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Abstract

OpenModelica is a unique large-scale integrated open-source Modelica- and FMI-based modeling, simu-
lation, optimization, model-based analysis and development environment. Moreover, the OpenModelica
environment provides a number of facilities such as debugging; optimization; visualization and 3D ani-
mation; web-based model editing and simulation; scripting from Modelica, Python, Julia, and Matlab;
efficient simulation and co-simulation of FMI-based models; compilation for embedded systems; Modelica-
UML integration; requirement verification; and generation of parallel code for multi-core architectures.
The environment is based on the equation-based object-oriented Modelica language and currently uses the
MetaModelica extended version of Modelica for its model compiler implementation. This overview paper
gives an up-to-date description of the capabilities of the system, short overviews of used open source sym-
bolic and numeric algorithms with pointers to published literature, tool integration aspects, some lessons
learned, and the main vision behind its development.
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1 Introduction

The OpenModelica environment was the first open
source Modelica environment supporting equation-
based object-oriented modeling and simulation using
the Modelica modeling language (Fritzson and Engel-
son, 1998; Modelica Association, 2017; Fritzson, 2014).
Its development started in 1997 resulting in the release
of a flattening frontend for a core subset of Model-
ica 1.0 in 1998 (Fritzson and Kagedal, 1998). After
a pause of four years, the open source development
resumed in 2002. A very early version of OpenModel-
ica is described in (Fritzson et al., 2005). Since then
the capabilities of OpenModelica have expanded enor-
mously. The Open Source Modelica Consortium which
supports the long-term development of OpenModelica
was created in 2007, initially with seven founding orga-
nizations. The scope and intensity of the open source
development has gradually increased. At the time of
this writing the consortium has more than fifty sup-
porting organizational members. The long-term vision
for OpenModelica is an integrated and modular model-
ing, simulation, model-based development environment
with additional capabilities such as optimization, sen-
sitivity analysis, requirement verification, etc., which
are described in the rest of this paper. Fritzson et al.
(2005, 2018¢) are two less detailed and now partly out
of date overview papers about OpenModelica.

The current overview paper gives an up-to-date
greatly expanded description of the capabilities of the
system, short overviews of used open source symbolic
and numeric algorithms with pointers to published sci-
entific literature, tool integration aspects, some lessons
learned, and the main vision behind its development.

This paper is organized as follows. Section 2 presents
the idea of integrated environment, Section 3 details
the goals for OpenModelica, Section 4.1 presents a de-
tailed overview of the OpenModelica environment, Sec-
tion 5 describes selected open source applications, Sec-
tion 6 presents related work, and Section 7 the conclu-
sions.

2 Integrated Interactive Modeling
and Simulation Environments

An integrated interactive modeling and simulation en-
vironment is a special case of programming environ-
ments with applications in modeling and simulation.
Thus, it should fulfill the requirements both from gen-
eral integrated interactive environments and from the
application area of modeling and simulation mentioned
in the previous section.

The main idea of an integrated programming envi-
ronment in general is that a number of programming
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support functions should be available within the same
tool in a well-integrated way. This means that the
functions should operate on the same data and pro-
gram representations, exchange information when nec-
essary, resulting in an environment that is both power-
ful and easy to use. An environment is interactive and
incremental if it gives quick feedback, e.g., without re-
computing everything from scratch, and maintains a
dialogue with the user, including preserving the state
of previous interactions with the user. Interactive envi-
ronments are typically both more productive and more
fun to use than non-interactive ones.

There are many things that one wants a program-
ming environment to do for the programmer or mod-
eler, particularly if it is interactive. Comprehensive
software development environments are expected to
provide support for the major development phases,
such as:

e Requirements analysis

e Design

Implementation
e Maintenance

A pure programming environment can be somewhat
more restrictive and need not necessarily support early
phases such as requirements analysis, but it is an ad-
vantage if such facilities are also included. The main
point is to provide as much computer support as pos-
sible for different aspects of systems development, to
free the developer from mundane tasks so that more
time and effort can be spent on the essential issues.

