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Abstract

The safety property of dynamical systems has typically been studied in Euclidean spaces. In this work,
we extend the notion of safety to a non-Euclidean geometry. Motivated by the role of time as a fourth
dimension in physical models, we construct the 4-dimensional Heisenberg Lie group H4 and investigate
the safety problem of dynamical systems defined on this group. Unlike odd-dimensional Heisenberg Lie
groups, which admit a unique structure, even-dimensional cases allow multiple forms; in particular, H4

possesses four distinct forms. Focusing on one such form, we provide a detailed analysis of dynamical
systems on H4. Moreover, using a diffeomorphism between the (2n+1)-dimensional Heisenberg Lie group
and the Euclidean space of the same dimension, we establish their equivalence, and we extend safety result
for H4. Several examples are presented to illustrate the applicability of the theoretical results.
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1 Introduction

In this work, we study the safety of dynamical sys-
tems on the real Heisenberg Lie group of dimension
4. Safety is a temporal property that has been ex-
tensively studied in the context of dynamical systems
within Euclidean space. For a given system, safety
can be defined as follows: Let χ0 represent the set
of initial states, χu the set of unwanted states, and
χ the domain. The system is considered safe, if, for
all trajectories starting from χ0, the evolution of the
system remains within the domain χ and never enters
the set of unwanted states χu. Safety has been ex-
tensively analyzed in Prajna and Rantzer (2007) for

continuous autonomous systems. Moreover, safety has
been also investigated for hybrid systems in Prajna and
Jadbabaie (2004), for nonlinear switched systems with
time dependent switching in Kıvılcım et al. (2019) and
for nonlinear switched systems with state dependent
switching in Kıvılcım andWisniewski (2021). However,
these aforementioned studies have been conducted in
Euclidean spaces. To the best of our knowledge, this
work is the first to analyze the safety property in the
setting of Heisenberg Lie groups.

Initially, the space in our daily life has been thought
to have 3 spatial dimensions, and since Albert Einstein
developed his theory of special relativity in Zurich in
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1905, the 4th dimension has generally been understood
to mean the time. In Lohse et al. (2018) and Zilber-
berg et al. (2018), the authors have provided the theo-
retical basis for experiments in which a 4-dimensional
physical phenomenon can/could be observed in two di-
mensions. In addition, the concept of 4 dimensions
in astrophysics, three spatial dimensions plus time, is
important because it provides a framework for under-
standing how the universe operates at a fundamental
level and the foundation for theories and models that
describe the universe’s structure, behavior, and evolu-
tion, Scano (2024). Motivated by these perspectives,
we are inspired to investigate safety properties within
the 4-dimensional setting of the Heisenberg Lie group,
exploring how dynamical systems behave in this non-
Euclidean geometric framework.

This paper consists of six sections. In the second
section, we explain in detail the real Heisenberg Lie
groups, focusing on the 4th dimension and in the third
section, we give the dynamical systems on the real
Heisenberg Lie groups of dimension 4, H4. In the fourth
section, we characterize safety of dynamical systems on
H4 and give examples. We present the discussion in the
fifth section and lastly the conclusion of the paper.

2 The Heisenberg Lie Group of
dimension 4

In this section, we consider Heisenberg Lie groups with
real entries. In Székelyhidi (2023) and Colcombet et al.
(2019), a generalization of Heisenberg Lie groups is
given, where the dimension is d = 2n+1 for n ≥ 1. We
explain its particular 4-dimensional case obtained by
its succeeding dimension in this section. The Heisen-
berg Lie group of dimension 2n + 1 has the following
form:

H2n+1 =

{
g =

1 a c
0 In b
0 0 1

 | a ∈ R1×n,

b ∈ Rn×1, c ∈ R

}
,

where In denotes the n× n identity matrix.

There is a diffeomorphism Ψ : H2n+1 → R2n+1 defined
by1 a c

0 In b
0 0 1

 → (a1, a2, . . . , an,b1,b2, . . . ,bn, c) (1)

∈ R2n+1.

Thus, it follows that H2n+1
∼= Rn × Rn × R.

If we take n = 2, then we have the Heisenberg group of
dimension 5, denoted by H5, consisting of 4× 4 upper
triangular matrices of the form:

H5 =

{
g =


1 a1 a2 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 | a1, a2,b1,b2, c ∈ R

}

and its Lie algebra has the following form:

L(H5) =

{
0 x1 x2 z
0 0 0 y1
0 0 0 y2
0 0 0 0

 | x1, x2, y1, y2, z ∈ R

}
,

where

span

{
X1 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , X2 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

Y1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Y2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

Z =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


}
,

where
[X1, Y1] = [X2, Y2] = Z

and the rest of the Lie brackets are null (zero vector).

