
[8] Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E. (1986). Neuronal population coding of movement direction, Science, 233:1416--1419 doi:10.1126/science.3749885
[9] Hill, A.V. (1938). The heat of shortening and the dynamic constants of muscle, Proceedings of the Royal Society of London, Series B, Biological Sciences, 12.843:136--195 doi:10.1098/rspb.1938.0050
[10] Holzbaur, K. R.S., Murray, W.M., Delp, S.L. (2005). A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control, Annals of Biomedical Engineering, 3.6:829--840 doi:10.1007/s10439-005-3320-7
[11] Kashima, T. Isurugi, Y. (1998). Trajectory formation based on physiological characteristics of skeletal muscles, Biological Cybernetics, 78:413--422 doi:10.1007/s004220050445
[12] Kashima, T., Isurugi, Y., Shima, M. (2002). An optimal control model of a neuromuscular system in human arm movements and its control characteristics, Artificial Life Robotics, 6:205--209 doi:10.1007/BF02481269
[13] Leeuwen, J. L.V. (1991). Optimum power output and structural design of sarcomeres, Journal of Theoretical Biology, (149):229--256 doi:10.1016/S0022-5193(05)80279-6
[14] Ma, S. Zahalak, G.I. (1991). A distribution-moment model of energetics in skeletal muscle, Journal of Biomechanics, 24(1):21--35 doi:10.1016/0021-9290(91)90323-F
[15] Mendez, J. Keys, A. (1960). Density and composition of mammalian muscle, Metabolism, Clinical and Experimental,.9:184--188.
[16] Morasso, P. (1981). Spatial control of arm movements, Experimental Brain Research, 42:223--227 doi:10.1007/BF00236911
[17] Rosenbaum, D.A., Loukopoulos, L.D., Meulenbroek, R. G.J., Vaughan, J., Engelbrecht, S.E. (1995). Planning reaches by evaluating stored postures, Psychological Review, 10.1:28--67 doi:10.1037/0033-295X.102.1.28
[18] Secco, E.L., Valandro, L., Caimmi, R., Magenes, G., Salvato, B. (2005). Optimization of two-joint arm movements: a model technique or a result of natural selection?, doi:10.1007/s00422-005-0003-2
[19] Umberger, B.R., Gerritsen, K. G.M., Martin, P.E. (2003). A model of human muscle energy expenditure, Computer Methods in Biomechanics and Biomedical Engineering, .2:99--111 doi:10.1080/102558403100009167
[20] Winter, D.A. (2009). Biomechanics and motor control of human movement, John Wiley and& Sons, New Jersey, 4 edition.
[21] Winters, J.M. Stark, L. (1985). Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models, IEEE Transactions on Biomedical Engineering, 32:826--839 doi:10.1109/TBME.1985.325498


BibTeX:
@article{MIC-2011-3-1,
  title={{Modeling of Human Arm Energy Expenditure for Predicting Energy Optimal Trajectories}},
  author={Zhou, Lelai and Bai, Shaoping and Hansen, Michael R. and Rasmussen, John},
  journal={Modeling, Identification and Control},
  volume={32},
  number={3},
  pages={91--101},
  year={2011},
  doi={10.4173/mic.2011.3.1},
  publisher={Norwegian Society of Automatic Control}
};