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Abstract

Obtaining accurate models that can predict the behaviour of dynamic systems is important for a variety
of applications. Often, models contain parameters that are difficult to calculate from system descriptions.
Hence, parameter estimation methods are important tools for creating dynamic system models. Almost
all dynamic system models contain uncertainty, either epistemic, due to simplifications in the model, or
aleatoric, due to inherent randomness in physical effects such as measurement noise. Hence, obtaining
an estimate for the uncertainty of the estimated parameters, typically in the form of confidence limits, is
an important part of any statistically solid estimation procedure. Some uncertainty estimation methods
can also be used to analyse the practical and structural identifiability of the parameters, as well as
parameter inter-dependency and the presence of local minima in the objective function. In this paper,
selected methods for estimation and analysis of parameters are reviewed. The methods are compared
and demonstrated on the basis of both simulated and real world calibration data for two different case
models. Recommendations are given for what applications each of the methods are suitable for. Further,
differences in requirements for system excitation are discussed for each of the methods. Finally, a novel
adaption of the Profile Likelihood method applied to a moving window is used to test the consistency of
dynamic information in the calibration data for a particular model structure.
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1 Introduction

1.1 Background

1.1.1 Dynamic system models

Dynamic system models are important for a large
range of scientific and industrial applications, such as
model predictive control of dynamic systems Killian
and Kozek [2016], Wang [2009] or creating digital twins
of chemical process plants for monitoring or operator
training Rosen et al. [2015]. Typically, the performance
of the overall system depends on the accuracy of the
model predictions. Often, models contain parameters
that are difficult to obtain from system specifications.
Hence, calibration of model parameters is an important

part of developing good quality dynamic models. Ad-
ditionally, the model parameters are sometimes used as
soft-sensors for system variables that are otherwise dif-
ficult to measure. This requires a specific physical in-
terpretation of the estimated parameters, which places
further requirements on the model calibration process.

For many real world processes, models can be cre-
ated based on balance laws and application of detailed
knowledge about the physics and chemistry involved
in the process. This approach often includes approx-
imations in order to keep the model’s detail level man-
ageable. Such models are classified as mechanistic, or
white-box, since they describe detailed physical inform-
ation about the system mechanisms, using a mathem-
atical language, in a way that is interpretable by a
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human expert. For this type of models, parameters
tend to be derived from physical specifications of the
system. It is also common for such models to include
parameters that require estimation from measurement
data.

An alternative approach to creating dynamic system
models is the use of System Identification (SID) meth-
ods Ergon and Di Ruscio [1997], Ljung [1999], where
models are created by calibrating parameters of a pre-
determined mathematical structure in order to capture
the relevant dynamic system behaviour. SID mod-
els are created without explicit use of prior physical
information, hence, they are often classified as black-
box, or data-driven, models Kristensen et al. [2004].
One advantage of the SID approach is that it captures
the process behaviour directly from measurement data,
which avoids modelling errors caused by insufficient
specification of the system. To properly capture the
system behaviour, SID methods require a complete set
of basis functions Farrell and Polycarpou [2006]. If the
applied set of basis functions is insufficient, the identi-
fied model may still approximate the system behaviour,
but with model errors, e.g., non-linear system identi-
fied using a linear model structure. Further, SID meth-
ods obtain all system information from data, hence the
quality of the calibration data, in particular the level of
dynamic information, directly influences the quality of
the obtained model. Finally, the SID approach tends
to provide better statistics on the model accuracy, pro-
duced as part of the calibration procedure Johansson
[1993], Ljung [1999].

A third, intermediate, possibility is to combine cog-
nitively constructed model structures, based on naive
prior physical knowledge, with parameter calibration,
to create a simplified lumped parameter model. The
resulting model, often classified as grey-box, tends to
have most, if not all, its parameters unknown, which
requires full model calibration Berthou et al. [2014],
Bohlin and Graebe [1995], Kristensen et al. [2004]. Due
to the significant approximations applied in the cre-
ation of grey-box models, they should be treated in
a stochastic framework, using Stochastic Differential
Equations (SDE) to describe the dynamic system be-
haviour. These models are approximations by design,
using only limited physical insight, which introduces
significant epistemic uncertainty. However, since the
models are based on, at least, a naive physical under-
standing of the underlying system, the parameters are
often assumed to be physical constants.

Arguably, most white-box models contain some un-
certainty in the formulation, which gives rise to model
errors, and can therefore benefit from application of
grey-box modelling methods for parameter estimation.
This approach has indeed been claimed as a natural

framework for modelling dynamic systems in general
Bohlin and Graebe [1995], Kristensen et al. [2004].

1.1.2 Identifiability

Parameters of models derived, at least partially, from
prior knowledge of the underlying physical system are
often assumed to be constants of the system. Sub-
sequently, a globally optimal value, which can be ob-
tained unambiguously by optimisation, is assumed to
exist. This assumption should, however, be verified
in the context of parameter identifiability Ferrero et al.
[2006], Johansson [1993], Juhl et al. [2016a], Raue et al.
[2009]. This is especially important for grey-box mod-
els, which contain large epistemic uncertainty due to
the strong approximation applied in their construction.

It is well known that models can contain paramet-
ers that are structurally non-identifiable due to over-
parametrisation, which leads to parameter redundancy,
or parameters for which perturbations of the para-
meter values have no observable effect on the model
output Ferrero et al. [2006], Johansson [1993], Raue
et al. [2009]. Additionally, lack of sufficient excita-
tion of the system during data acquisition may lead to
practical non-identifiability of certain parameters De-
coninck and Roels [2017], Ferrero et al. [2006], Johans-
son [1993], Murphy and Van der Vaart [2000], Raue
et al. [2009]. If the measured inputs and outputs of
the physical system do not contain the necessary dy-
namic information, the influence of some parameters on
the error function used for parameter optimisation may
be negligible, thus leading to non-identifiability. While
structural identifiability is independent of the experi-
mental conditions, practical identifiability is a function
of the dynamic information content in the data-set, and
subsequently depends on the experimental configura-
tion Raue et al. [2009].

Due to these potential challenges with parameter
identifiability, a model structure may be designed with
parameters that are intended to have a specific physical
meaning, but it is not certain that the estimated para-
meters support this assumption Deconinck and Roels
[2017]. While the parameters of physical systems are
clearly constants of the system, the estimated paramet-
ers of a model are always subject to uncertainty and
potential non-identifiability.

1.2 Previous work

1.2.1 Parameter estimation and the CTSM
framework

Estimation of parameters requires a well defined ob-
jective function which adequately describes the model
fit. Several alternatives are used in the literature, such
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as the shooting/ballistic simulation error approach,
based on deterministic simulations Berthou et al.
[2014], Brastein et al. [2018], or the maximum likeli-
hood approach used in the Continuous Time Stochastic
Modelling (CTSM) framework Kristensen et al. [2004],
Madsen and Holst [1995]. CTSM is based on max-
imising the likelihood function Akaike [1998], Rossi
[2018] evaluated by computing residuals, which are
assumed to be Normal distributed, in a Kalman Fil-
ter. This method has previously been developed in
a number of publications Bacher and Madsen [2011],
Juhl et al. [2016b], Kristensen and Madsen [2003],
Kristensen et al. [2004], Madsen and Holst [1995] and
implemented in the CTSM framework Kristensen and
Madsen [2003]. This approach offers the advantage of
an objective function with a solid statistical framework,
which enables use of statistical tools for model valida-
tion and selection Kristensen et al. [2004].

1.2.2 Profile likelihood

While structural identifiability is well defined in the
literature, the practical identifiability of parameters is
less clearly defined Raue et al. [2009]. Although there
are several methods that can identify structural non-
identifiability, e.g., Power Series Expansion Pohjanpalo
[1978], it is desirable to have a method that can identify
both types of parameter identifiability. A good choice
is the Profile Likelihood (PL) method, which creates
profiles or distributions of the parameter likelihood,
and subsequently can produce likelihood based con-
fidence intervals Deconinck and Roels [2017], Murphy
and Van der Vaart [2000], Raue et al. [2009], Venzon
and Moolgavkar [1988]. These intervals can be used to
diagnose parameter identifiability Raue et al. [2009].

1.2.3 Bootstrapping for time-series data

The idea of Bootstrapping was first introduced in Efron
[1979], as a method of estimating the variance, i.e., un-
certainty, of a statistic. The method has become pop-
ular, due in part to its simplicity. The fundamental
idea in bootstrapping is to estimate properties, such
as the uncertainty of an estimated parameter, by ran-
domly drawing samples with replacement from the ori-
ginal data, thus obtaining multiple different data-sets.
These different data-sets will produce slightly different
parameter estimates, which allows estimation of the
uncertainty of the estimated parameter by computing
the mean and covariance of the bootstrapped estim-
ates. Data-sets generated by bootstrapping are often
called pseudo data-sets to emphasise the fact that they
are all re-combinations of the original data, and not,
new, independent data-sets collected from the physical
system. An interesting property of the bootstrapping

method is its intuitive similarity to the basis of the con-
fidence interval (CI) as presented in Kullback [1939],
Neyman [1937]; running multiple experiments to com-
pute the uncertainty of results.

A fundamental requirement of the bootstrap
method, as presented in Efron [1979], is that the
samples in the original data must be independently
and identically distributed (i.i.d), which is a prop-
erty not usually observed for time-series data Kun-
sch [1989]. Hence, there has been several adaptions
of bootstrapping for time-series data. One solution
is to fit a parametric Auto Regressive Moving Aver-
age (ARMA) model to the data, and bootstrap the
residuals, which are presumed i.i.d, to create new data-
sets Kunsch [1989], Lie [2009], Politis [2003]. However,
this approach is limited to systems which can be ad-
equately described by such model structures and thus
produce i.i.d. residuals. Hence, non-parametric ap-
proaches to bootstrapping for time-series data has been
receiving significant interest in research Kunsch [1989],
Lodhi and Gilbert [2011], Politis [2003], Politis and
Romano [1994]. In particular, various forms of block
based bootstrapping, i.e., methods that segment the
data into blocks, and draw randomly with replacements
from the blocks, rather than the samples themself, has
shown promising results Kunsch [1989]. Examples in-
clude overlapping and non-overlapping block bootstrap
Kunsch [1989], Lodhi and Gilbert [2011], moving block
bootstrap Kunsch [1989], and stationary bootstrapping
Politis and Romano [1994]. For a detailed review of
bootstrapping for time-series data, see Politis [2003].

1.3 Overview of paper

In this paper, selected methods for estimating un-
certainty of estimated parameters are presented and
demonstrated on two separate test cases. The methods
discussed in this paper are based on the use of numer-
ical optimisation, using a well defined objective func-
tion to evaluate the fit of a parameter set. The focus in
this paper is on analysing the parameters themselves,
rather than the prediction accuracy of the calibrated
model.