The Heisenberg group of dimension 4, H4, is topolog-
ically diffeomorphic to R4 and its structure is slightly
different than H5. It also consists of 4× 4 upper trian-
gular matrices of four types of forms obtained from H5

and we consider the following form:

H4 =

{
g =


1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 | a1,b1,b2, c ∈ R

}

and the diffeomorphism φ : H4 → R4 defined by

φ(


1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

) = (a1,b1,b2, c) ∈ R4. (2)
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H4 is a simply connected nilpotent Lie group and it
has a natural topology induced by its underlying space
R4. Besides, its group structure comes from matrix
multiplication and we can write it in terms of R4 as
follows:

(a1,b1,b2, c) ⋆ (a
′
1,b

′
1,b

′
2, c

′) =

(a1 + a′1,b1 + b′1,b2 + b′2, a1b
′
1 + c + c′), (3)

identity element is (0, 0, 0, 0) and the inverse is

(a1,b1,b2, c)
−1 = (−a1,−b1,−b2, a1b1 − c).

Note that (R4, ⋆) is an abstract group and one can see
that

∀g1, g2 ∈ H4, φ(g1 · g2) = φ(g1) ⋆ φ(g2).

Alternatively, H4 can be described in terms of a Lie
algebra structure with the basis elements X1, Y1, Y2, Z,
satisfying the nontrivial commutation relations:

[X1, Y1] = X1Y1 − Y1X1 = Z and

[X1, Y2] = [Y1, Y2] = [Z,X1] = [Z, Y1] = [Z, Y2] = 0.

Then, the Lie algebra has the following form:

L(H4) =

{
0 x1 0 z
0 0 0 y1
0 0 0 y2
0 0 0 0

 | x1, y1, y2, z ∈ R

}
,

where

span

{
X1 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Y1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

Y2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , Z =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


}

In fact,

[X1, Y1] = X1Y1 − Y1X1 =

=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

−


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =

=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 = Z

and

[X1, Y2] = X1Y2 − Y2X1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

By similar calculations, [Y1, Y2] = [Z,X1] = [Z, Y1] =
[Z, Y2] = 0. The matrix multiplication of any two vec-
tor fields of L(H4) is

0 x1 0 z
0 0 0 y1
0 0 0 y2
0 0 0 0

 ·


0 x2 0 z
0 0 0 y3
0 0 0 y4
0 0 0 0

 =


0 0 0 x1y3
0 0 0 0
0 0 0 0
0 0 0 0

 .

Then,

∀X,Y ∈ L(H4), dφ(X · Y ) = dφ(g1) ⋆
′ dφ(g2)

i.e, 
x1

y1
y2
z

 ⋆′


x2

y3
y4
z

 =


0
0
0

x1y3

 , (4)

where dφ is the differential of φ at the identity and ⋆′

is the operation between two vector fields of L(R4).
The derivation algebra Der(L(H4)) of Lie group H4 is
a Lie algebra consisting of endomorphisms D on L(H4)
satisfying

D[X1, Y1] = [D(X1), Y1] + [X1, D(Y1)],

D[Y1, Y2] = [D(Y1), Y2] + [Y1, D(Y2)],

D[Y2, Z] = [D(Y2), Z] + [Y2, D(Z)] and

D[Z,X1] = [D(Z), X1] + [Z,D(X1)].

In the generalization of Heisenberg Lie groups, dimen-
sion is always odd Székelyhidi (2023). On the other
hand, if we consider even dimensional cases, then their
forms are not unique as we have explained in this sec-
tion for the dimension 4. In fact, in addition to the
form which we use throughout this paper, the other
three forms for dimension 4 are

1 0 a2 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 ,


1 a1 a2 c
0 1 0 b1
0 0 1 0
0 0 0 1

 and


1 a1 a2 c
0 1 0 0
0 0 1 b2
0 0 0 1

 ,

where a1, a2,b1,b2, c ∈ R.
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2.1. Corollary:

The 2n-dimensional Heisenberg Lie group, H2n, has 2n
different forms for all integers n ≥ 2.

Proof. Any matrix from H2n+1 is of the form
1 a1 · · · an c
0 1 · · · 0 b1
...