Our vision for an integrated interactive modeling and
simulation environment is to fulfill essentially all the re-
quirements for general integrated interactive environ-
ments combined with the specific needs for modeling
and simulation environments, e.g.:

e Specification of requirements, expressed as docu-
mentation and/or mathematics

e Design of the mathematical model

e Symbolic transformations of the mathematical
model

e A uniform general language for model design,
mathematics, and transformations

e Automatic generation of efficient simulation code
e Execution of simulations
e Debugging of models

e Design optimization and parameter studies
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Export/import of models to/from other tools

Evaluation and documentation of numerical ex-
periments

Graphical presentation

Model and system structure parameterization

Variant and version handling, traceability

3 Goals for OpenModelica

e Providing a complete open source Modelica-based
industrial-strength implementation of the Model-
ica language, including modeling and simulation of
equation-based models, system optimization, and
additional facilities in the programming/modeling
environment.

e Providing an interactive computational environ-
ment for the Modelica language. It turns out that
with support of appropriate tools and libraries,
Modelica is very well suited as a computational
language for development and execution of numer-
ical algorithms, e.g. for control system design and
for solving nonlinear equation systems.

The research related goals and issues of the Open-
Modelica open source implementation of a Modelica
environment include, but are not limited to, the fol-
lowing:

e Development of a complete formal specification
and reference implementation of Modelica, includ-
ing both static and dynamic semantics. Such a
specification can be used to assist current and fu-
ture Modelica implementers by providing a seman-
tic reference, as a kind of reference implementa-
tion.

e Language design, e.g. to further extend the scope
of the language, e.g. for use in diagnosis, struc-
tural analysis, system identification, integrated
product development with requirement verifica-
tion, etc., as well as modeling problems that re-
quire partial differential equations.

e Language design to improve abstract properties
such as expressiveness, orthogonality, declarativ-
ity, reuse, configurability, architectural properties,
etc.

e Improved implementation techniques, e.g. to en-
hance the performance of compiled Modelica code
by generating code for parallel hardware.

e Improved debugging support for equation-based
languages such as Modelica, to make them even
easier to use.

e Improved optimization support, with integrated
optimization and modeling/simulation.  Two
kinds: parameter-sweep optimization based on
multiple simulations; direct dynamic optimization
of a goal function without lots of simulations, e.g.,
using collocation or multiple shooting.

e Easy-to-use specialized high-level (graphical) user
interfaces for certain application domains.

e Visualization and animation techniques for inter-
pretation and presentation of results.

e Integrated requirement modeling and verification
support. This includes the ability to enter require-
ments formalized in a kind of Modelica style, and
to verify that the requirements are fulfilled for se-
lected models under certain usage scenarios.

e High-performance simulation, e.g., of large-scale
models, generating simulations to efficiently utilize
multi-core computers for high performance.

3.1 History and System Architecture

The OpenModelica effort started by developing a
rather complete formal specification of the Modelica
language. This specification was developed in Opera-
tional Semantics, which still is the most popular and
widely used semantics specification formalism in the
programming language community. It was initially
used as input for automatic generation of the Mod-
elica translator implementations which are part of the
OpenModelica environment. The RML compiler gen-
eration tool (our implementation of Operational Se-
mantics) (Fritzson et al., 2009a) was used for this task.
However, inspired by our vision of integrated inter-
active environments with self-specification of programs
and data, and integrated modeling and simulation en-
vironments), in 2005 we designed and implemented an
extension to Modelica called MetaModelica (Pop et al.,
2006; Fritzson et al., 2011, 2019), see also Section 4.1.3.
This was done in order to support language modeling
and specification (including modeling the language it-
self), in addition to the usual physical systems model-
ing applications, as well as applications requiring com-
bined symbolic-numeric capabilities. Modeling the se-
mantics in Modelica itself was also inspired by func-
tional languages such as Standard ML (Milner et al.,
1997), and OCaml (OCaml, 2018). Moreover, it was
an investment into a future Modelica becoming a com-
bined symbolic-numeric language such as Mathemat-
ica, but more efficient and statically strongly typed.
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This language extension has a backwards compatible
Modelica-style syntax but was initially implemented
on top of the RML compiler kernel. The declara-
tive specification language primitives in RML with
single-assignment pattern equations, potentially recur-
sive uniontypes of records and match expressions, fit
well into Modelica since it is a declarative equation-
based language. In 2006 our whole formal specification
of Modelica static and translational semantics, at that
time about 50 000 lines, was automatically translated
into MetaModelica. After that, all further development
of the symbolic processing parts of the OpenModelica
compiler (the run-time parts were mainly written in
C), was done in MetaModelica.

