“Constrained Control Design for Dynamic Positioning of Marine Vehicles with Control Allocation”

Authors: Tristan Perez and Alejandro Donaire,
Affiliation: University of Newcastle (Australia) and NTNU, Centre for Ships and Ocean Structures
Reference: 2009, Vol 30, No 2, pp. 57-70.

Keywords: Marine control systems, dynamic positioning, control allocation, anti-windup, fault accommodation

Abstract: In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.

PDF PDF (2088 Kb)        DOI: 10.4173/mic.2009.2.2

DOI forward links to this article:
[1] Tristan Perez, Alejandro Donaire, Pierre De Lamberterie and Brendan Williams (2011), doi:10.2514/6.2011-1531
[2] Ming-chung Fang and Zi-yi Lee (2013), doi:10.1007/s13344-013-0040-x
[3] Asgeir J. Sørensen (2011), doi:10.1016/j.arcontrol.2011.03.008
[4] Bong Seok Park (2015), doi:10.1155/2015/903759
[5] A. Doria-Cerezo, J.A. Acosta, A.R. Castano and E. Fossas (2014), doi:10.1109/CCA.2014.6981452
[6] Ming-Chung Fang and Zi-Yi Lee (2015), doi:10.12989/ose.2015.5.3.199
[7] Yongjun Seo and Youdan Kim (2016), doi:10.2514/6.2016-0103
[8] Ming-Chung Fang and Zi-Yi Lee (2016), doi:10.1016/j.ijnaoe.2015.09.003
[9] Zhi Jian-hui, Chen Yong, Dong Xin-min, Xue Jian-ping and Yi Jian (2015), doi:10.1109/ChiCC.2015.7260053
[10] Anton Proskurnikov and Elena Ambrosovskaya (2012), doi:10.3182/20120919-3-IT-2046.00026
[11] Anton V. Proskurnikov and Elena B. Ambrosovskaya (2010), doi:10.3182/20100915-3-DE-3008.00077
[12] Guibing Zhu, Jialu Du and Yongchao Liu (2016), doi:10.1109/ICIST.2016.7483430
[13] Jialu Du, Xin Hu, Miroslav Krsti and Yuqing Sun (2016), doi:10.1016/j.automatica.2016.06.020
[14] Guoqing Zhang, Yunze Cai and Weidong Zhang (2017), doi:10.1109/TSMC.2016.2628859
[15] Du Xue, Yu Haomiao, Zhou Jiajia and Xia Genglei (2017), doi:10.23919/ChiCC.2017.8027910
[16] Christina Kazantzidou, Tristan Perez and Alejandro Donaire (2017), doi:10.1109/ASCC.2017.8287597
[17] Xiaogong Lin, Jun Nie, Yuzhao Jiao, Kun Liang and Heng Li (2018), doi:10.1016/j.oceaneng.2018.03.086
[18] Xin Hu and Jialu Du (2018), doi:10.1007/s11071-018-4364-1
[19] Xin Hu, Jialu Du, Guibing Zhu and Yuqing Sun (2018), doi:10.1016/j.neucom.2018.08.056
[20] Robert Skulstad, Guoyuan Li, Houxiang Zhang and Thor I. Fossen (2018), doi:10.1016/j.ifacol.2018.09.481
[21] Sang-Ki Jeong, Hyeung-Sik Choi, Jin-Il Kang, Ji-Youn Oh, Seo-Kang Kim and Thieu Quang Minh Nhat (2019), doi:10.3233/JIFS-169881
[22] Yuanhui Wang, Xiyun Jiang, Wenchao She and Fuguang Ding (2019), doi:10.1109/ACCESS.2019.2945501
[23] Mochamad Teguh Subarkah, Arief Syaichu Rohman, Syarif Hidayat and Aji Choirul Anwar (2019), doi:10.1109/ICSEngT.2019.8906496
[24] Kun Liang, Xiaogong Lin, Yu Chen, Juan Li and Fuguang Ding (2020), doi:10.1016/j.oceaneng.2020.107245
[25] Jian Li, Jialu Du and Xin Hu (2020), doi:10.1016/j.oceaneng.2020.107254
[26] Kun Liang, Xiaogong Lin, Yu Chen, Wenli Zhang and Juan Li (2021), doi:10.1016/j.jfranklin.2021.01.003
[27] Kun Liang, Xiaogong Lin, Yu Chen, Yeye Liu, Zhaoyu Liu, Zhengxiang Ma and Wenli Zhang (2021), doi:10.1016/j.apor.2021.102609
