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1 The principle of Skogestad’s method

Skogestad’s PID tuning method 1 is a model-based tuning method where
the controller parameters are expressed as functions of the process model

parameters. It is assumed that the control system has a transfer function
block diagram as shown in Figure 1.
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Figure 1: Block diagram of the control system in PID tuning with Skogestad’s
method

Comments to this block diagram:

• The transfer function Hpsf (s) is a combined transfer function of the
process, the sensor, and the measurement lowpass filter. Thus,
Hpsf (s) represents all the dynamics that the controller “feels”. For
simplicity we may denote this transfer function the “process transfer
function”, athough it is a combined transfer function.

1 Named after the originator Prof. Sigurd Skogestad
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• The disturbance acting on the process: In most processes the
dominating disturbance influences the process in the same way,
dynamically, as the control variable. Such a disturbance is called an
input disturbance . Here are a few examples:

— Liquid tank: The control variable controls the inflow. The
outflow is a disturbance.

— Motor: The control variable controls the motor torque. The
load torque is a disturbance.

— Thermal process: The control variable controls the power
supply via an heating element. The power loss via heat transfer
through the walls and heat outflow through the outlet are
disturbances.

The design principle of Skogestad’s method is as follows. The control
system tracking transfer function T (s), which is the transfer function from
the setpoint to the (filtered) process measurement, is specified as a first
order transfer function with time delay:

T (s) =
ymf (s)

ymSP
(s)

=
1

TCs+ 1
e−τs (1)

where TC is the time-constant of the control system which the user must
specify, and τ is the process time delay which is given by the process model
(the method can however be used for processes without time delay, too).
Figure 2 shows as an illustration the response in ymf after a step in the
setpoint ymSP

for (1).

From the block diagram shown in Figure 1 the tracking transfer function
can be found as

T (s) =
Hc(s)Hpsf (s)

1 +Hc(s)Hpsf (s)
(2)

Setting (2) equal to (1) gives

Hc(s)Hpsf (s)

1 +Hc(s)Hpsf (s)
=

1

TCs+ 1
e−τs (3)

Here, the only unknown is the controller transfer function, Hc(s). By
making some proper simplifying approximations to the time delay term,
the controller becomes a PID controller or a PI controller for the process
transfer function assumed.

Skogestad’s tuning formulas for several processes are shown in Table 1.2

2 In the table, “min” means the minimum value (of the two alternative values).
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Figure 2: Step response of the specified tracking transfer function (1) in Sko-
gestad’s PID tuning method

For the “Two time-constant + delay” process in Table 1 T1 is the largest
and T2 is the smallest time-constant.3

Originally, Skogestad defined the factor c in Table 1 as 4. This gives good
setpoint tracking. But the disturbance compensation may become quite
sluggish. To obtain faster disturbance compensation, you can use

c = 1.5 (4)

The drawback of such a reduction of c is that there will be more overshoot
3 [?] also describes methods for model reduction so that more complicated models can

be approximated with one of the models shown in Table 1.

Process type Hpsf (s) (process) Kp Ti Td

Integrator + delay K
s
e−τs 1

K(TC+τ)
c (TC + τ) 0

Time-constant + delay K
Ts+1e

−τs T
K(TC+τ)

min [T , c (TC + τ)] 0

Integr + time-const + del. K
(Ts+1)se

−τs 1
K(TC+τ)

c (TC + τ) T

Two time-const + delay K
(T1s+1)(T2s+1)

e−τs T1
K(TC+τ)

min [T1, c (TC + τ)] T2

Double integrator + delay K
s2
e−τs 1

4K(TC+τ)
2 4 (TC + τ ) 4 (TC + τ)

Table 1: Skogestad’s formulas for PI(D) tuning.
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in the setpoint step respons, and that the stability of the control loop will
be reduced.

Note: For the double integrator process I have seen in simulations that the
actual time-constant may be several times larger than the specified
time-constantTC . You should simulate the system with different values of
TC to obtain the specified time-constant.