The theoretical foundation of parameter estimation
and analysis is presented in Section 2. Sections 2.1 and
2.2 detail the foundation of parameter estimation and
the representation of uncertainty, respectively. Section
2.3 presents the theoretical foundation of each of the
discussed methods. Results of applying the methods
is presented in Section 3. Finally, recommendations
as to what applications each of the methods is most
suitable for are given in Section 3.3 before the paper is
concluded in Section 4.
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Figure 1: An overview of all the methods discussed in this paper, and how they are related. On the left-hand side,
six optimisation based methods are shown, and related with the two types of objective functions that
are discussed. The top three methods: Uninformed Random Picking, Randomised Initial Conditions
and straight forward Model Calibration, can be used with both types of objective function. The
lower three methods: Profile Likelihood 1D and 2D, and the Hessian curvature method, all require a
Maximum Likelihood objective function. The top right block in the figure shows the moving window
method, which can be used with all the six different methods to test the results for consistency in time.
Next, the discussed variations of bootstrapping for time-series data are shown, and associated with
model calibration, since the working principle of bootstrapping methods requires separate calibration
of parameters for each generated pseudo data-set. Further, the two types of bootstrapping for time-
series data, parametric vs non-parametric, are shown. Only non-parametric bootstrapping is discussed
in this paper, specifically simple block bootstrapping and stationary bootstrapping, as illustrated in
the lower right part of the figure.

2 Theoretical basis

This section discusses in detail several methods for es-
timating parameters of dynamic models, and, in partic-
ular, methods that also estimate the uncertainty and
identifiability of the estimated parameters. An over-
view of the methods is presented in Fig. 1.

2.1 Parameter estimation

Estimation of parameters θ for a known model struc-
ture M can formally be defined as solving the optim-
isation problem:

θ̂ = arg min
θ

g (θ;M,K,A) (1)

s.t. θ ∈ Θ

Here, Θ = {θ : θmin < θ < θmax; θ ∈ Rnθ} is a continu-
ous space of feasible values for the model parameters,
where θmin and θmax are the lower and upper bounds.
Hence, the space Θ forms inequality constraints for the
optimisation problem in Eq. (1). K are the experi-
mental conditions, including a set of measurements of

system inputs and outputs, which are defined in con-
tinuous time as input ut ∈ Rnu and output yt ∈ Rny ,
and the corresponding ordered sequences of discrete
time measurements uk and yk:

y[N ] = [y0, y1, . . . , yN ] (2)

u[N ] = [u0, u1, . . . , uN ]

Here, the integer subscripts k = 0, 1, . . . , N denote
the discrete time sampling instants and the subscript
enclosed in [·] is used to indicate an ordered sequence.
These measurements are used to evaluate the objective
function g (θ) when θ is varied over the feasible set Θ by
a numerical optimisation algorithm A.

2.1.1 Uncertainty of estimated parameters

A common assumption is that S ∈ M (Θ), where
S is the true system, and that there exists a true
parameter vector θ∗ such that M (θ∗) ≡ S . How-
ever, if the data used for parameter estimation, i.e.,
y[N ] and u[N ], is collected as measurements from the
physical system S, it will contain aleatoric uncertainty
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due to the inherent randomness of measurement noise
Bentley [2005], Ljung [1999]. Additionally, most dy-
namic system models contain approximations with re-
spect to S, which also introduces some epistemic uncer-
tainty in the model equations. Hence, the assumption
M (θ∗) ≡ S is almost always questionable. Further,

the estimate θ̂ depends on the amount of dynamic in-
formation in K, the choice of model fit objective func-
tion g (θ), and to some extent on the optimisation al-
gorithm A. Hence, even if there exists a well defined,
globally optimal, set of parameters θ∗, it may not be
possible to obtain an unambiguous parameter estim-
ate. Therefore, prior to interpreting a set of estimated
parameters as determined by the physical properties
of S, and subsequently assuming a physical interpreta-
tion to the estimated parameter values, it is necessary
to analyse the estimation uncertainty and identifiabil-
ity of the parameters Ljung [1999].

2.1.2 Stochastic parameter estimation

Dynamic system models are typically formulated with
uncertainty in both the state transition and measure-
ment equations Bohlin and Graebe [1995], Kristensen
et al. [2004], Simon [2006]. Such models can conveni-
ently be expressed as a continuous time stochastic dif-
ferential equation (SDE) for the state transition Jazw-
inski [1970]. Since the data used for calibration is typic-
ally available only at discrete time instants, a discrete
time measurement equation is a convenient formula-
tion. Adopting the notation of Kristensen et al. [2004]:

dxt =f (xt, ut, t, θ) dt+ σ (ut, t, θ) dωt (3)

yk =h (xk, uk, tk, θ) + ek (4)

where t ∈ R is the time variable and xt ∈ Rnx is
the continuous time state vector. The first and second
terms in Eq. (3) are commonly called the drift and dif-
fusion term, respectively Jazwinski [1970], Kristensen
et al. [2004]. The diffusion term expresses the pro-
cess noise as the function σ multiplied with the dif-
ferential of a standard Wiener process ωt Jazwinski
[1970], Kristensen et al. [2004]. The discrete time meas-
urement equation is given in Eq. (4). The CTSM
framework Kristensen and Madsen [2003], Kristensen
et al. [2004], Madsen and Holst [1995] presents a stat-
istically solid approach to estimating parameters in
such stochastic models. A Maximum Likelihood es-
timate of θ can be obtained by deriving the object-
ive g (θ) in Eq. (1) from the likelihood L (θ), defined
as the joint probability Pr (·) of observing the meas-
urement sequence y[N ] when θ and M are known,

i.e., L
(
θ; y[N ],M

)
= Pr

(
y[N ]|θ,M

)
. Note that while

L
(
θ; y[N ],M

)
is defined using probability, the result-

ing likelihood function is not a probability distribu-

tion, since the integral of the likelihood over all possible
parameters does not equal 1.

For simplicity of notation, the model structureM is
implicitly assumed known and omitted from the con-
dition. The likelihood can be expanded to conditional
probabilities by the chain rule:

L
(
θ; y[N ]

)
=

(
N∏
k=1

Pr

(
yk|y[k−1], θ

))
Pr (y0|θ) (5)

Equation (3) assumes the diffusion term to be ad-
ditive and independent of the state x, and driven by
a Wiener process Kristensen et al. [2004]. Hence, it is
reasonable to assume that the conditional probabilities
in Eq. (5) can be approximated by Gaussian distribu-
tions Kristensen and Madsen [2003], Kristensen et al.
[2004]. The likelihood can then be expressed as a mul-
tivariate Gaussian distribution Kristensen et al. [2004],

L
(
θ; y[N ]

)
= N∏

k=1

exp
(
− 1

2ε
T
k|k−1E

−1
k|k−1εk|k−1

)
√

det
(
Ek|k−1

) (√
2π
)ny

Pr (y0|θ) (6)

To ensure that Eq. (6) is justified, the normality as-
sumption on the residuals can, and should, be checked
during model validation Johansson [1993], Kristensen
et al. [2004]. Model validation is further discussed in
Section 2.1.4

The residuals εk|k−1 and their covariance Ek|k−1 are
needed to evaluate Eq. (6). These quantities can be
obtained by use of a Kalman Filter (KF):

ŷk|k−1 = E
[
yk|y[k−1], θ

]
(7)

εk|k−1 = yk − ŷk|k−1 (8)

Ek|k−1 = E
[
εk|k−1ε

T
k|k−1

]
(9)

The choice of KF implementation, either the standard
linear KF for linear models, or a non-linear variant
such as the Extended KF (EKF) or the Unscented KF
(UKF), depends on the model equations Brastein et al.
[2019a].

Equation (6) is further simplified by conditioning on
knowing y0, taking the negative logarithm, and elim-
inating the factor 1

2 . Finally, the objective g (θ) in Eq.
(1) is defined as g (θ;M,K) = ` (θ) where the log like-
lihood function ` (θ), omitting the dependency on y[N ]

for simplicity of notation, is given as

` (θ) =

N∑
k=1

εTk|k−1E
−1
k|k−1εk|k−1 + ln

(
det
(
Ek|k−1

))
(10)

The constant term c = N · ny · ln (2π) has also been
omitted.
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2.1.3 Deterministic parameter estimation

Dynamic system models typically contain both aleat-
oric and epistemic uncertainty caused by the inherent
randomness of measurements and the use of approx-
imations in the model equations, respectively. Despite
the well understood stochastic nature of such models,
it is a common practice to treat all uncertainty as aleat-
oric and present at the model output. This results in a
deterministic, sometimes called a shooting or ballistic,
simulation, approach, in which the simulated state tra-
jectory is completely determined by the given para-
meter vector θ, the initial conditions, and the meas-
ured system inputs. Essentially, the parameter estima-
tion problem is then formulated as a curve fitting of the
state trajectory transformed through the measurement
equation. Rewriting the model from Eqs. (3) and (4)
in discrete time without the diffusion term, let

x̂k|0 = f̃
(
x̂k−1|0, uk, θ

)
(11)

ŷk|0 = h̃
(
x̂k|0, uk, θ

)
+ ek

where the estimated state x̂k|0, and subsequently the
estimated output ŷk|0, at time k are computed using
only information available at initial time. The Ordin-
ary Least Squares (OLS) estimate of the parameters is
obtained by minimising the sum of square errors (SSE):

g̃ (θ) =

N∑
k=1

ε̃Tk|0Qε̃k|0 (12)

where Q is a weighting matrix. Here, the estimation
error ε̃k|0 = yk − ŷk|0 depends only on information at
initial time t0, which is in contrast to the residual ob-
tained by the one-step ahead predictions in Eq. (8).

It is interesting to observe that the estimate obtained
by minimising Eq. (12) corresponds to the maximum
likelihood estimate (MLE) obtained from minimising
Eq. (6) if, and only if, ε̃k|0 = εk|k−1 and the innova-
tion covariance Ek|k−1 is constant such that Q = E−1.
Hence, minimising Eq. (12) gives an MLE estimate
of the parameters only if the state transition model is
exact w.r.t. the data generating system S, i.e., the un-
certainty associated with the diffusion term in Eq. (3)
is zero and the measurement noise distribution is sta-
tionary with zero mean. Note also that if all measure-
ments have the same variance, i.e., E−1 = Q = c · I in
Eq. (12), the weighting matrix can be taken outside
the summation and subsequently eliminated, thus ob-
taining the unweighted least squares estimate.

While this can be a reasonable approximation, it is
rarely exactly true, except when the calibration data is
generated by simulations of the same model structure
M. Observe further that, assuming affine noise, this
corresponds to obtaining the quantities in Eqs. (7) to

(9) in a Kalman Filter with the process noise covariance
W = 0 and constant measurement noise covariance V.
Hence, the deterministic shooting error approach to
parameter estimation may be seen as a special case of
the scheme used in the CTSM framework and outlined
in Section 2.1.2.