[28] Hamid Reza Karimi and Yanyang Lu (2021), doi:10.1016/j.conengprac.2021.104785
[29] Yongyi Lin, Jialu Du and Jian Li (2021), doi:10.1007/s12555-019-0913-8
[30] Miltiadis Kalikatzarakis, Andrea Coraddu, Luca Oneto and Davide Anguita (2022), doi:10.1109/TASE.2021.3069779
[31] Xin Hu, Qingtao Gong and Yao Teng (2022), doi:10.1016/j.oceaneng.2021.110355
[32] Yongyi Lin, Jialu Du, Guibing Zhu and Jian Li (2018), doi:10.1109/ACCESS.2018.2879646
[33] Yang Qu and Lilong Cai (2022), doi:10.1016/j.oceaneng.2022.110603
[34] Yufang Zhang, Changde Liu, Nan Zhang, Qian Ye and Weifeng Su (2022), doi:10.3390/jmse10081034
[35] Xin Hu, Guibing Zhu, Yong Ma, Zhixiong Li, Reza Malekian and Miguel Angel Sotelo (2022), doi:10.1109/TITS.2021.3124635
[1] Bernstein, D. Michel, A. (1995). A chronological bibliography on saturating actuators, International Journal of Robust and Nonlinear Control. .5:375-380 doi:10.1002/rnc.4590050502
[2] Brogliato, B., Lozano, R., Maschke, B., Egeland, O. (2007). Dissipative System Analysis and Control, Springer-Verlag, London.
[3] Fossen, T. (2002). Marine Control Systems, Marine Cybernetics AS, Trondheim.
[4] Fossen, T. Johansen, T. (2006). A survey of control allocation methods for ships and underwater vehicles, In Proc. of the 14th IEEE Mediterranean Conference on Control and Automation. Ancona, Italy.
[5] Fossen, T., Johansen, T., Perez, T. (2008). A Survey of Control Allocation Methods for Underwater Vehicles, chapter 7, pages 109-128, In-Tech, Vienna, Austria.
[6] Fossen, T. Perez, T. (2009). Kalman filtering for positioning and heading control of ships and offshore rigs, IEEE Control Systems Magazine, 2.6:32-46 doi:10.1109/MCS.2009.934408
[7] Goodwin, G., Graebe, S., Salgado, M. (2001). Control System Design, Prentice-Hall Inc., New Jersey.
[8] Goodwin, G., Seron, M., DeDona, J. (2005). Constrained Control and Estimation: An Optimisation Approach, Communications and Control Engineering. Springer, London.
[9] Khalil, H. (2000). Nonlinear Systems, Prentice-Hall, New Jersey.
[10] Perez, T. (2005). Ship Motion Control, Advances in Industrial Control. Springer-Verlag, London.
[11] Perez, T. (2009). Anti-windup designs for ship dynamic positioning with control allocation, In Proc. of the 8th IFAC International Conference on Manoeuvring and Control of Marine Craft. Guaruja, Brazil.
[12] Peterson, J. Bodson, M. (2006). Constrained quadratic programming techniques for control allocation, IEEE Transaction on Control System Technology, 1.1:91-98 doi:10.1109/TCST.2005.860516
[13] Ruth, E., Smogeli, O., Perez, T., Sorensen, A. (2009). Antispin thrust allocation for marine vessels, IEEE Transactions on Control Systems Technology, 1.6:1257-1269 doi:10.1109/TCST.2008.2006187
[14] Smallwood, D. Whitcomb, L. (2003). Adaptive identification of dynamically positioned underwater vehicles, IEEE Transaction on Control System Technology, 1.4:505-515 doi:10.1109/TCST.2003.813377

  title={{Constrained Control Design for Dynamic Positioning of Marine Vehicles with Control Allocation}},
  author={Perez, Tristan and Donaire, Alejandro},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}