At the same time we embarked on an effort to com-
pletely integrate the MetaModelica language exten-
sion into the Modelica language and the OpenModelica
compiler. This would enable us to support both Mod-
elica and MetaModelica by the same compiler. This
would allow modeling the Modelica tool and the Open-
Modelica compiler using its own language. This would
get rid of the limitations of the RML compiler kernel
and the need to support two compilers. Moreover, ad-
ditional tools such as our Modelica debugger can be
based on a single compiler.

Such an ability of a compiler to compile itself is called
compiler bootstrapping. This development turned out
to be more difficult and time-consuming than initially
expected; moreover, developers were not available for
a few years due resource limitations and other prior-
ities. Finally, bootstrapping of the whole OpenMod-
elica compiler was achieved in 2011. Two years later,
in 2013, all our OpenModelica compiler development
was shifted to the new bootstrapped compiler (Sjolund
et al., 2014; Sjolund, 2015), after automatic memory
reclamation (garbage collection), separate compilation,
and a new efficient debugger had been achieved for our
new compiler platform.

4 The OpenModelica Environment

At the time of this writing, the OpenModelica environ-
ment primarily consists of the following functionalities
and subsystems:

e OMC — The OpenModelica Model Compiler
e The new OpenModelica Compiler frontend

e Symbolic Programming and Meta Modeling with
MetaModelica

e Numeric-symbolic solver modules

e OMEdit — the OpenModelica Graphic Model Ed-
itor and Simulator GUI
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e 3D Animation and Visualization
e Debugging and Performance Optimization
e Interactive Electronic Notebooks

e Interactive Scripting using Modelica, Python, Ju-
lia, and Matlab

e Audio-Video Tutorials

e FMI — Functional Mockup Interface
e Multi-Parameter Sensitivity Analysis
e Parameter System Identification

e Embedded System Support

e Model-based Control Design with Dynamic Opti-
mization

e Model-based Fault and Dependability Analysis
e Data Reconciliation for Enhanced Sensor Data

e Using Artificial Neural Networks for Model Cali-
bration

e Embedded System Support

e MDT Eclipse Plug-in

e ModelicaML UML Profile and Eclipse Plug-in
e Requirement Verification

e Design Optimization

e Parallelization and Multi-Core

The relationships between the main OpenModelica
subsystems are briefly depicted above in Figure 1.
Their functionality and selected applications are de-
scribed in the rest of this article. An example of us-
ing OpenModelica to perform simulations and plot-
ting simulation results is depicted in Figure 2 for the
V6Engine model.

4.1 OMC - The OpenModelica Model
Compiler

OMC is the OpenModelica compiler which translates
Modelica models into simulation code, which is com-
piled and executed to perform simulations. The Open-
Modelica compiler is generated from formal specifica-
tions in RML (earlier) or MetaModelica (currently).
At the time of this writing the OpenModelica compiler
(OMC) is generated from a specification of about three
hundred thousand lines of MetaModelica. Moreover,
OMC is able to compile itself, i.e., it is bootstrapped
(Sjolund et al.; 2014). There is also a compilation mode
to generate low-footprint code for embedded systems
(Section 4.20).
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Figure 1: The architecture of the OpenModelica environment. Arrows denote data and control flow.
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1. Lexical Analysis
Keywords, operators and identifiers are ex-
tracted from the model.

2. Parsing
An abstract syntax tree represented in Meta-
Modelica is created from the operators and
identifiers.

3. Semantic Analysis
The abstract syntax tree gets tested for se-
mantic errors.

4. Intermediate Representation
Translation of the abstract syntax tree to an
intermediate representation (IR) called SCode
in MetaModelica. This is further processed by
the frontend (Section 4.1.2) producing DAE
IR code.

5. Symbolic Optimization Backend
The intermediate representation gets opti-
mized and preprocessed (Section 4.2).

6. Code Generation
Executable code gets generated from the low
level intermediate representation.

Modelica Model

[

A 4

Executable Simulation y

Figure 3: OpenModelica compiler workflow — from model to executable simulation code.

4.1.1 OMC Compiler Structure

The compilation of Modelica models with the Open-
Modelica Compiler (OMC) can be divided into six
phases (Figure 3) to get an executable simulation. In
a nutshell the Frontend performs lexical and seman-
tic analysis and the Backend performs symbolic opti-
mization on the provided DAE-model-representation.
From the optimized MetaModelica intermediate repre-
sentation an executable simulation program in a target
language (C, C++ and some others) is generated and
compiled.