An interesting observation from comparing the two
types of error calculation, e.g., ε̃k|0 = yk − ŷk|0 and
εk|k−1 = yk − ŷk|k−1, is that the SSE objective com-
puted based on ε̃k|0 in Eq. (12) will have a gradi-
ent that is strongly non-linear in the parameters, due
to the recursive predictor used in Eq. (11), i.e.,
ŷk|0 = f

(
ŷk−1|0, uk−1, θ

)
. In contrast, the one-step-

ahead prediction based likelihood objective in Eq. (10)
will have a gradient that is linear in the paramet-
ers, since the predictor for the output is a function
of measurements at previous time-steps, i.e., ŷk|k−1 =

f
(
y[k−1], uk−1, θ

)
.

2.1.4 Model validation

Since the objective function ` (θ) in Eq. (10) depends
on an assumption of normally distributed residuals,
computed from one-step ahead predictions in a KF,
it is necessary to verify the normality assumption sub-
sequent to estimating model parameters. The liter-
ature detailing the CTSM framework specifically calls
for evaluation of the residuals to verify the normality
assumption Kristensen and Madsen [2003], Kristensen
et al. [2004]. A practical test for normality can be
applied by computing and plotting a cumulative peri-
odogram (CP) of the residuals Deconinck and Roels
[2017], Kristensen and Madsen [2003], Kristensen et al.
[2004], where the Kolmogorov-Smirnov criterion can
be used to place confidence bounds on the CP test
Madsen [2007]. There are also a number of alternat-
ive tests for normality that can be applied such as the
zero-crossings test or the Kolmogorov-Smirnov test Jo-
hansson [1993].

The possibility of validating a dynamic system model
by testing the residuals for normality is a distinct ad-
vantage of the stochastic parameter estimation frame-
work. For a deterministic shooting simulation ap-
proach, in which there may be bias errors that carry
over from the state estimate at the previous time-step
as shown in Eq. (11), there can be no reasonable as-
sumption of normality for the estimation error ε̃k|0, un-
less the state transition model is exact Madsen [2007].

2.2 Expressing uncertainty of estimated
parameters

A convenient way of describing the uncertainty of es-
timated parameters is by defining a sub-region in Θ,
with some specific statistical criteria quantifying the
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uncertainty of the parameters in the sub-region relat-
ive to the true, but unknown, parameters θ∗. One pos-
sible choice is the use of a confidence region with stated
confidence α Neyman [1937], Raue et al. [2009]. In gen-
eral, a region of arbitrary shape in Θ can be defined as
a set, based on the difference in the objective function
relative to a presumed optimal estimate θ̂:{

θ : g (θ)− g
(
θ̂
)
< ∆

}
(13)

where the threshold ∆ is defined by some appropriate
statistical criterion. The definition of the threshold de-
pends on how the objective function g is defined, e.g.,
for a likelihood objective the thresholds can be com-
puted from the χ2 distribution as shown in Section
2.2.2. The set in Eq.(13), which contains any paramet-
ers θ for which the objective differs from the optimum
by less than ∆, can be of any shape, including multi-
modal. However, the computation of a free-form set
will require a large number of evaluations of the ob-
jective function for different θ in order to determine
the set members. Therefore, a common approximation
is to assume an ellipsoid, rather than free-form, region,
defined as {

θ :
(
θ − θ̂

)T
Σ−1

(
θ − θ̂

)
< ∆

}
(14)

where the size of the ellipsoid is determined by the
threshold ∆, again computed by some appropriate stat-
istical criterion. The weighting matrix Σ, typically the
covariance of the estimated parameters, determines the
rotation and relative length of the ellipsoid axes. Re-
gions defined as in Eq. (14) also define a set of θ based

on relative deviation compared to θ̂, but by assuming a
quadratic approximation, the ellipsoid region is much
faster to compute.

The points on the ellipsoid surface can be obtained
by utilising the Cholesky decomposition Σ = LLT , as-
suming Σ is positive definite Press et al. [2007]:(

θ − θ̂
)T

Σ−1
(
θ − θ̂

)
= ∆⇒

∣∣∣L−1
(
θ − θ̂

)∣∣∣2 = ∆

(15)
Next, suppose x is a point on a unit hypersphere, then
the ellipsoid surface boundary is obtained by the affine
transformation

θ = θ̂ +
√

∆Lx (16)

2.2.1 Asymptotic confidence regions

Two common ways of expressing uncertainty is by de-
fining a region in Θ, either a univariate, point-wise,
confidence interval (CI), or a multivariate, simultan-
eous, confidence region, both defined by their pre-
scribed confidence level α Neyman [1937].

Asymptotic CIs are based on the curvature of the
objective function, which can be computed by utilising
the covariance Σθ of the estimated parameters around
the optimum θ̂ Deconinck and Roels [2017], Raue et al.
[2009] to define a region on the form in Eq. (14). The
threshold is then ∆ = ∆α, where ∆αis computed from
the χ2

α,ndf
distribution, with degrees of freedom ndf

equal to the number of parameters in the simultan-
eous confidence region Press et al. [2007]. Observe that
for point-wise confidence intervals of single parameters,
Eq. (16) with x ∈ {cos (0) , cos (π)} = {1, −1} reduces
to the familiar confidence interval for a scalar variable,
where Σi,i = σ2

i Raue et al. [2009], i.e.;

θ̂i ±
√

∆αΣi,i (17)

For point-wise intervals, ∆α is drawn from the
χ2
α,ndf

distribution with ndf = 1 which is equivalent
to the Normal c.d.f. with α/2 confidence in each tail.
The use of asymptotic confidence regions is widespread
in all branches of science, particularly due to their ease
of computation. If the parameters are in fact Gaussian
distributed, the ellipsoid confidence regions are exact
which further strengthens their popularity.

2.2.2 Likelihood based confidence regions

Unlike the asymptotic confidence interval in Eq. (17),
a likelihood based confidence interval is computed by
applying a threshold on the likelihood function to com-
pute a confidence region in the form Eq. (13) Meeker
and Escobar [1995], Raue et al. [2009]. Let{

θ : ` (θ)− `
(
θ̂
)
< ∆α

}
, ∆α = χ2

α,ndf
(18)

where θ̂ is a freely estimated parameter vector, which is
presumed optimal, and the threshold ∆α is the α per-
centile of the χ2

α,ndf
-distribution with ndf degrees

of freedom. It follows from Wilks’ theorem Wilks
[1938] on the logarithm of the likelihood ratio Λ that
the test statistic

2 ln (Λ) = 2 ln

 L (θ)

L
(
θ̂
)
 = ` (θ)− `

(
θ̂
)

can be used to compare two models. The difference

in log likelihood ` (θ) − `
(
θ̂
)

is asymptotically χ2-

distributed Meeker and Escobar [1995], Raue et al.
[2009], with ndf equal to the difference in number of

free parameters between θ and θ̂ Press et al. [2007].
Arguably, likelihood based confidence intervals are

conceptually simpler than asymptotic CIs due to their
thresholded set definition. However, determining the
set members is computationally intensive. An advant-
age of the likelihood based CI is that, due to its set
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form definition, it does not assume a symmetric dis-
tribution of the parameters, and can in fact take on
any shape, including multi-modal. Hence, likelihood
based CIs are often considered superior to asymptotic
CIs Raue et al. [2009].

2.2.3 Parameter profiles or distributions

An alternative to presenting the uncertainty of the es-
timated parameters as regions in Θ is to present the
parameters as a distribution in Θ. Typically, a stat-
istical quantity is used to create the profile, such as a
probability density function or the log-likelihood. Pro-
files can be created over the entire Θ, or a subset of
Θ as projections to single parameters θi, or planes
Θi,j={θi, θj}, such that Θi,j ⊂ Θ. A parameter pro-
file is more descriptive than a confidence region, since
it shows how the uncertainty is distributed across the
parameter space Θ. Since parameter profiles can be
converted to confidence regions by applying some stat-
istically defined threshold, they may be considered
a superior form of uncertainty description. An ex-
ample of this approach is the Profile Likelihood method
presented in Section 2.3.4.

Another method of obtaining distributions of para-
meters, which are in fact probability distributions for
the parameter θ, is through the use of Bayesian statist-
ics and Markov Chain Monte Carlo (MCMC) methods.
However, these methods are beyond the scope of this
paper.

2.2.4 Interpretation of confidence regions

An interesting observation relating to the interpreta-
tion of the computed regions is that, while quite often
assumed in published literature, the confidence of the
computed regions is not a statement on the probabil-
ity of said region containing the true parameters θ∗,
as clearly stated in Neyman [1937]. Both θ∗ and the
computed confidence region are constants, not random
variables. Hence, their relationship is not a question
of probability, except for the trivial values of zero and
one, which simply state whether or not the true para-
meter is a member of the computed confidence region.
However, what can be stated in probabilistic terms is
the expected probability of capturing θ∗ in the CI, prior
to performing the experiment and computing the in-
terval, which is equal to the confidence α Kullback
[1939]. This expected probability of capturing θ∗ is
called the coverage probability. If multiple experiments
are carried out, with subsequent computations of CIs,
the ratio of intervals that successfully captures the true
parameter θ∗ to the total number of experiments per-
formed will be equal to the coverage probability Kull-
back [1939].

90.25%

95%

θi
 

θj 

95%

95%

Figure 2: Comparing a simultaneous confidence ellipse
for two parameters with the point-wise CIs
(green) for each parameter, shows that the
projections of the ellipse (grey) is wider than
the point-wise CIs. Also, the combined con-
fidence (0.95×0.95=0.9025) of both point-
wise CIs together is shaded in grey. Note
the difference between two combined point-
wise CIs (shaded square) and the simultan-
eous confidence ellipse.

2.2.5 Simultaneous and point-wise confidence
regions

As discussed in Sections 2.2.1 and 2.2.2, the uncer-
tainty of estimated parameters can be expressed as
confidence regions in Θ. However, it is often of in-
terest to make statements about the uncertainty of in-
dividual parameters, rather than simultaneous state-
ments about multiple parameters together. In this con-
text it is important to distinguish between simultan-
eous and point-wise, i.e., one-at-a-time, intervals. For a
simultaneous CI, the uncertainty of the estimated para-
meters is stated for multiple parameters together, i.e.,
the computed confidence region captures the true para-
meters θ∗ with coverage probability α Kullback [1939],
Neyman [1937]. In comparison, a point-wise CI holds
for that parameter alone, i.e., the coverage probability
for capturing the single parameter is α.

To create simultaneous scalar intervals for each
parameter, the higher dimension region can be pro-
jected onto each parameter, as illustrated in Fig. 2.
Such projected simultaneous intervals should not be
confused with point-wise CIs, nor should their com-
bined confidence be stated as α Johnson and Wich-
ern [2007], i.e., the coverage probability of all projected
intervals holding is not α. The projected shadow of
a higher order simultaneous confidence region is lar-
ger than the point-wise intervals Johnson and Wichern
[2007], Press et al. [2007], as illustrated in Fig. 2.