...
. . .

...
...

0 0 · · · 1 bn
0 0 · · · 0 1


and H2n can be obtained from H2n+1 by assigning zero
to just one of a1, a2, . . . , an or b1,b2, . . . ,bn. It fol-
lows that there exist 2n different ways to induce H2n

from H2n+1. Thus, one can conclude that H2n has 2n
different forms.

Heisenberg Lie groups play an important role in har-
monic analysis, quantum mechanics, and several areas
of mathematical physics. Our primary intention in this
paper is to contribute from theoretical perspective. For
this reason, we define dynamical systems on Heisenberg
Lie groups.

3 Dynamical Systems on
Heisenberg Lie Groups

A continuous-time dynamical system on the state space
Rn is determined by the following equation:

ẋ = f(x),

where x ∈ Rn and f(x) is a vector field on Rn. More-
over, for being an abstract group, Rn is also an Abelian
Lie group in which its topology and differentiable man-
ifold structure appear. Thereupon, in this section,
we consider dynamical systems on the 4-dimensional
Heisenberg group H4, which is a more general Lie group
than R4.

A dynamical system on a general Heisenberg Lie
group H2n+1 is determined by the following equation:

ġ = X(g), (5)

where g ∈ H2n+1 and X is a smooth vector field on
H2n+1. In our work, we consider X as a left-invariant
vector field on H2n+1.

3.1. Lemma:

Let D1 be a dynamical system on R2n+1 defined by
ẋ = f(x) and let D2 be a dynamical system on H2n+1

defined by ġ = X(g), where f is a left-invariant vector
field on R2n+1 andX is an element from the Lie algebra
of H2n+1. Then, the dynamical systems D1 and D2 are
equivalent which is denoted by ≃.

Proof. Assume that the dynamical systems are not
equivalent, which means that there is no diffeomor-
phism between D1 and D2, Iliashenko and Li (1999).
It follows that there is no diffeomorphism between f
and X. This implies that there is no diffeomorphism
between R2n+1 and H2n+1, which contradicts with (1).
Thus,

ẋ = f(x) ≃ ġ = X(g).

3.2. Corollary:

Let ẋ = f(x) define a dynamical system on R4 and
ġ = X(g) define a dynamical system on H4. Then,
these two dynamical systems are equivalent.

Proof. Let π1,3 be the projection of H5 to H4 such that
for every g ∈ H5, π1,3(g) = g′ ∈ H4 assigning 0 to the
entry a2 ∈ g, and let π2 be the projection of R5 to R4

such that for every (a1, a2,b1,b2, c) ∈ R5,

π2(a1, a2,b1,b2, c) = (a1,b1,b2, c) ∈ R4

Then, we have the following commutative diagram

H5 R5

H4 R4

Ψ5

π1,3 π2

φ

where φ : H4 → R4 is the diffeomorphism given in the
previuos section and Ψ5 : H5 → R5 is the diffeomor-
phism defined by

Ψ5(


1 a1 a2 c
0 1 0 b1
0 0 1 b2
0 0 0 1

) = (a1, a2,b1,b2, c) ∈ R5.

Hence, by using Lemma 3.1 for n = 2, the proof is
complete.
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3.3. Lemma:

Let us consider Lie groups R4 and H4 with their Lie
algebras L(R4) and L(H4), respectively. Denote by
expR4 the exponential map from L(R4) to R4 and by
expH4

the exponential map from L(H4) to H4. Then,
the following diagram is commutative

L(R4) R4

L(H4) H4

expR4

dφ

expH4

φ

where φ : H4 → R4 is a Lie group homomorphism and
dφ is its differential at the identity.

Proof. We want to prove that expR4 ◦dφ = φ ◦ expH4
,

where ◦ denotes the standard composition of two func-
tions. Note that R4 is an abelian Lie group, H4 is a
nilpotent Lie group and both groups are simply con-
nected. Then, the exponential maps are global diffeo-
morphisms.

∀X =


0 x1 0 z
0 0 0 y1
0 0 0 y2
0 0 0 0

 ∈ L(H4),

expH4
(tX) =


1 tx1 0 tz + t2x1y1

2!
0 1 0 ty1
0 0 1 ty2
0 0 0 1

 ∈ H4,

where t ∈ R and

φ(


1 tx1 0 tz + t2x1y1

2!
0 1 0 ty1
0 0 1 ty2
0 0 0 1

)

= (tx1, ty1, ty2, tz +
t2x1y1

2
) ∈ R4.