4.1.2 New Compiler Frontend

As previously mentioned in Section 3.1, a new Open-
Modelica compiler frontend has been developed. This
large effort has been made in order to provide complete
language coverage as well as much faster compilation
including efficient support for compilation of very large
models. The first usable version was released in Open-
Modelica 1.14.0, in December 2019. The new fron-
tend (Pop et al., 2019) uses model-centric and multiple
phases design principles and is about 10 to 100 times
faster than the old frontend. A few highlights:
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e The new front-end was carefully designed with
performance and scalability in mind.

e References (pointers) are used to link component
references to their definition scope via lookup and
usage scope via application.

e Constant evaluation and expression simplification
are more restricted compared to the old frontend.

e Arrays of basic types and arrays of models are not
expanded until the scalarization phase.

e Expansion of arrays is currently needed because
the backend currently cannot handle all the cases
of non-expanded arrays, but will be eliminated in
the future (Section 4.2.8) to give increased perfor-
mance for array computations.

One of the design principles of the new frontend has
been to find ways to break dependencies between the
various frontend phases. Instead of being component-
focused like the old compiler frontend it has been de-
signed to be model-focused, meaning that each fron-
tend phase processes the whole model before the model
is passed on to the next phase. The result is the design



Fritzon et al., “OpenModelica Integrated Environment”

seen in Figure 4, which shows the flow of the model
through the different phases of the new frontend.

The symbolic instantiation phase builds the instance
tree and constructs all the nodes, and the expression
instantiation phase instantiates all expressions in that
instance tree. This involves looking up the names used
in expressions and associating them with the correct
nodes in the instance tree. The lookup tree for a class is
only constructed once and then reused for all instances
of that particular class, unlike the old frontend where
a new lookup tree is constructed for each instance.

The typing phase traverses the instance tree and de-
termines the type of all variables and expressions. The
flattening phase of the new frontend traverses the in-
stance tree and flattens the tree into a flat model that
consists of a list of variables, a list of equations, and
a list of algorithms. It also expands connect-equations
and for-equations into basic equations.

The new frontend is implemented in modern Meta-
Modelica 3.0 which combines Modelica features with
functional languages features. The implementation
currently consists of 65 MetaModelica packages or
uniontypes defining encapsulated data structures and
functions that operate on the defined data.

4.1.3 MetaModelica for Symbolic Programming
and Meta-Programming

The need for integrating system modeling with ad-
vanced tool capabilities is becoming increasingly pro-
nounced. For example, a set of simulation experiments
may give rise to new data that is used to systemati-
cally construct a series of new models, e.g. for further
simulation and design optimization.

Such combined symbolic-numeric capabilities have
been pioneered by dynamically typed interpreted lan-
guages such as Lisp (Teitelman, 1974) and Mathemat-
ica (Wolfram, 2003). Such capabilities are also relevant
for advanced modeling and simulation applications but
lacking in the standard Modelica language. Therefore,
this is a topic of long-running design discussions in the
Modelica Design group.

One contribution in this direction is the MetaModel-
ica language extension (Pop and Fritzson, 2006; Fritz-
son et al., 2011, 2019) that has been developed to ex-
tend Modelica with symbolic operations and advanced
data structures in a backwards-compatible way, while
preserving safe engineering practices through static
type checking and a compilation-based efficient imple-
mentation.

The MetaModelica language is an efficiently com-
piled language that provides symbolic programming us-
ing tree and list data structures. This is similar to what
is provided by the rather young language Julia (Bezan-
son et al., 2017; Julialang, 2018) which has recently ap-

SCode

l
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Instance Tree
Y
Expression Instantiation

Typing

1

Flatteming

Flat Model
Y

Constant Evaluation

h 4
Simplification

3 ¥

Scalarization Function Collection

Function Tree
L L 4

DAE Conversion

|

DAE + DAE Function Tree

Figure 4: The OMC new frontend phases.

peared, Julia 1.0 was released in August 2018. A com-
parison between MetaModelica and Julia is presented
by Fritzson et al. (2019). MetaModelica is also used
for modeling/specification of languages (including the
Modelica language) and for Modelica-style program-
ming of model transformations, where the OpenMod-
elica compiler itself is the currently largest application.