Since Θ typically has more than two dimensions,
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graphical presentation of confidence regions requires
projections of some form. In such cases, care should
be taken to clearly state the resulting confidence level.
Just as for the elliptic region projected onto a single
parameter axis in Fig. 2, a higher dimension ellipsoid
projected onto a plane will give a larger elliptic shadow
projection than a confidence ellipse computed for just
two parameters in the plane.

2.2.6 Diagnosing identifiability by analysing
uncertainty

Determining if a parameter is structurally or practic-
ally identifiable is important if the parameter value
itself is of interest, i.e., if a physical interpretation of
the parameter is assumed. A link between the uncer-
tainty of a parameter, in the form of a likelihood based
confidence interval as presented in Section 2.2.2, and
the structural and practical identifiability, was given in
Raue et al. [2009].

Structural non-identifiability is caused by redund-
ant parametrisation of the model equations, such that
a sub-set of the parameters θs has no effect on the
observable outputs y, and is therefore independent
of the experimental conditions K Raue et al. [2009].
Hence, there exists a manifold in the parameter space
Θ where the objective function ` (θ) has a constant
value. Further, it is possible to obtain a functional re-
lation between the parameters θs which describes this
equipotential manifold in the objective function. Con-
sequently, a likelihood based confidence interval will
be unbounded in both direction, i.e., [−∞,+∞], for
the structurally non-identifiable parameters in θs Raue
et al. [2009].

In contrast, practical non-identifiability is caused by
a lack of dynamic information about the system in K
and hence a direct result of the experimental design
and data acquisition process. Unlike structural identi-
fiability, practical identifiability is not clearly defined
in the literature Raue et al. [2009]. However, an el-
egant definition is found in Raue et al. [2009], where
practical non-identifiability is diagnosed if the corres-
ponding likelihood based confidence region, as in Eq.
(18), is extended to infinity in decreasing and/or in-
creasing direction , i.e., the objective function stays
below a specific threshold ∆α in at least one direc-
tion, despite the presence of a well defined optimum
θ̂. Observe that the use of likelihood based confidence
regions is necessary for determination of practical non-
identifiability, since the asymptotic CI will always be
symmetric and also finite if Σi,i > 0, and therefore can-
not present the necessary characteristics for diagnosing
practical non-identifiability Raue et al. [2009].

In Raue et al. [2009] the definition of parameter iden-
tifiability is presented as a true/false question. For the

Figure 3: The log-likelihood profile of two inter-
dependent parameters is plotted in the plane
of both parameters (right panel), with corres-
ponding projections to each of the two para-
meters.

case of structural identifiability, this is clearly appro-
priate. However, practical identifiability is a function
of the system excitation during data acquisition, and
hence the dynamic information content in K. There-
fore it may be appropriate to treat practical identifiab-
ility as a quantity, rather than a true/false property.
If the computed confidence region for a parameter is
wide, that parameter may arguably be considered less
identifiable than a parameter with smaller confidence
region. In particular, comparing parameters estimated
from two different data-sets of the same system with
different levels of excitation, the resulting CIs of the
same parameter may have different widths. Hence, it
is reasonable, and intuitively satisfactory, to relax the
definition of practical non-identifiability given in Raue
et al. [2009] to also include parameters with abnormally
wide CIs. Unfortunately, relaxing the diagnostic cri-
teria in this way leads to a cognitive judgment on what
width of a CI is abnormal for any specific parameter.
Resolving this question requires using system specific
knowledge, and is further complicated by variations in
scale of the parameters which makes normalisation a
prerequisite for comparing CIs for different paramet-
ers.

2.2.7 Inter-dependent parameters and the effect of
constraints on projections

When projecting a higher order region onto a single
parameter θi or a plane Θi,j , it is important to con-
sider inter-dependent parameters. A projection of a
higher dimensional region in Θ will, due to parameter
inter-dependence, result in a projection that is wider
than any cross-section, since the dependency inform-
ation in the higher order structure is lost in the pro-
jection Johnson and Wichern [2007]. Further, if the
parameter space Θ is constrained or bounded, inter-
dependent parameters can introduce artefacts in the
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projection of one parameter, caused by the constraints
on another, inter-dependent, parameter.

An example of these phenomena is shown in Fig. 3.
The right panel shows a log-likelihood profile of two
parameters as a heat-map in the plane of both para-
meters. The left and centre panel show the same pro-
file, projected onto each parameter axis. First, observe
that the 2D profile in the right panel shows that the
parameters are inter-dependent, since there is a clear
linear relationship between the two parameters. Next,
observe that the one-dimensional profiles, which are
projections of the two-dimensional surface onto each
parameter, are wider than any cross-section taken from
the 2D profile. Finally, observe that for parameter θ1

the profile contains a sharp bend, highlighted by a red
circle in Fig. 3. When comparing to the full 2D pro-
file, it is clear that this bend is actually an artefact
in the θ1 profile, introduced by the constraint on θ2,
i.e., θ2,min < θ2 < θ2,max, and the inter-dependence
between the parameters.

2.3 Uncertainty estimation and analysis
methods

In this section, a selection of methods for estimation
of uncertainty and identifiability analysis is presented
with some illustrative examples. More extensive ex-
amples of these methods are given in Section 3.

2.3.1 Uninformed Random Picking

It is often helpful to visualise the shape of the ob-
jective function g in the parameter space Θ. Initially,
the optimal parameter estimate, the existence of a well
defined optimum, and/or the number of optima, is typ-
ically unknown. Hence, a method which requires no
assumptions about the objective function g (θ) and the
parameter space Θ, is desirable. An intuitive approach
is to evaluate the objective g (θ) for some selected set of
parameters θ{K} = {θk : k ∈ 1, ...,K} and plot the res-
ulting θk vs g (θk) as a scatter plot for each parameter.
A simple way of selecting θ{K} is by use of randomisa-
tion: drawing the parameters uniformly across Θ such
that θk ∼ U (θmin, θmax) for k ∈ {1, ...,K}. The result-
ing scatter plots will show that there exists an optimal
front in Θ which corresponds to the projection of the
objective g (θ) onto each parameter axis. Of course, a
large number of the randomly drawn points in θ{K} are
not located near the optimal front. However, by ran-
domised selection with large K, typically on the order
of 10.000 to 500.000 or higher depending on the di-
mensionality of Θ, the plots will contain enough data
near the optimal front to visually inspect the shape of
the objective function. Subsequently, the existence of a
well defined optimum, presence of flat regions, and the

Figure 4: The Random initial guess method is used to
test for local minima when estimating the
amplitude (A) and frequency (w) of a sim-
ulated sine wave with added noise. Out of
K = 200 repeated optimisations, only 12 cor-
rectly find the true parameters θ∗(marked
by a black circle in the figure). Blue dots
mark the randomised initial guess and red
dots mark the parameters obtained after op-
timisation.

number of modes, can be ascertained. This method is
often named Uninformed Random Picking (URP) Hoos
and Stützle [2004], where the term uninformed reflects
the fact that no prior assumptions is used in the choice
of θk.

The resulting plots will be a projection of K para-
meter vectors onto each of the nθ parameter axis in
Θ. Hence, the method suffers from the challenges re-
lated to such projections, as discussed in Section 2.2.7.
Examples of the use of the URP method is given in
Section (3.1.1).

2.3.2 Randomised initial guess

A variation of the Uninformed Random Picking
method from Section 2.3.1 is to use randomisation to
uniformly draw the initial guess θ0 and subsequently
optimise all parameters, i.e., repeatedly solve the op-
timisation problem in Eq. (1) K times, with a random-
ised initial guess θ0

k ∼ U (θmin, θmax) for k ∈ {1, ...,K}.
This method, although simple, can be a good test
to check the convergence of the parameter estimation
method. If repeated executions of the optimisation al-
gorithm A returns significantly different optimal estim-
ates θ̂k depending on the initial guess θ0

k, a physical in-
terpretation of the estimated parameters as constants
given by the system S must be considered questionable.
This may indicate a problem with parameter identifi-
ability, which should be analysed further. Since the
optimisation algorithm A allows directed exploration
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of the objective function, the number of iterations K
can be much lower than required for the URP method,
say, 10 to 500. As for the URP method, the choice
of K depends on the dimensionality of the parameter
space Θ.

Additionally, since optimisation is performed from a
number of different starting points in Θ, this method
can be useful to identify local minima in the parameter
space, provided the number of iterations K is large
enough to cover the parameter space with reasonable
density.

The resulting optimal estimates θ̂k are plotted to-
gether with the initial guesses θ0

k to indicate the tra-
jectories of the optimisation algorithm A. The results
can either be plotted for two parameters against each
other, forming a projection of the corresponding op-
timisation trajectories onto a plane of two parameters,
or they can be plotted for each parameter; θ0

k, θ̂k vs

g
(
θ0
k

)
, g
(
θ̂k

)
. The resulting plots will give a good

visualisation of the projected shape of the objective
function.

An example of this method is shown in Fig. 4. By
simulating a sine wave y (t) = A sin (wt), where the
parameters are amplitude A= 2 and frequency w = 10,
and adding Gaussian noise of standard deviation 0.5,
a calibration data-set is created. When estimating the
parameters of this simple model, a large number of
local optima are found, especially for A = 0 or w = 0.
Hence, the estimated solution θ̂ is highly dependent
on the initial guess θ0. Only 12 of the K = 200 re-
peated optimisations correctly obtain θ̂ = θ∗. This ex-
ample shows the importance of considering local min-
ima when estimating parameters. It is also interesting
to observe that there are different patterns of traject-
ories in each of the four quadrants of the plot. These
variations are caused by the optimisation method A,
and shows that also the chosen algorithm for optim-
isation can have a strong influence on the parameter
estimate.

2.3.3 Hessian of the likelihood function

A commonly used method for estimating the uncer-
tainty of the estimated parameters is to utilize the
shape of the objective function g (θ) directly by calcu-

lating the curvature around the optimal estimate θ̂, by
computing the Hessian of `(θ); H = ∇T∇` (θ)

∣∣
θ=θ̂

.
The covariance of the estimated parameters can be
computed as Σθ = 2H−1, where the factor 2 is included
to compensate for previously dropping the factor 1

2 in
the definition of ` (θ) in Eq. (10). The elements of
H are approximated as Kristensen et al. [2004], Raue

et al. [2009]:

hi,j ≈
(

∂2

∂θi∂θj
` (θ)

)∣∣∣∣
θ=θ̂

(19)

which can be numerically computed using, e.g., cent-
ral difference approximation. Observe that the Hes-
sian is by definition symmetric, which is a drawback if
the shape of the objective function is non-symmetric
around the optimum. Observe also that, from general
optimisation theory, while the curvature of any object-
ive function g could be considered an approximation of
uncertainty Nocedal and Wright [2006], the estimation
of parameter covariance Σθ from the Hessian requires
that a log likelihood objective g (θ) = ` (θ) is used.
This method obtains directly the parameter covariance
Σθ which can be used to construct an asymptotic con-
fidence region as in Eq. (14).