On the other hand,

dφ(X) = dφ(


0 x1 0 z
0 0 0 y1
0 0 0 y2
0 0 0 0

) =


x1

y1
y2
z

 ∈ L(R4),


0 x1 0 z
0 0 0 y1
0 0 0 y2
0 0 0 0

 ·


0 x1 0 z
0 0 0 y1
0 0 0 y2
0 0 0 0

 =


0 0 0 x1y1
0 0 0 0
0 0 0 0
0 0 0 0


and X3 is 4× 4 zero matrix.

Any X =


x1

y1
y2
z

 ∈ L(R4) defines a straight line, then

by using (4) for Lie algebra elements and writing out-
puts of exponential map as elements of Lie group, we
have

expR4(t


x1

y1
y2
z

) = e


tx1

ty1
ty2
tz


=

∞∑
n=0


tx1

ty1
ty2
tz


n

n!

=


0
0
0
0


T

+


tx1

ty1
ty2
tz


T

+
t2

2!
(


x1

y1
y2
z


2

)T + 0+ . . .

= (0, 0, 0, 0) + (tx1, ty1, ty2, tz) +
(0, 0, 0, t2x1y1)

2!

= (tx1, ty1, ty2, tz +
t2x1y1

2
) ∈ R4,

where,


tx1

ty1
ty2
tz

 ⋆′


tx1

ty1
ty2
tz

 =


0
0
0

t2x1y1

.

3.4. Example:

Let us consider the dynamical system on H4 governed
by the following differential equation:

ġ =


0 5 0 3
0 0 0 4
0 0 0 1
0 0 0 0

 .

We know that H4
∼= R4 and L(H4) ∼= L(R4). Then,

ġ =


0 5 0 3
0 0 0 4
0 0 0 1
0 0 0 0

 ≃ ẋ =


5
4
1
3

 ,

where g ∈ H4 and x ∈ R4.

141



Modeling, Identification and Control

4 Safety for Dynamical Systems on
Heisenberg Lie Groups

In this section, we study the safety of dynamical sys-
tems in the state space H4, where the vector fields X
are from its Lie algebra. In order to do that, we will
provide a definition of safety for Heisenberg group of
dimension 4.
Safety is temporal property widely investigated for

dynamical systems in Euclidean space Prajna and
Rantzer (2007). Safety can be defined for a given sys-
tem as follows: For a given set of initial states, χ0, un-
wanted states, χu and domain, χ the system is called
safe if the solutions starting from the set of inital states
do not enter the unwanted states as long as they stay
in the domain. Based on our current understanding,
this may be the first time in literature that the safety
property has been analyzed for Heisenberg Lie groups.
The following definition is adapted from Prajna and
Rantzer (2007) and generalized to dynamical systems
on Heisenberg Lie groups.

4.1. Definition:

For a given domain χ ⊂ H4, a set of initial states χ0 ⊂
H4 and a set of unsafe states χu ⊂ H4, it can be said
that the system (5) is safe if there is no solution g(t)
of system (5) such that g(0) ∈ χ0, g(T ) ∈ χu and
g(t) ∈ χ, for some T > 0 and for all t ≥ 0.

Next, a result will be provided to verify the safety
of the Heisenberg Lie group of dimension 4, H4 by be-
ing inspired from the technique given in Prajna and
Rantzer (2007).

4.2. Theorem:

Let us consider the following dynamical system on the
Heisenberg Lie group of dimension 4, H4:

˙g(t) = (Yi)(g(t)), (6)

where Yi ∈ L(H4), and let the sets χ ⊆ H4, χ0 ⊆ H4

and χu ⊆ H4 be given. If there exists a function B ∈
C1(R4) satisfying

B(φ(g)) ≤ 0, ∀g ∈ χ0, (7)

B(φ(g)) > 0, ∀g ∈ χu (8)

d(B ◦ φ)(g)dφ(Yi) = ∇(B(φ(g)))dφ(Yi) ≤ 0,

∀g ∈ χ ⊆ H4 (9)

then the system (6) is safe with the given domain, the
set of initial states and the set of unwanted states.