The research contributions of MetaModelica are not
about inventing new language constructs since they
have already been well proven in several other lan-
guages. However, in the context of Modelica there are
contributions on integrating such constructs into the
Modelica language including the Modelica type system
in a backwards compatible way. The following is a very
brief overview of the most important language exten-
sions:

e Overloading of user-defined operators and func-
tions. Note: overloading is called multiple dis-
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patch in Julia.

e Uniontype construct to define unions of possibly
recursive record types. This is used to create tree
data structures. Syntax example:

uniontype Exp
record RCONST
Real rval;
end RCONST;
record INTconst
Integer expl;
end INTconst;
end Exp;

Uniontypes are also present in Julia.

e The predefined type Any is a supertype of any
other MetaModelica type, i.e., all other MetaMod-
elica types are subtypes of Any. Used e.g. in re-
placeable,

replaceable type TypeParam =
Any constrainedby Any;

e The predefined Option uniontype provides a type
safe way of representing optional values.

e Built-in list and tuple data types. List of inte-
gers: 1ist(2,3,4) is a list of integers. A tuple:
(a,b, "CC")

e Match-expressions for traversing and transform-
ing complex data structures. This supports pat-
tern matching specified by pattern expressions,
and building data structures such as trees, lists,
etc.

e Exception handling using

try

/7
else

// .
end try;

Also a fail() function to cause an exception.

The following recent enhancements available in
MetaModelica 3.0 were found to be quite useful in the
implementation of the new frontend:

e Flexible pattern matching specified by (), that
does not require verbose listing of all record fields
(or named field access) of the record in the pattern
matching, e.g., UNTYPED_BINDING().

e Record field access via dot notation inside the case,
e.g., binding.bindingExp.
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e Definition of functions inside uniontypes.

e Definition and usage of parameterized union
datatypes such as trees using redeclare/replace-
able types.

4.1.4 Experimental Just-in-Time Compilation

Just-in-Time Compilation (JIT) allows compilation
and executing code during runtime. Such a facility
opens up new flexible strategies for handling the com-
pilation and execution of Modelica code and even go-
ing beyond Modelica to general variable structure sys-
tems. The following work is currently ongoing related
to OpenModelica.

The OpenModelica LLVM backend (OMLB)

The OpenModelica LLVM backend (OMLB) is an ex-
perimental OpenModelica prototype backend to inves-
tigate just-in-time compilation using the LLVM com-
piler framework (Tinnerholm, 2019). The goal was to
investigate the advantages and disadvantages of hav-
ing OMC target LLVM instead of C. The investiga-
tion was also performed to examine if targeting LLVM
would be a viable option to achieve efficient Just-in-
time compilation (JIT). Another approach with similar
goals was conducted by (Agosta et al., 2019). While
OMLB currently is not complete enough for bootstrap-
ping, it demonstrates the benefits of having an LLVM
based backend and JIT. OMLB is presently able to
compile the algorithmic subsets of MetaModelica and
Modelica interactively. Inspired by the design goals
of the Julia programming language and the successful
use of Julia for equation-based modeling as done by
Elmqvist et al. (2017), an investigation was conducted
in 2018 comparing MetaModelica and Julia (Fritzson
et al., 2019).

This investigation highlighted the similarities and
differences between the two languages, both in terms of
design goals and programming paradigm. The conclu-
sions were that there are similarities both with regards
to the indented audience and the design goals of the
two. These similarities prompted another investigation
(Tinnerholm et al., 2019) regarding the possibility of
automatically translating the existing OpenModelica
frontend into Julia. Such an OpenModelica frontend
in Julia could provide a framework for experimenta-
tion with variable structured systems while at the same
time adhering to the Modelica standard.

An Ezperimental Julia-based Modelica Compiler Pro-
totype

To empirically investigate the advantages, disadvan-
tages, and challenges of providing a Modelica com-
piler in Julia, an OpenModelica to Julia translator
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was developed together with an extension of the Meta-
Modelica runtime initially described in (Fritzson et al.,
2019). From our preliminary experiments in (Tinner-
holm et al., 2019) we observed that automatically gen-
erated Julia code may outperform hand-written Meta-
Modelica code in some cases. However, the compilation
time was overall slower compared to OMLB, due to
OMLB making use of precompiled runtime functions
in contrast with the overhead imposed by the Julia
compiler due to type specialization.

Prototyping a Standards Compliant Modelica Compiler
with Run-time Just-in-Time Compilation

Regarding just-in-time compilation (JIT), the status
in the fall of 2019 was that there are still two op-
tions to provide a JIT in the OpenModelica compiler
environment. One is via OMCompiler.jl — an experi-
mental standards compliant prototype subset Model-
ica compiler in Julia, the other is to increase the scope
of OMLB with its associated JIT. However, since the
MetaModelica to Julia translator is capable of trans-
lating the existing OMC frontend, it is also capable of
converting the OMLB code-generator into Julia. Thus,
further development of OMCompiler.jl will not invali-
date the possibility of having LLVM as a final backend
target for OMC.