2.3.4 Profile likelihood

As discussed in Section 2.2.2, likelihood based CIs are
often considered superior to asymptotic CIs Raue et al.
[2009]. Further, parameter distributions are arguably
a more descriptive representation of uncertainty than
confidence regions. Hence, obtaining parameter distri-
butions based on the likelihood function is an attract-
ive tool for parameter analysis. An elegant method
for computing such distributions is the profile likeli-
hood (PL) method presented in Deconinck and Roels
[2017], Murphy and Van der Vaart [2000], Raue et al.
[2009]. The PL method explores the parameter space
by optimising the parameters in two steps, rather than
simultaneously as in Eq. (1). The profile likelihood
`PL (θi) is defined as the minimum log likelihood for
a given θi when the remaining parameters are freely
optimised Raue et al. [2009]:

`PL (θi) = min
θj 6=i

` (θj 6=i;M,K, θi) (20)

Values of θi must be chosen prior to optimising the
remaining θj 6=i Raue et al. [2009]. A straightforward
solution, if the objective function g is well behaved
within the constraints of Θ, is to use a brute force
approach with an even sampling of θi. Alternatively,
a two-sided gradient decent algorithm, using a freely
optimized parameter vector as a starting point, can
be applied Maiwald and Timmer [2008], Raue et al.
[2009]. The resulting likelihood distribution can be
plotted as a function of θi and subsequently analysed
according to the definitions of structural and practical
identifiability for likelihood based confidence intervals
Deconinck and Roels [2017], as discussed in Section
2.2.2. A threshold can be applied to the constructed
profile, as described in Section 2.2.2, where, by Wilks’
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Theorem Wilks [1938], the threshold ∆α can be drawn

from the χ2
α,ndf

distribution. The freely estimated θ̂ has
nθ degrees of freedom (d.o.f.), while the PL estimate
has nθ − 1 d.o.f., hence the threshold ∆α is computed
with ndf = 1.

Observe that since the PL method essentially pro-
jects the nθ dimensional space Θ onto the single para-
meter θi, by freely estimating the remaining paramet-
ers, the PL method tends to overestimate the width of
the likelihood based confidence interval if parameters
are not independent, as discussed in Section 2.2.7

2.3.5 Two-dimensional profile likelihood

In order to improve the PL methods projections un-
der the influence of inter-dependent parameters, the
method can be modified to hold out two parameters
rather than one, i.e.:

`PL2 (θi, θj) = min
θk 6=i,j

` (θk 6=i,j ;M,K, θi, θj) (21)

This projects the parameter space Θ onto the plane
of θi and θj ; Θi,j , which results in a two-dimensional
distribution that can be analysed in a similar way to
the one-dimensional PL Raue et al. [2009], using the
definition in Eq. (18) and discussed in Section 2.2.
The PL2 results can be plotted as topological sur-
faces Raue et al. [2009], which can be used to diagnose
parameter inter-dependence, since the two-dimensional
projections are capable of representing relationships
between parameters. These projections constitute an
exhaustive search over the plane Θi,j . Hence, both
local and global optima can be obtained from inspec-
tion of the projected profiles.

Applying a confidence threshold to the PL2 method
produces confidence regions in the Θi,j plane. Based
on confidence thresholds computed from the χ2-
distribution, a similar interpretation of these two-
dimensional topologies can be applied to diagnose iden-
tifiability by requiring that the region is bounded in all
directions Raue et al. [2009]. If there is an unbounded
equipotential valley with a constant optimal log like-
lihood, the parameter is structurally non-identifiable.
If the interval or region is unbounded in some direc-
tion but still has a well defined optimum, this indicates
a practically non-identifiable parameter Raue et al.
[2009]. Observe that since θ̂ has nθ free parameters
while the PL2 estimate has nθ−2, this gives ndf = 2 for
the computation of ∆α from the χ2-distribution in Eq.
(18).

While the extension of the PL method to create
projections in the plane Θi,j is intuitive, and the res-
ulting plots exhibit some interesting characteristics as
tools for analysing parameter identifiability and inter-
dependence, this modification strongly increases the

computation time of the method. To create the pro-
jections of ` (θ) onto Θi,j , a large number of object-
ive function evaluations must be performed. Using
a brute force sampling of Θi,j with N steps for each
parameter returns N2 pairs of parameter values, each
of which requires optimisation of the remaining para-
meters; θk 6=i,j . This process must be repeated for each
combination of parameters, which further increases the
computational burden. Hence, the method requires
careful use of parallelisation and software engineering
to be computationally feasible. Of particular import-
ance is utilising the fact that neighbouring points in
Θi,j are likely to have similar optimal values for θk 6=i,j .
Hence, using previously optimised free parameters as a
warm-start for computing new `PL2 (θi, θj) points sig-
nificantly reduces computation time.

Due to the extensive computation time for this
method, it is advisable to initially perform explorat-
ory analysis with relatively low number of steps N ,
with subsequent higher resolution analysis in specific
regions of interest. However, the initial analysis must
use a discretisation resolution sufficiently detailed to
find the regions of interest. The number of resolution
steps for each parameter which is required for success-
ful application of the PL2 method depends on the prob-
lem, and should be found by experimentation.

Finally, observe that when a brute force discretisa-
tion of Θi,j is used, the resulting set of optimised para-
meters constitutes an exhaustive search of the discret-
ised parameter space Θ. Hence, an estimate θ̂, which
is globally optimal within the accuracy and bounds al-
lowed by the brute force discretised Θ, can be obtained
by taking the minimum from all the `PL2 (θi, θj) pro-
files.

2.3.6 Bootstrapping for dynamic models

The data samples of a time-series are not independent.
Hence, the traditional bootstrapping method of ran-
domly drawing individual samples with replacement
is not applicable, because the sample to sample de-
pendency information would be lost in the generated
pseudo data-set Kunsch [1989], Politis [2003]. A pop-
ular modification of the bootstrapping method is to
divide the original data into blocks, either overlapping
or non-overlapping, with uniform or randomly chosen
lengths and/or starting points Politis [2003]. In this pa-
per, two versions of block based bootstrapping for time
series data is considered; non-overlapping block boot-
strap Lodhi and Gilbert [2011] and stationary bootstrap
Politis and Romano [1994]. The difference between
these two approaches is in how the data is separated
into blocks. Each method is outlined below.

The idea behind all bootstrap methods is to gener-
ate multiple pseudo data-sets, in order to estimate the
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Figure 5: An example of simple block bootstrapping
with K = 5 blocks, creating M = 2 pseudo
data-sets.

variance of some estimate, e.g., dynamic model para-
meters. Hence, the bootstrapping procedure must be
repeated M times, such that each iteration produces a
different pseudo data-set, and hence a different para-
meter estimate θ̂j . Note that any objective function
could potentially be combined with this type of boot-
strapping, e.g., the ballistic SSE approach in Section
2.1.3 or the likelihood ` (θ) in Section 2.1.2.

Based on these M estimated parameter vectors, the
mean parameter estimate, and the covariance of that
mean estimate can be computed, i.e:

θ̂ =
1

M

M∑
j=1

θ̂j

Σθ =
1

M − 1

M∑
j=1

(
θ̂j − θ̂

)2

(22)

Confidence regions on the form of Eq. 14 can then be
constructed for the mean parameter estimate, where
the threshold ∆ is drawn from the F-distribution John-
son and Wichern [2007].

Additionally, the resulting M parameter estimates
can be plotted as scatter plots or as histograms, either
for individual parameters or for combinations of two
parameters. Observe that these plots suffer from the
same limitations related to the projection of high di-
mensional parameter space Θ onto single parameter
axis as discussed in Section 2.2.7.

The first bootstrap method, non-overlapping block
bootstrapping, is achieved by dividing the data-set y[N ]

and u[N ] into K blocks of length l. Let y
(i)
[l] and u

(i)
[l]

be block i of measured system outputs and inputs, re-
spectively, where i ∈ {1, ...,K}. Each block is con-
structed by taking a consecutive sequence of samples
from the original data, y[N ] and u[N ], starting from

 
 

Start new block: k~U(0,N)

U(0,1)>p

?

Add next sample: k++

Pr(Yes) = 1-p

Pr(No) = p

Figure 6: Simplified block diagram of Stationary Boot-
strapping.

k 

y 
2 34 5

1

k 

y 2 3 45
1

i=1

i=2

Figure 7: Illustrative example of two iterations of
stationary bootstrapping, resulting in five
blocks of data, possibly overlapping, with
uniformly drawn starting point and geomet-
ric length distribution.

sample l · (i− 1), such that:

y
(i)
[l] =

[
yl·(i−1)+k : k ∈ [1, ..., l]

]
(23)

u
(i)
[l] =

[
ul·(i−1)+k : k ∈ [1, ..., l]

]
(24)

A pseudo time-series data-set is then created by
drawing K blocks randomly with replacement, as il-
lustrated in Fig. 5. As with traditional bootstrapping,
some blocks will not be drawn, while others may be
drawn multiple times. Hence, some data points will
not appear in the new pseudo data-set, while other
data points will appear multiple times. This is shown
in Fig. 5, where for the first pseudo data-set block 1
appears twice, as the 1st and 3rd block, while block 4
is not included.

An alternate method for drawing random blocks of
data is the stationary bootstrapping method Politis and
Romano [1994], where blocks of data are constructed
with a random length of geometric distribution Politis
[2003]. The advantage of this approach is to create
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bootstrapped data-sets that are themself stationary
series Politis [2003], Politis and Romano [1994].

The stationary bootstrap method is realised by use
of a probability test, and consists of two steps. First,
the starting point of each block is drawn uniformly
across all N original samples, k0 ∼ U (0, N). Next,
with probability 1−p, add the next consecutive sample
from the original series, or with probability p, start a
new block by again uniformly drawing a new starting
point. This test on p is repeated until the combined
length of all blocks is approximately N . The result-
ing blocks length will follow a geometric distribution
such that the probability of block i having length m
is Pr (li = m) = (1− p)m−1

p. This process is illus-
trated in Fig. 6. The expected length of each block is
E (l) = 1

p and the expected total number of blocks is

E (K) = N
p . An illustrative example of two iterations

of stationary bootstrapping is shown in Fig. 7. Com-
paring Fig. 7 to the non-overlapping block bootstrap-
ping in Fig. 5 shows the difference in the two methods,
in that the first method has non-overlapping blocks of
uniform length, which is randomly recombined to cre-
ate the pseudo data-set, while the stationary bootstrap
method uses randomisation to choose both the start
and length of each block.