Proof. Let us consider that there exists a function
B ∈ C1(R4) satisfying (7), (8) and (9) and that the
dynamical system (6) is not safe. This implies that
there exists a time T ≥ 0 and an initial state g0 ∈ χ0

such that a trajectory g(t) of the system starting at
g(0) = g0 satisfies g(t) ∈ χ ⊆ H4 for all t ∈ [0, T ] and
g(T ) ∈ χu for T ≥ 0. Note that for all initial states
g0 ∈ χ0, we have B(φ(g)) ≤ 0 from (7). Recall that
(B ◦φ)(g(t)) = B(x(t)) and taking the time derivative
of both sides, we get

d(B ◦ φ)(g(t))
dt

=
dB(x(t))

dt
= ∇B(x(t)) · ẋ(t)

= ∇B(φ(g(t))) · dφ(ġ(t))
= ∇B(φ(g(t))) · dφ(Yi).

Utilizing the mean value theorem, we have

B(φ(g(T )))−B(φ(g(0)))

T
=

d(B(φ(g(t)))

dt
|t=T ′ ,

where T ′ ∈ (0, T ). Using (9) together with the above
equality, we get

B(φ(g(T )))−B(φ(g(0)))

T
=

d(B ◦ φ)(g(t))
dt

|t=T ′

= ∇B(φ(g(T ′)))dφ(Yi) ≤ 0.

Using (7), the previous inequality follows that
B(φ(g(T ))) ≤ B(φ(g(0))) ≤ 0 and this contradicts
(8). Therefore, there exists no solution starting from
χ0 that reaches χu as long as it stays in χ.

4.3. Example:

Let us consider the dynamical system on H4 governed
by the following differential equation:

ġ =

˙
1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 =


0 cos(k) 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (10)

where k is a constant. Choose a function B ∈ C1(R4)
defined by

B(a1,b1,b2, c) = − sin(b1)− sin(b2)− sin(c)

and define

χ0=

{
g=


1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

∈H4 | a1,b1,b2, c ∈ [0, π]

}
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and

χu =

{
g =


1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 ∈ H4 |

a1,b1,b2, c ∈ [
7π

6
,
11π

6
]

}
.

Then, ∀g ∈ χ0,
B(φ(g)) ≤ 0

which satisfies (7). Besides, ∀g ∈ χu,

B(φ(g)) > 0

which satisfies (8). Finally, ∀g ∈ χ ⊆ H4,

d(B ◦ φ)(g)) = ∇(B(φ(g))) =


0

− cos(b1)
− cos(b2)
− cos(c)


and

dφ(Yi) = dφ =


0 cos(k) 0 0
0 0 0 0
0 0 0 0
0 0 0 0



=


cos(k)

0
0
0

 .

The dot product of these two vectors is

∇(B(φ(g))) · dφ(Yi) =


0

− cos(b1)
− cos(b2)
− cos(c)

 ·


cos(k)

0
0
0

 = 0

which verifies condition(9). Since the conditions (7)-
(9) are satisfied for the chosen B(φ(g)) and the sets
χ0, χu and χ, then we can conclude that the system is
safe.

4.4. Example:

Let us consider the dynamical system on H4 governed
by the following differential equation:

ġ =

˙
1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 =


0 −κ 0 0
0 0 0 0
0 0 0 eκ

0 0 0 0

 , (11)

where κ is a constant. Choose a function B ∈ C1(R4)
defined by

B(a1,b1,b2, c) = a21 + b21 + b22 + c2 − R2

for R > 0 is any constant and define

χ0 =

{
g =


1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 ∈ H4 |

a21 + b21 + b22 + c2 ≤ r20 for 0 < r0 ≤ R

}
and

χu =

{
g =


1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 ∈ H4 |

a21 + b21 + b22 + c2 > R2

}
.

Then, ∀g ∈ χ0,

B(φ(g)) = a21 + b21 + b22 + c2 −R2 ≤ r20 −R2 ≤ 0

which satisfies (7). Besides, ∀g ∈ χu,

B(φ(g)) = a21 + b21 + b22 + c2 −R2 > R2 −R2 = 0

which satisfies (8). Finally, ∀g ∈ χ ⊆ H4,

d(B ◦ φ)(g)) = ∇(B(φ(g))) =


2a1
2b1
2b2
2c


and

dφ(Yi) = dφ


0 −κ 0 0
0 0 0 0
0 0 0 eκ

0 0 0 0

 =


−κ
0
eκ

0

 .

The dot product of these two vectors is

∇(B(φ(g))) · dφ(Yi)=


2a1
2b1
2b2
2c

·


−κ
0
eκ

0

=−2a1κ+ 2b2e
κ.