4.1.5 Template-Based Code Generation

The OMC code generation uses a text-template based
approach. The Susan text template language (Fritzson
et al., 2009b) based on MetaModelica was developed
for this purpose. It facilitates generation of code for
multiple target platforms from the low-level intermedi-
ate code in and enables writing concise code generation
specifications. Several alternative regular code genera-
tors are available to produce the simulation code as C
or C++ code (or Java or C# code using experimental
code generators), which is compiled and executed to
perform simulations or to export FMUs.

4.2 OMC Backend with Numeric-Symbolic
Solver Modules

In the following we briefly present four of the most
important numeric-symbolic modules inside the OMC
Backend that perform symbolic optimization (Fig-
ure 3).

4.2.1 Removal of Simple Equations

Some variables in the equation system correlate, be-
cause they are connected by so-called simple equations.
The most elementary equation is equality, e.g.: x = y.
In this equation it is possible to declare either x or y

as an alias variable and replace it in every equation
it occurs with the corresponding other variable. The
equation can be removed from the system and is later
used to reconstruct the value of the removed alias vari-
able if necessary. Even more complex, but still simple
equations can be extracted such that the resulting sys-
tem will be much smaller (e.g. any linear equation
connecting two variables). More information for this
process regarding a specific model can be gained using
the compiler flag ~d=debugAlias.

4.2.2 BLT-Transformation (Matching/Sorting)

The transformation of a system of differential-algebraic
equations to Block-Lower-Triangular form is funda-
mental to the simulation. The first step is to assign
every variable to an equation such that the equation
can be solved (explicitly or implicitly) for the assigned
variable. This step is called Matching and is unique if
there are no algebraic loops in the system. Afterwards
the equations are sorted into blocks, such that an evalu-
ation sequence is achieved (Sorting). If a block contains
more than one equation, it forms an algebraic loop,
where all variables assigned to those equations have to
be solved simultaneously. Further information on BLT-
Transformation can be found in Duff et al. (2017, chap-
ter 6). More information regarding a specific model can
be gained using the compiler flag ~d=backenddaeinfo.

4.2.3 Index Reduction

The differential indexr of a system of differential-
algebraic equations is defined as the maximum num-
ber of differentiations of all equations such that all
unknowns of the system can be solved by integrat-
ing an ordinary differential equation. Most solvers are
designed to work with systems of index zero or one,
so an efficient reduction is necessary. The equations
that have to be differentiated and the corresponding
number of differentiations can be obtained with Pan-
telides (1988) algorithm. The index reduction algo-
rithm with dummy-states, described in Soderlind and
Mattsson (1993), reduces the system to index one,
so that it can be simulated with common solvers.
Alternative methods to handle index reduction have
been proposed in Qin et al. (2016, 2018). Simula-
tion without index reduction is also possible, but less
reliable. The process of index reduction identifies
a set of state variables which are algebraically con-
nected. Some of those states will be treated as reg-
ular algebraic variables (dummy states) to simulate
the system correctly. One can influence this process
of state selection by providing stateSelect attributes
for states, e.g., x(stateSelect=StateSelect.avoid),
see Table 1. More information for this process regard-
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Table 1: StateSelect Attributes

Attribute | Description ‘ Strictness
always Always pick as continuous state (never pick as dummy state) | Forced
prefer Prefer to pick as continuous state Suggestion
default Default value, no special treatment No Influence
avoid Try to avoid picking this as a continuous state Suggestion
never Never pick as continuous state (always pick as dummy state) | Mostly Forced
Table 2: TearingSelect Annotation

Attribute | Description ‘ Strictness

always Always pick as tearing variable Mostly Forced

prefer Prefer to pick as tearing variable Suggestion

default Default value, no special treatment No Influence

avoid Try to avoid picking this as a tearing variable | Suggestion

never Never pick as tearing variable Forced

ing a specific model can be gained using the compiler
flags {d=bltdump or {d=stateselection (extends {d=
backenddaeinfo).