Since both these approaches, indeed, all block based
bootstrapping methods for time-series data, involve di-
viding the original time-series data into blocks and
recombining them to form new pseudo data-sets, the
question of how to join together multiple randomly se-
lected blocks into a new complete data-set arises Kun-
sch [1989]. For estimation of parameters for dynamic
system models using a data-set that is essentially seg-
mented non-consecutive blocks, an intuitive solution is
to compute the objective function g(θ) for each block
and aggregate the results. If the objective is defined
on summation form as in Eq. (6), the overall objective
function for a block segmented data-set of K blocks
can be defined:

gB

(
θ;M, y[N ], u[N ]

)
=

K∑
i=1

g(i)
(
θ;M, y

(i)
[li]
, u

(i)
[li]

)
The initial conditions for evaluating the objective for
each block, g(i), such as the initial state, must be de-
termined for each block, rather than for the whole data-
set as in Eq. (1). If the states are measurable, the
choice of initial state for each block can be obtained
from the measurements. Alternatively, the initial state
can be treated as an unknown parameter and estimated
for each randomly drawn block.

An important consideration when performing block
based bootstrapping on time series data for dynamic
model parameter estimation, is the consistency of the
dynamic information in the data. If certain segments

of the data contain significantly less dynamic inform-
ation than the rest, e.g., if the system is in steady
state for parts of the original data-set, some iterations
of the bootstrap procedure may return pseudo data-
sets that are less informative w.r.t. parameter estim-
ation. These pseudo data-sets may produce practically
non-identifiable parameters Raue et al. [2009], which
manifest as outliers among the M bootstrap estimates.
Such outliers will significantly effect the computed cov-
ariance in Eq. (22). Hence, it is important to consider
the consistency of dynamic information in the original
data, prior to applying bootstrapping methods.

2.3.7 Consistency of dynamic information in
calibration data

An intuitive method for testing the consistency of
dynamic information content in data is to draw a
set of overlapping, consecutive, data segments, taken
equidistant across the data-set. Each segment is of
length l, and extracted from starting points w · (i− 1),
where w is the step length;

y
(i)
[l] =

[
yw·(i−1)+k : k ∈ [1, ..., l]

]
(25)

u
(i)
[l] =

[
uw·(i−1)+k : k ∈ [1, ..., l]

]
(26)

The approach constitutes a moving window that
travels across the data-set with step length w. The seg-
ment length l and the step length w are considered tun-
ing parameters and should be determined experiment-
ally. For each segment, a parameter vector θ̂(i) is estim-

ated by minimising the objective g(i)
(
θ;M, y

(i)
[l] , u

(i)
[l]

)
.

Note that this is fundamentally different from the boot-
strapping approach, since no randomisation is used to
combine multiple segments and the parameter estima-
tion is performed separately for each consecutive seg-
ment. As for the block based bootstrapping methods
in Section 2.3.6, the initial conditions needed to eval-
uate g(i) must be obtained for each segment, either as
estimated parameters or directly from observations if
the states are measurable.

For each segment, some appropriate method of un-
certainty estimation, e.g., the Hessian method of Sec-
tion 2.3.3 or the Profile Likelihood method in Section
2.3.4, is used to evaluate the uncertainty and/or iden-
tifiability of the estimated parameters. By plotting
the results as a function of the segment starting point
w · (i− 1), and observing how the parameter uncer-
tainty and/or identifiability changes with time as the
window is moved, the consistency of dynamic informa-
tion in the data can be evaluated. Observe also that if
the PL method is used, the results should be plotted as

the relative log likelihood ` (θ) − `
(
θ̂i

)
, since the op-

timal log likelihood will be different for each segment.
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If parameter calibration from different segments of
the data produce significantly different uncertainty es-
timates, this indicates an inconsistency in dynamic
information, which subsequently can influence uncer-
tainty estimation methods based on block bootstrap-
ping. Observe that since a small subset of the calib-
ration data is used, the uncertainty estimates for each
segment will be larger than what is obtained using the
complete original data-set.

In addition to test the consistency of dynamic in-
formation by estimating the uncertainty for each step,
the method also produces an estimate of the optimal
parameters θ̂(i) for each segment. These estimates can
be used to test if the optimal model parameters change
over time for a specific data-set. If the parameters are
interpreted as constants of the physical system, time
variation of θ can be an indication of unsatisfactory cal-
ibration data. Arguably, unexpected time variation of
parameters may also indicate an oversimplified model
structure, such that the calibrated parameters are af-
fected by unmodelled time-varying disturbances, res-
ulting in variations in the parameter estimates over
time.

2.4 Summary

Section 2 of this paper has presented the theoretical
foundation for a number of methods that can be used
to analyse the parameter estimation problem for dy-
namic models, in particular the identifiability and un-
certainty of the estimated parameter. Which method is
best suited for a particular application largely depends
on the application, and what type of analysis is of in-
terest. The aim of these methods is to obtain accurate
dynamic system models, but also to validate the estim-
ated parameters in the presence of aleatoric and epi-
stemic uncertainty. In many applications the choices
for experimental design is limited. Hence, paramet-
ers must be estimated under less than ideal conditions.
It is especially important in these cases to carefully
analyse the resulting parameter estimates in the con-
text of identifiability and uncertainty. In engineering
applications, parameters are often assumed, quite reas-
onably from a detailed physical understanding of the
underlying system, to be constants of the physical sys-
tem. However, due to the effects of measurement noise,
unmodelled disturbances, insufficient dynamic inform-
ation, modelling errors and simplifications, etc., it may
not be possible to obtain an unambiguous estimate of
the parameters. Hence, the methods presented in this
section can be valuable engineering tools for provid-
ing a thorough analysis of the parameter estimation
problem. In the sequel, examples of the application of
these methods to two experimental cases are presen-
ted. These examples illustrate the kind of insight that

can be gained by applying the methods to practical
parameter estimation problems.

3 Experimental cases

In this section, the methods presented in Section 2
are demonstrated on two test cases. The first case is
a simple first order model with a single input. The
parameters of the model are calibrated using data ob-
tained by simulating the same model, with added, ran-
domly generated, measurement noise. Hence, there is
no epistemic uncertainty in the parameter estimation,
only the aleatoric uncertainty of the output measure-
ment noise. The second case is an example of a grey-
box model, specifically a thermal network model of a
building, which aims to predict temperature variations.
These models are particularly interesting from a para-
meter estimation and analysis perspective, since they
are constructed cognitively based on naive physics, and
hence have significant epistemic uncertainty in them.

3.1 First order dynamic model

A first order model with input is defined as:

ẋ = −ax+ bu (27)

y = x+ vk (28)

where vk ∼ N (0,V) is the Gaussian distributed meas-
urement noise, u is the model input and the parameters
are θ = [a, b]. By Laplace transformation, the transfer
function from input to output is obtained as:

H (s) =
y (s)

u (s)
=

b

s+ a
=

K

τs+ 1
, (29)

which is a low-pass filter with exogenous input, with
gain K = b

a and time constant τ = 1
a . The output

y is hence simply the low-pass filtered input u plus the
measurement noise.

The model is excited with six different input signals,
each a total of 10 second of data at ∆t = 0.01, presen-
ted in Fig. 8. The six data-sets are chosen to demon-
strate the effect of different types of excitation on the
various methods to be tested. As shown in Fig. 8, the
first three data-sets are a step (STP), a square wave
(SQR), and a sine wave (SIN), where short-hand names
are given to simplify tabulating results in the sequel.
The square and sine wave have a signal period T = 2s.
The remaining three excitation signals are pseudo ran-
dom binary sequences (PRBS), i.e. signals generated
by drawing a sequence of random binary numbers and
transforming those into a non-uniform square wave sig-
nal. The length in time of each bit, i.e., bit-length, is
0.1s (PR1), 0.2s (PR2) and 0.5s (PR5) for the last
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Figure 8: Six different input signals (red) are used to
excite the first test case model. For each sig-
nal, the model is simulated deterministically
to obtain the output (blue). The three left
panels show the Step, Square wave and Sine
wave signals. The Square wave and Sine wave
both have a period of T = 2s. The right
panels show the three pseudo random bin-
ary sequence (PRBS) signals, which differ in
what length in time each bit in the sequence
represents (0.1s, 0.2s or 0.5s).

three data-sets. Hence, a value of true/false in the
PRBS indicates input u = 1/u = 0 for 0.1s, 0.2s or
0.5s, respectively.

The model is simulated for each of the six input sig-
nals, with parameters a = 1, b = 1 and added meas-
urement noise vk ∼ N

(
0, 0.12

)
, to obtain an output.

Hence, for this model, the true parameter vector θ∗ is
known. The resulting input-output data-sets are used
as y[N ] and u[N ] in the following tests. Since there is no
diffusion term in the state transition in Eq. (27), and
the calibration data is simulated with the same model
for which parameter analysis is performed, the model
is exact, hence W = 0. As expected, due to the sim-
plicity of the model, and the simulated data-set, the
residuals are close to Gaussian, as shown by the CP
diagrams in Fig. 9

3.1.1 Uninformed Random Picking and Profile
likelihood

When starting to analyse the parameter space, a good
first step is to visualise the shape of the objective func-
tion g (θ) in the parameter space Θ. Usually, the exist-

ence of a well defined, unambiguous, optimum θ̂ is not
known initially. Hence, a good starting method is the
Uninformed Random Picking (URP) method described

Figure 9: Cumulative Periodograms for all six data-
sets show that the residuals are close to Gaus-
sian distributed, well within the 95% confid-
ence bounds.

in Section 2.3.1. The result of using URP as an explor-
atory tool on the first order model is shown in Fig.
10. Additionally, the Profile Likelihood (PL1) method
is applied to show that both methods obtain the same
optimal front across Θ. Observe from Fig. 10 that the
grey dots correspond to each of K = 50.000 randomly
drawn θj , each simulated to compute g (θj), while the
red line is the PL1 profile. The PL1 profile corresponds
closely to the optimal front obtained by the URP.

Plotting the results together with the likelihood pro-
file, shows that the same information, the shape of the
objective, is obtained by both methods. Hence, it is in-
teresting to compare the methods on computation time
and implementation. For this simple model, the execu-
tion time of URP (K = 50.000) and PL1(500 steps in
θi) are 12s vs 17s, hence the computation time is short
enough to be insignificant. However, for larger models,
there may be significant differences. The PL1 method
requires optimisation of nθ−1 parameters for each step
in θi, hence, a large number of parameters significantly
increases the load on the optimisation algorithm. In
contrast, the URP method requires no optimisation,
but is affected by the dimensionality of Θ due to the
dispersion of the randomly drawn points. With large
number of parameters, K must be chosen large enough
that the randomly drawn parameters reasonably covers
the whole space Θ, which results in longer computation
time.

An interesting observation when comparing PL1 and
URP, since they both give essentially the same result,
is that URP is significantly easier to implement, since it
does not require an optimisation algorithm. For some
applications, this may be a distinct advantage.

