“Pressurised Water Reactor Control by the Hierarchical Method”

Authors: Ilkka Leikkonen,
Affiliation: Institute for Energy Technology (IFE)
Reference: 1987, Vol 8, No 2, pp. 69-89.

Keywords: Pressurized water reactor, optimal control, power distribution, load cycle

Abstract: A simple version of the hierarchical optimization method is used to solve the control problem for the power distribution of a pressurized water reactor. The control period is about twenty hours. The control objectives include the total power, power distribution and use of boron. The controllers are a rod bank, soluble boron in the coolant and the coolant temperature deviation. A one-dimensional non-linear core model is used, with full xenon-iodine dynamics.

PDF PDF (2214 Kb)        DOI: 10.4173/mic.1987.2.1

[1] BERAHA, D., KARPPINEN, J., (1981). Power distribution control by hierarchical optimisation techniques, In Proceedings of the international topics meeting: Advances in mathematical methods for the solution of nuclear engineering problems, Munich, April 27-29, 1981, 331-355.
[2] BERG, Ø., HVAL, S., JØRGENSEN, U., (1984). The core surveillance system SCORPIO and its validation against measured pressurized water reactor plant data, Atomkernenergie-Kerntechnik, 45, 271-276.
[3] EBERT, D.D., (1982). Practicality of and benefits from the applications of optimal control to pressurized water reactor manoeuvres, Nuclear Technology, 58,218-232.
[4] GAUTIER, A., (1985). Grey mode operation helps French PWRs to load follow, Nuclear Engineering International, 30,19-21, No. 364.
[5] GLASSTONE, S., SESONSKE, A., (1967). Nuclear Reactor Engineering, Van Nostrand Reinhold Company, New York.
[6] HAUGSET, K., LEIKKONEN, I., (1980). Nuclear reactor control by multistage mathematical programming, Modeling, Identification and Contro1, 1, 119-133.
[7] HVAL, S., (1982). The core physics simulator CYGNUS, for on-line applications in core surveillance systems, Report HPR 281, OECD Halden Reactor Project.
[8] LOCKE, G., BLOBEL, B., (1974). Die Entwicklung des Rechenprogrammes LEIWAR für die Core-Auslegung von Leichtwasser-Reaktoren, GKSS 74/I/1, Gesellschaft für Kernenergiewertung in Schiflbau und Schiffart mbH, Geestacht, West Germany.
[9] MEYER, C.E, MUELLER, N., PLUMIER. M., WATTS, M., LEROY, R., SAINT-MARD, C., (1982). Reduced temperature return to power demonstration, Nuclear Technology, 59, 14-19.
[10] SCHOTT, H., (1984). Xenonschwingungen in Druckwasserreaktoren, Kernenergie, 27, 277-282.
[11] SCHULZ, E.J., LEE; J.C., (1980). Time optimal control of spatial xenon oscillations to a generalized target, Nuclear Science and Engineering, 73, 140-152.
[12] SILVENNOINFN, P., (1976). Reactor Core Fuel Management, Pergamon Press, Oxford.
[13] SINGH, M., TITLI, A., (1978). Systems decomposition, optimization and control, Pergamon Press, Oxford.

  title={{Pressurised Water Reactor Control by the Hierarchical Method}},
  author={Leikkonen, Ilkka},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}