4.2.4 Tearing

For every algebraic loop some of the assigned variables
are chosen as tearing-variables, such that all other vari-
ables can be evaluated explicitly on the basis of those
variables. The goal is to efficiently find small sets of
tearing-variables. Many algorithms are already imple-
mented in the OpenModelica Compiler and published
in Cellier and Kofman (2006). One can influence this
process by providing tearingSelect annotations, sim-
ilar to the stateSelect attribute. Since this is not
part of the Modelica language and specific to Open-
Modelica, it must be provided as an annotation (e.g. x
annotation(tearingSelect = prefer); see Table 2.
Discrete variables can never be tearing variables. More
information for this process regarding a specific model
can be gained using the compiler flags ~d=dumpLoops
or —-d=iterationVars.

4.2.5 Simulation using Numeric Solvers

After code generation for specified target language
and linking with the OpenModelica Simulation Run-
time, the model can be simulated. For the simu-
lation OpenModelica offers multiple numeric integra-
tion/solver methods for ODE systems as well as DAE-
mode (Section 4.2.6) for direct solution of DAE sys-
tems. Mostly DASSL (Petzold, 1982) respectively IDA
(Hindmarsh et al., 2005) are used to integrate the sys-
tems, but there are more solvers for specific problems
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(Table 3). For models containing algebraic loops there
are multiple linear (Table 4) and non-linear (Table 5)
algebraic solvers to choose from. There are general
purpose solvers like LAPACK for linear problems and
a combination of a Newton method with the total pivot
method as fallback.

4.2.6 DAEMode

A recent extension of the numeric solver module is the
DAEMode which is used for solving very large mod-
els. DAE-mode can be accessed using the compiler flag
{daeMode. This is part of an emerging trend in Model-
ica tools of handling large-scale models, with hundreds
of thousands or possibly millions of equations, (Casella,
2015). OpenModelica has pioneered this field by in-
troducing sparse solvers in the solution chain: KLU
for linear algebraic equations, Kinsol for nonlinear al-
gebraic equations, and IDA for causalized differential
equations. It also introduced the direct use of IDA as
differential-algebraic equation solver, skipping the tra-
ditional causalization step, which is computationally
more efficient for certain classes of systems. The largest
system handled so far is an electro-mechanical power
system model with about 600000 differential-algebraic
equations (Braun et al.; 2017).

4.2.7 Homotopy-based Initialization

In many cases, solving the initialization problem of
Modelica models requires solving nonlinear system by
means of iterative methods, whose convergence may
be critical if the provided initial guesses are not close
enough to the solution. To mitigate this problem,
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Table 3: Available numeric solver methods

Integrator Method Explicit or Implicit | Step Size | Order
euler Forward Euler method Explicit Fixed 1
impeuler Backward Euler method Implicit Fixed 1
irksco Own developed Runge-Kutta solver Implicit Variable 1-2
heun Heun’s method Explicit Fixed 2
trapezoid Trapezoid rule Implicit Fixed 2
rungekutta Classic Runge-Kutta method Explicit Fixed
imprungekutta Runge-Kutta methods based on Radau and Implicit Variable 1-6
Lobatto ITA-method
rungekuttaSsc Runge-Kutta based on Novikov Explicit Variable 4-5
Dassl (default) BDF method Implicit Variable 1-5
ida BDF method with sparse linear solver Implicit Variable 1-5
symSolver Symbolic inline solver - Fixed 1
symSolverSsc Symbolic implicit Euler - Variable 1
qss Quantized state systems method (Migoni Implicit Variable 1
et al., 2011)
dassl + daeMode | Solves the DAE system instead of ODE sys- Implicit Variable 1-5
tem
ida + daeMode Solves the DAE system instead of ODE sys- Implicit Variable 1-5
tem
optimization Special solver for dynamic optimization - - -
Table 4: Available linear solvers for algebraic loops
Solver Method ‘
default Lapack with totalpivot as fallback (Anderson et al., 1999)
lapack Non-Sparse LU factorization using LAPACK (Anderson et al., 1999)
lis Iterative linear solver (Nishida, 2010)
klu Sparse LU factorization (Natarajan, 2005)
umfpack Sparse unsymmetric multifrontal LU factorization (Davis, 2004)
totalpivot | Total pivoting LU factorization for underdetermined systems
Table 5: Available non-linear solvers for algebraic loops
Solver Method ‘
hybrid Modified Powell hybrid method from MINPACK (Dennis Jr. and Schnabel, 1996)
kinsol Combination of Newton-Krylov, Picard and fixed-point | (Taylor and Hindmarsh, 1998)
solver
newton Newton-Raphson method (Cellier and Kofman, 2006)
mixed Homotopy with hybrid as fallback (Keller, 1978; Bachmann et al., 2015)
homotopy | Damped Newton solver with fixed-point solver and
Newton homotopy solver as fallbacks
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OpenModelica implements the homotopy () operator of
the language, which allows to replace some key expres-
sions in model equations with simplified counterparts,
to make the initialization problem less sensitive to an
accurate choice of initial guesses. Once the solution
of the simplified problem has been found, a homotopy
transformation is performed from the simplified to the
actual formulation of the expression in the homotopy
operators. If the simplified expression is chosen appro-
priately, the homotopy path followed by the solution
is continuous and allows to reliably reach the solution
of the actual initialization problem (Sielemann et al.,
2011; Bachmann et al., 2015; Keller, 1978). See also
Casella et al. (2011b) for an application.