Next, observe that both the URP and the PL1
method rely on projections to plot the results as
functions of a single parameter. These projections
are known to overestimate the width of the pro-
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Figure 10: Exploratory analysis of the ` (θ) objective using the PL1 (red) and the URP (grey) methods. Results
for parameter a (left) and b (right) show that both parameters are unambiguously identifiable for all
six data-sets.

Figure 11: PL1 and URP results, zoomed in around the optimum, for parameter a (left) and b (right).

files/intervals, as discussed in Section 2.2.7.

Finally, observe that the plots in Fig. 10 are ob-
tained as a form of exploratory analysis, hence with
wide bounds on Θ and subsequently with a large range
on the objective score axis; relative log likelihood

` (θ)−`
(
θ̂
)
< 1000 is used here. These plots are inter-

esting as a first step, but for the purpose of estimating
uncertainty of the optimal estimate θ̂, only the imme-
diate neighbourhood of θ̂ is of interest. Hence, Fig. 11
shows the same results but with different scaling on
the axis. Here, the width of Θ is significantly reduced,
and also the range in objective score is reduced to a
more reasonable 10. This likelihood range allows for
adding confidence thresholds at α equal to 90% and
95%. From Fig. 11 it is immediately apparent that

the Step and PRBS (0.5s) data-sets produce narrower

shapes around θ̂ than the other four data-sets, which
indicates better estimation accuracy, i.e., tighter con-
fidence bounds from the applied thresholds.

3.1.2 Randomised initial conditions

Another useful method, especially as an initial explor-
atory analysis tool, is the use of randomised initial con-
ditions with subsequent optimisation, discussed in Sec.
2.3.2. The result of applying this method is shown
in Fig. 12, where the results are plotted as a vs
b, i.e., both parameters against each other. Hence,
Fig. 12 shows the whole parameter space Θ for this
model. As shown, the optimum (1, 1) is obtained for
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Figure 12: Randomised initial conditions shows that
the optimum is globally unambiguous in
Θ and obtained independent of the initial
guess θ0. Results are shown only for data-
set Step (other five sets show the same be-
haviour).

all K = 500 randomly drawn initial guesses, which
shows that the optimum is unambiguously obtainable
in Θ, and not influenced by the initial guess θ0

j . For
comparison, see Section 2.3.2 where another example
of this method is shown in Fig. 4 in which there are a
large number of local minima. Together with the res-
ults in Section 3.1.1, Fig. 12 shows that the objective
function has a well defined single global optimum. The
major difference between results from the six different
data-sets is the shape of the objective around the op-
timum, and subsequently the accuracy of the obtained
parameter estimate, which will be further discussed in
the sequel.

3.1.3 Profile Likelihood 2D and Hessian

A natural next step is to perform a detailed analysis of
the neighbourhood around θ̂, i.e., the parameter ranges
obtained from the PL1 analysis shown in Fig. 11. To
analyse the parameter space, the two-dimensional Pro-
file Likelihood (PL2) method from Section 2.3.5 is used.
The results, shown in Fig. 13, use the same range for
all six data-sets in order to directly compare the ob-
tained profiles. For comparison, ellipses as in Eq. (14),
computed by using the Hessian method from Section
2.3.3, are added to the PL2 plots. Observe first from
Fig. 13 that the parameter distributions in Θ are very
well approximated by the Hessian based ellipses. This
is expected, due to the simplicity of the model and
the simulated data with added Gaussian noise. Both
methods use the same objective function ` (θ), with the
only difference being that the Hessian method assumes
a quadratic distribution to compute elliptic regions.

Figure 13: PL2 heat-maps with 90%, 95% and 99%
confidence iso-lines, for all six data-sets,
with added 95% confidence ellipses (thick
line), computed from the Hessian of ` (θ),
for comparison.

Table 1: Standard deviations of parameters computed
with the Hessian method.

Data a b σa σb
√
σaσb

STP 0.997 1.003 0.016 0.016 0.015
SQR 1.003 1.010 0.022 0.021 0.021
SIN 0.974 0.973 0.026 0.025 0.025
PR1 0.980 0.986 0.024 0.024 0.023
PR2 0.991 0.996 0.027 0.025 0.025
PR5 0.993 1.000 0.019 0.017 0.018

Next, observe that the elliptic confidence regions in
Fig. 13 are rotated at an approximately 45 degree
angle, or equivalently from Table 1 that the covariance
σaσb between the two parameters is significant, com-
pared to the variance of each variable. This indicates
that the parameters are dependent, which is expected
from Eq. (29), since K = b

a . The parametrisation
of the model in Eq. (27) was chosen specifically to
demonstrate this point. Subsequently, as discussed in
Section 2.2.7, the PL1 projections from Fig. 11 are
too wide. Indeed, by projecting the PL2 results in
Fig. 13 onto each of the two parameter axes, the res-
ulting profiles would be exactly the results from the
PL1 method. Hence, it can be observed that the PL1
method significantly over-estimates the width of the
parameter profiles due to parameter inter-dependence.
Note that it is recommended to attempt resolving para-
meter inter-dependence by choosing a different para-
metrisation in Eq. (27), e.g. choosing the parameters
K and τ such that the state transition equation be-
comes ẋ = 1

τ (−x+Ku).
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Figure 14: Consistency of dynamic information for identification parameters a (left) and b (right) is examined
using a window length of l = 200 samples, equivalently 2 seconds. The window offset is varied on
the interval t0 ∈ [0, 8[ seconds in steps of w = 1, or equivalently ∆t = 0.01. At each step, the Profile
Likelihood method is used to evaluate identifiability of the parameters using the information in the
window. The results are plotted as a heat-map with time offset on the horizontal axis, and the thick
line represents the optimal parameter estimate for each window. The parameters are examined on
the interval [0.3, 1.7].

Finally, observe from inspection of Fig. 13 and the
corresponding quantified standard deviations and cov-
ariance of the parameters in Table 1, that the Step and
PRBS (0.5s) data-sets provide slightly more accurate
estimates of the parameters, compared with the other
four. The variations in parameter estimation uncer-
tainty, and correspondingly the shape of the neighbour-
hood around θ̂ in Θ, are caused by the use of different
excitation signals. Hence, the differences between the
results illustrate the well known fact that the choice of
excitation signal during experiments directly influences
the parameter estimation uncertainty.

3.1.4 Consistency of dynamic information

Next, it is of interest to assess the consistency of dy-
namic information in the data-sets, using the Moving
Window method described in Section 2.3.7. The res-
ults of applying the Profile Likelihood (PL), described
in Section 2.3.4, to data segments of length l taken
equidistantly across the original data with step length
w, is shown in Fig. 14. The PL method provides better
estimates of the uncertainty and identifiability for the
data in each step of the moving window, compared with

the Hessian, since it can represent asymmetric distribu-
tions. The results, which for this method is a function
of parameter θi and the time offset w · (i− 1), are plot-
ted as heat-maps with confidence iso-lines at 90%, 95%
and 99%. Figure 14 shows that there is a significant
difference between the Step data-set and the other five
sets in that the Step data-set has large segments where
the parameter uncertainty is high, i.e., large equipo-
tential bands in the parameter direction. This indic-
ates that there is insufficient dynamic information in
these segments of the data to obtain good parameter
estimates. Observe also that for the Square and Sine
wave data-sets, the results are the least affected by the
window offset, hence, these data-sets contain the most
consistent dynamic information. Similarly, the optimal
estimate, marked by a thick black line in Fig. 14, is
showing significant fluctuations for the Step data-set,
while for the Square and Sine Wave data-sets, the es-
timates are mostly consistent w.r.t. the time window
offset.

These considerations will be especially important in
the sequel, when block based bootstrapping methods
are used, but the results are also interesting in them-
selves, as a way to test the dynamic information con-
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Table 2: Bootstrap results (M = 200 iterations), Case
A: Simple (K = 10), Case B: Simple (K = 5),
Case C: Stationary (p = 0.005).

Data # a b σa σb
√
σaσb

S
T

P A 0.958 0.985 0.080 0.073 0.074
B 1.009 1.018 0.063 0.058 0.060
C 1.013 1.015 0.065 0.070 0.061

S
Q

R A 1.049 1.033 0.026 0.015 0.019
B 1.005 1.025 0.014 0.007 0.008
C 1.001 1.014 0.018 0.016 0.015

S
IN

A 0.975 0.965 0.017 0.025 0.015
B 0.970 0.970 0.018 0.021 0.016
C 0.977 0.977 0.028 0.025 0.026

P
R

1 A 0.976 1.006 0.068 0.058 0.059
B 0.979 0.983 0.024 0.028 0.025
C 0.949 0.951 0.033 0.034 0.032

P
R

2 A 1.063 1.040 0.051 0.039 0.043
B 1.026 1.032 0.031 0.018 0.023
C 0.999 1.007 0.029 0.026 0.027

P
R

5 A 0.991 0.997 0.046 0.040 0.038
B 0.994 1.011 0.025 0.036 0.030
C 1.014 1.027 0.020 0.023 0.020

tent of different excitation signals, especially when us-
ing calibration data obtained from physical systems
with limited choices in the experimental design.

3.1.5 Bootstrapping

The use of bootstrapping methods for dynamic data
to estimate the uncertainty of estimated parameters,
is discussed in Section 2.3.6. Here, the simple block
bootstrap, with block lengths l = 100 and l = 200,
respectively 1 and 2 seconds of data, is tested and
compared with the Stationary Bootstrap method us-
ing p = 0.005. The results, after M = 200 iterations,
are presented in Table 2. First, observe that, as ex-
pected based on the results in Section 3.1.4, the Step
data-set shows considerably higher covariance than the
other data-sets. Since large segments of the Step data-
set does not contain sufficient dynamic information for
parameter estimation, some of the randomised pseudo-
data-sets created by bootstrapping does not contain
enough information to estimate parameters, hence the
higher covariance. This is further illustrated by Fig.
15, which shows how the Step data-set produces sig-
nificantly larger spread in parameter estimates, com-
pared with the Square Wave data-set. Note that a
much higher number of iterations, M = 10.000, was
used for Fig. 15 in order to obtain a good histogram
illustration. From Section 3.1.4, the Square and Sine
Wave data-sets are known to have significantly better
consistency of dynamic information across the data-set

Figure 15: Histogram (top) and scatter plot (bottom)
showing how data with poor dynamic in-
formation content (left panels, Step data-
set) induces outliers in the results. Plots are
obtained using Stationary bootstrap with
tuning parameter probability p = 0.005 and
M = 10000 iterations.

compared with the Step data-set. Hence, more con-
sistent parameter estimates with lower variance is ob-
tained from the block-based bootstrapping methods.

Next, observe that the Stationary Bootstrap method
produces approximately the same results as the block
based bootstrapping with l = 200, in this case. This
may be explained by the Stationary Bootstrap using
p = 0.005 which gives an expected block length also of
200.