If a1κ− b2e
κ ≥ 0, then the system is safe.

4.5. Example:

Let us consider the dynamical system on H4 governed
by the following differential equation:

ġ =

˙
1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 =


0 1 0 1
0 0 0 1
0 0 0 1
0 0 0 0

 , (12)
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with χ = H4, χ0 ⊂ H4 and χu ⊂ H4.
By the diffeomorphism φ between H4 and R4, we can
consider the same dynamic as

ẋ = (1, 1, 1, 1)T ,

with χR4 = R4, χ0,R4 = [1, 2] × [1, 2] × [1, 2] × [1, 2]
and χu,R4 = [−2,−1]× [−2,−1]× [−2,−1]× [−2,−1].
Then,

χ = φ−1(R4) = {g =


1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 ∈ H4 |

a1,b1,b2, c ∈ R},

χ0 = φ−1(χ0,R4) = {g =


1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 ∈ H4 |

a1,b1,b2, c ∈ [1, 2]} ⊂ H4

and

χu = φ−1(χu,R4) = {g =


1 a1 0 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 ∈ H4 |

a1,b1,b2, c ∈ [−2,−1]} ⊂ H4.

For B(φ(g)) = −a1 − b1 − b2 − c, we can see that
B(φ(g)) < 0, for all g ∈ χ0, and B(φ(g)) > 0, for
all g ∈ χu, which verifies the conditions (7) and (8),
respectively. Condition (9) can be verified by observ-
ing

d(B ◦ φ)(g)dφ(Yi) =


−1
−1
−1
−1

 ·


1
1
1
1

 = −4 < 0.

Thus, the conditions of Theorem 4.2 are satisfied, it
can be concluded that the system (12) is safe with the
given sets.

4.6. Remark:

Some generalization of the safety verification technique
given in Theorem 4.2 for H4, can also be provided for
Heisenberg groups of dimensions 2n and 2n+1, n ≥ 1.
To provide a generalization for H2n+1, the standard
diffeomorphism Ψ, given as (1), and Lemma 3.1 can be
used to show the equivalence between dynamical sys-
tem on H2n+1 and R2n+1. More precisely, in Theorem
4.2 replacing φ and H4 with Ψ and H2n+1, respectively,

a generalization of Theorem 4.2 to H2n+1 can be ob-
tained. Similarly, the result of Theorem 4.2 can be
generalized to H2n, by obtaining H2n from H2n+1 as
mentioned in Corollary 2.1 and using a suitable diffeo-
morphism.

5 Discussion

Safety is a temporal property that has been studied
extensively in the context of dynamical systems in Eu-
clidean spaces. Traditionally, the space we experi-
ence in everyday life is considered to have three spa-
tial dimensions. The concept of 4 dimensions in as-
trophysics, three spatial dimensions plus time, is im-
portant because it provides a frame-work for under-
standing how the universe operates at a fundamental
level and the foundation for theories and models that
describe the universe’s structure, behavior, and evo-
lution, Scano (2024). This leads us to the importance
of 4-dimensional dynamical system models and looking
for new models. Heisenberg Lie group is topologically
diffeomorphic to the Euclidean space and therefore it
is interesting to study safety problem of the dynami-
cal systems on Heisenberg Lie groups of dimension 4,
H4, exploring how dynamical systems behave in this
non-Euclidean geometric framework. In the literature
of Lie groups, generalization of Heisenberg Lie groups
is given for odd dimensions. When the dimensions are
even, we point out that they do not have a unique form
as they do in odd dimension. In fact, H4 has four differ-
ent forms. Therefore, we study in detail for dimension
4 by considering one of its four forms. We construct
dynamical systems on H4 and characterize the safety
of them. We focus on dimension 4 from its possible
applications point of view.

6 Conclusion

In this work, we first provided some properties of the
Heisenberg Lie group of dimension 4 which was ob-
tained from the Heisenberg Lie group of dimension 5
by using proper projections. Moreover, using a diffeo-
morphism between the Euclidean space R2n+1 and the
Heisenberg Lie group H2n+1, we proved that they were
equivalent. We also showed that the Euclidean space
R4 and the Heisenberg Lie group H4 are equivalent
similarly. Furthermore, we mentioned the safety prop-
erty for Euclidean spaces and we have generalized it to
Heisenberg Lie groups with dimensions 4 and 2n + 1,
respectively. In addition, we provided some examples
to show the applicability of the theoretical results.
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