4.2.8 New OMC Backend

The current OMC backend is lacking in modularity,
efficiency, and does not support non-expanded arrays
in a general way. The latter functionality is needed
to support compilation and simulation of large-scale
models with large arrays. Therefore an effort has
been started spring of 2020 of re-designing and re-
implementing the backend to improve modularization
and enable efficient handling of general non-expanded
arrays.

4.3 OMEdit — the OpenModelica Graphic
Model Editor and Simulator GUI

OMedit is the OpenModelica graphical model edi-
tor (Asghar et al., 2011) for component-based model
design by connecting instances of Modelica classes.
The editor also provides text editing. Moreover, the
OMEdit GUI provides a graphical user interface to
simulation and plotting (Figure 2). Also, it also pro-
vides browsing, parameter update, 3D animation (Sec-
tion 4.4), debugging and performance analysis (Sec-
tion 4.5), and FMI composite editing (Section 4.10).

Figure 5 depicts the connection editing view of
OMEdit in the center. The model browsing window
is to the left and a model documentation window is
shown at the upper right.

A typical usage of OMEdit is to first create a model
using the connection editor, then simulate, and finally
plot by selecting which variables should be plotted in
the variable plot selection window (Figure 5, lower
right).

A model can be created by opening a new empty
model and dragging/dropping model components from
the model browsing window to the left into the central
connection editing area and creating a new model by
connecting those components. Alternatively an exist-
ing model can be opened by double clicking the model
in the model browser window to the left. A model can
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also be created textually by clicking the text button
and typing in Modelica text.

A simulation is performed by clicking on the green
right-arrow at the top. After a successful simulation
the plot selection window will appear at the right. One
rather unusual example of how a plot can appear is vis-
ible in Figure 2). There are also variants of the simu-
lation green arrows at the top that combine simulation
with debugging or 3D visualization.

4.4 3D Animation and Visualization

The OpenModelica 3D animation and visualization is
a built-in feature of OMEdit to animate based on 3D
shapes defined by the MSL Multi-Body library. It pro-
vides visualization of simulation results and animation
of geometric primitives and CAD-files. OpenModel-
ica generates a scene description XML-file which as-
signs model variables to visualization shape attributes.
The scene description file can also be used to gen-
erate a visualization controlled by an FMU either in
OMEdit or in an external visualization tool as Unity
3D (Waurich and Weber, 2017). In combination with
the Modelica_DeviceDrivers Library, interactive simu-
lations with visual feedback and 3D-interactions can
be implemented for training, development and testing
purposes.

4.5 Debugging and Performance Analysis
4.5.1 The Algorithm Debugger

The OpenModelica algorithm debugger (Figure 7),
(Pop, 2008; Sjolund, 2015) is available for use either
from OMEdit or from the MDT Eclipse plug-in. The
debugger provides traditional debugging of the algo-
rithmic part of Modelica, such as setting breakpoints,
starting and stopping execution, single-stepping, in-
specting and changing variables, inspecting all kinds
of standard Modelica data structures as well as Meta-
Modelica data structures such as trees and lists.

4.5.2 The Equation Model Debugger

The OpenModelica equation model debugger (Fig-
ure 8) (Pop et al., 2014; Sjolund, 2015) is available
for use from OMEdit. It provides capabilities for de-
bugging equation-based models, such as showing and
explaining the symbolic transformations performed on
selected equations on the way to executable simulation
code. It can locate the source code position of an equa-
tion causing a problem such as a run-time error, traced
backwards via the symbolic transformations.

In February 2020, new functionality was demon-
strated to perform “backward” trace of which variables
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