Skogestad suggests using
TC = τ (5)

for TC in Table 1 — unless you have reasons for a different specification of
TC .

Eksempel 1 Control of first order system with time delay

Let us try Skogestad’s method and Ziegler-Nichols’ closed loop method for
tuning a PI controller for the (combined) process transfer function

Hpsf (s) =
K

Ts+ 1
e−τs (6)

(time-constant with time-delay) where

K = 1; T = 1 s; τ = 0.5 s (7)

We use (5):
TC = τ = 0.5 s (8)

The controller parameters are as follows, cf. Table 1:

Kp =
T

K (TC + τ)
=

1

1 · (0.5 + 0.5)
= 1 (9)

Ti = min [T , c (TC + τ)] (10)

= min [1, 1.5 (0.5 + 0.5)] (11)

= min [1, 1.5] (12)

= 1 s (13)

Td = 0 (14)

Figure 3 shows control system responses with the above PID settings. At
time 5 sec the setpoint is changed as a step, and at time 15 sec the
disturbance is changed as a step. The responses, and in particular the
stability of the control systems, seem ok.
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Figure 3: Example 1: Simulated responses in the control system with Skoges-
tad’s controller tuning

[End of Example 1]

You may wonder: Given a process model as in Table 1. Does Skogestad’s
method give better control than if the controller was tuned with some
other method, e.g. the Good Gain method or Ziegler-Nichols’ method?
There is no unique answer to that question, but my impression is that
Skogestad’s method in general works fine. If you have a mathematical of
the process to be controlled, you should always simulate the system with
alternative controller tunings. The benefit of Skogestad’s method is that
you do not have to perform trial-and-error simulations to tune the
controller. The parameters comes directly from the process model and the
specified control system response time. Still, you should run simulations to
check the performance.

2 How to find model parameters from

experiments

The values of the parameters of the transfer functions in Table 1 can be
found from a mathematical model based on physical principles. The
parameter values can also be found from a step-response experiment with
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the process. This is shown for the model Integrator with time-delay and
Time-constant with time-delay in the following respective figures.4
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Figure 4: How the transfer function parameters K and τ appear in the step
response of an Integrator with time-delay prosess
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Figure 5: How the transfer function parameters K , T , and τ appear in the
step response of a Time-constant with time-delay prosess

3 Transformation from serial to parallel PID

settings

Skogestad’s formulas assumes a serial PID controller function
(alternatively denoted cascade PID controller) which has the following

4 The theory of calculating these responses is covered by e.g. my book Basic Dynamics
and Control.
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transfer function:

u(s) = Kps
(Tiss+ 1) (Tdss+ 1)

Tiss
e(s) (15)

where Kps , Tis , and Tds are the controller parameters. If your controller
actually implementes a parallel PID controller (as in the PID controllers in
LabVIEW PID Control Toolkit and in the Matlab/Simulink PID
controllers), which has the following transfer function:

u(s) =

[
Kpp +

Kpp

Tips
+KppTdps

]
e(s) (16)

then you should transform from serial PID settings to parallell PID
settings. If you do not implement these transformations, the control
system may behave unnecessarily different from the specified response.
The serial-to-parallel transformations are as follows:

Kpp = Kps

(
1 +

Tds
Tis

)
(17)

Tip = Tis

(
1 +

Tds
Tis

)
(18)

Tdp = Tds
1

1 +
Tds
Tis

(19)

Note: The parallel and serial PI controllers are identical (since Td = 0 in a
PI controller). Therefore, the above transformations are not relevant for PI
controller, only for PID controllers.

4 When the process has no time-delay

What if the process Hp(s) is without time-delay? Then you can not specify
TC according to (5) since that would give TC = 0 (zero response time of
the control system). You must specify TC to some reasonable value larger
than zero. If you do not know what could be a reasonable value, you can
simulate the control system for various values of TC . If the control signal
(controller output signal) is changing too quickly, or often reaches the
maximum and minimum values for reasonable changes of the setpoint or
the disturbance, the controller is too aggressive, and you can try increasing
TC .
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