Finally, observe that for the datasets for which the
dynamic information is of sufficient consistency, the es-
timates of the parameter uncertainty Σθ for cases B
and C in Table 2 are similar to those obtained from
the Hessian method in Table 1.

3.1.6 Frequency information in input and output

A commonly used method of examining dynamic in-
formation content in data is to compute a frequency
spectrum using the Fast Fourier Transform (FFT) al-
gorithm. Due to its widespread use and popularity,
computationally efficient implementations exist, which
makes this an easily accessible tool for analysing data.
Applying FFT to the six data-sets, both the input sig-
nal and the measured output with noise, gives the res-
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ults shown in Fig. 16. Comparing the FFT results
to those obtained by the parameter analysis methods
presented previously provides some interesting insight
into the differences in results obtained from each of the
six excitation signals.

First, comparing the Sine and Square wave data-
sets, observe that the Sine wave has only one frequency
component at f = 0.5Hz, excluding the mean signal
level component at 0Hz, while the Square Wave con-
tains also higher order harmonics of the base frequency.
However, since the model is essentially a low-pass filter
with a critical frequency of 1

2π , these higher order har-
monics are damped, thus having only limited effect on
the model output. Note however that despite having
almost identical frequency information in the output y,
the spectra for the input u differ significantly. The fact
that these higher order harmonics in the input spectra
are damped, thus not significantly infuencing the out-
put y, is also informative w.r.t. the input-output rela-
tionship of the model, thus producing slightly smaller
confidence regions for the Square Wave data-set.

A similar observation can be made from comparing
the three PRBS data-sets. For the sets with bit-length
0.1s and 0.2s more of the input signal power is located
in the damped frequency region of the model. Hence,
the PRBS signal with bit-length 0.5s produces better
parameter identification results, since more of the fre-
quency information is passed through the model.

Finally, comparing the Step and Square Wave data-
sets shows why the Step data-set produces the nar-
rowest confidence regions from parameter estimation.
Observe that the Step data-set contains the most sig-
nal strength in the frequency pass-band of the model.
Since more of the information in the input u affects the
output y, the parameter estimation methods produce
estimates with lower uncertainty.

3.1.7 Comparing excitation signals

An interesting observation can be made from compar-
ing the results of the various methods for all six data-
sets. While the Step data-set gives the best estimation
accuracy for the Likelihood based methods, such as the
Hessian curvature method and the Profile Likelihood
method, it also produces the worst estimation accuracy
when bootstrapping is used. The reason for this can be
observed from the consistency plot in Fig. 14. While
the Step data-set contains segments of data that are
largely uninformative for the purpose of estimating dy-
namic model parameters, the segments that do contain
sufficient information produce the highest accuracy es-
timates. The PL confidence bands produced when the
step change in the input is included in the moving win-
dow are the tightest among all the results produced,
hence, give the lowest estimation uncertainty. How-

Figure 16: The Fast Fourier Transform (FFT) can be
used to obtain a frequency domain repres-
entation of the dynamic information content
in both input and simulated output. Input
u (red) and output, including measurement
noise, y (blue) is shown.

ever, since bootstrapping randomly selects segments of
data, there will be some bootstrapped pseudo data-sets
that do not contain data from the informative segment
of the Step data-set and therefore produce outlier para-
meter estimates such as the ones shown in Fig. 15.

This example shows that assessing dynamic inform-
ation content for model calibration is not straightfor-
ward, even in this simple case. Hence, it is useful to
apply a method for evaluating the consistency of dy-
namic information, such as the one presented in Section
2.3.7.

3.1.8 Computation time

An important consideration for any numerical estim-
ation method is the computation time it takes to ob-
tain results. Typically, computation time depends on
hyper parameters of the method, such as the resolu-
tion of likelihood profiles or the number of iterations
for bootstrapping and randomisation based methods.
Further, computation time also depends on the dimen-
sionality nθ of the parameter space Θ. Some selec-
ted examples of computation times for the previously
presented results are given in Table 3. Since all the
parameter estimation methods are based on a large
number of simulations of a known model structure with
varying parameters θ and a set of measurement data
y[N ] and u[N ], the computation time is also influenced
by the complexity of the model, the choice of Kalman
Filter implementation for computation of residuals and
the size N of the calibration data-set. Further, since
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Table 3: Computation time for the LP model from the
Step data-set. The other data-sets produce
comparable execution times.

Method Time
PL1 (resolution 500) ∼ 13s
PL1 (resolution 5000) ∼ 90s
URP (K = 50.000) ∼ 19s
URP (K = 500.000) ∼ 160s
Rand. Initial Conditions (K = 50) ∼ 7s
Rand. Initial Conditions (K = 500) ∼ 57s
Moving Wnd. (res. 200, w = 1, l = 200) ∼ 575s
Moving Wnd. (res. 200, w = 1, l = 100) ∼ 317s
Moving Wnd. (res. 100, w = 1, l = 200) ∼ 311s
Moving Wnd. (res. 200, w = 10, l = 200) ∼ 57s
PL2 (400× 400 resolution) ∼ 2800s
Hessian ∼ 1s
Bootstrap A (M = 200) ∼ 14s
Bootstrap B(M = 200) ∼ 23s
Bootstrap C(M = 200) ∼ 24s
Bootstrap C(M = 10.000) ∼ 990s

most of the presented methods use numerical optimisa-
tion, computation times can be influenced by optimisa-
tion related effects, such as variations in computation
time due to obtaining estimates at different local min-
ima. Hence, it is interesting to compare and discuss
the computation time for a known model and data-set.

First, observe that for the PL1 and randomisation
based methods, i.e., URP and Random Initial Con-
ditions, the computation time is approximately linear
in the resolution/randomised iterations. However, the
number of iterations of the randomisation methods re-
quired to adequately explore the parameter space Θ de-
pends on the dimensionality. The PL1 method how-
ever projects the likelihood function of the parameter
space onto each parameter axis. Hence, the effect of
high dimension parameter spaces will be more signific-
ant for the randomisation based methods than the PL1
method.

Next, comparing the PL2 exhaustive search of
Θ with the ellipsoid approximation obtained from com-
puting the Hessian, the difference in computation time
is around three orders of magnitude. Further, the PL2
method projects the likelihood function of the entire
parameter space Θ onto each possible plane. Hence,
the computational time increases exponentially with
the number of parameters nθ.

The computation time of the Moving Window ana-
lysis, which applies the PL1 method on a moving win-
dow sub-set of the data, is shown to be approximately
linear in the step length w. This is expected since
the step length directly determines for how many win-

dows of data the PL1 method is executed. Further, the
computation time is also linear in the window length
l. The number of window data sub-sets is nw = N−l

w
which is only somewhat affected by l. However, the
PL1 method is approximately linear in the length of
the data used, which results in the computation time
for the Moving Window analysis being also approxim-
ately linear in l. Finally, the computation time is linear
in the PL1 resolution, which was previously shown for
the PL1 method applied to the full data-set. Naturally,
the same applies when the method is used on a small
sub-set of the data.

Finally, the computation time is approximately the
same for the bootstrap methods in cases B and C. This
is expected, since Case B uses blocks of fixed length
l = 200 while the Stationary Bootstrap method in Case
C uses p = 0.005, which gives the average block length
E (l) = 1

p = 200. Comparing this to Bootstrap Case
A shows that both bootstrap methods are approxim-
ately linear in the expected block length. Additionally,
since bootstrapping must be repeated M times in order
to simulate running M experiments, the computation
time is also approximately linear in M .

3.2 Thermal network model of a building

The second test case consists of a thermal network
model of a small experimental building located at the
Porsgrunn Campus of the University of South-Eastern
Norway (USN). Thermal network models are created
cognitively based on naive physical descriptions of the
thermodynamics of the buildings, and can be expressed
as Resistor-Capacitor (RC) circuit analog models Ber-
thou et al. [2014], Deconinck and Roels [2017], Fux
et al. [2014], Madsen and Holst [1995]. Specifically,
the R3C2 model, partially based on the R4C2 model
presented in Berthou et al. [2014], is created by ignor-
ing heat convection and radiation. Due to the strong
simplification used in these models, they contain signi-
ficant epistemic uncertainty, in addition to the aleat-
oric measurement uncertainty induced by acquiring
data from a physical building. Due to the simplified
nature of the model, the assumption S ∈ M (Θ) is
clearly unjustified here. However, it may still be pos-

sible to obtain θ̂ such that M
(
θ̂
)

is a good approx-

imation of S. Hence, it is interesting to analyse the
parameter space Θ of this model to evaluate the iden-
tifiability and estimation uncertainty of θ̂.

The model circuit equivalent is shown in Fig. 17.
The model has two outputs: the room temperature
Tb and the wall surface temperature Tw, and two in-
puts: the consumed power by an electric heating ele-
ment Q̇ and the outside temperature T∞. Five com-
ponents form the model structure: the thermal res-
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Figure 17: Simplified thermal network model with
three resistors and two capacitors.

Figure 18: Calibration data for the R3C2 model.
Temperatures T∞ (red), Tw (blue) and
Tb (green), and also the power consumption
Q, was recorded in February 2018.

istance between room air and wall Rb, the building
envelope Rw, and the thermal resistance of windows
and doors Rg. The two capacitances Cb and Cw rep-
resent the thermal capacitance of the building interior
and envelope, respectively. Additionally, the process
and measurement noise covariances W and V are also
estimated as model parameters, since they are needed
in the Kalman filter. Both covariance matrices are as-
sumed diagonal, adding a total of four noise related
parameters to the vector θ.

A calibration data-set for this model is shown in
Fig. 18. The data was collected from the experimental
building during February 2018, using a pre-installed
data acquisition system and set of sensors Brastein
et al. [2018].

3.2.1 Profile Likelihood of R3C2 model

Initially, both PL1 and PL2 methods were used to per-
form an exploratory analysis of the parameter space of
the R3C2 model. The results of these analyses, presen-
ted in Figs. 19 and 20, show that there is a problem

with the parameter space of this model, particularly
that the parameter Rb and Rw are inter-dependent.
Observe from Fig. 20 that the Rb vs. Rw plot shows
a linear relationship. Hence, the PL1 results for these
two parameters in Fig. 19, which can be considered a
projection of the PL2 result onto the individual para-
meter axis, show a large equipotential flat region which
extends up to at least 5 K

W . Observe also that for

Rb the PL1 profile makes a sharp bend at around 4.5 K
W ,

such that the profile is bounded for Rb. However, as
discussed in Section 2.2.7, inter-dependent parameters
can cause artefacts in the PL plots, due to the bounds
on one parameter having a limiting effect on the other
dependent parameters. The bend in the profile of Rb is
an example of such an artefact.

Subsequently, the R3C2 model is found to be over-
parameterised. After some experimentation, based on
previous experience with the model Brastein et al.
[2019b], the resistor Rg is removed from the circuit
model in Fig. 17, in an attempt to make the remaining
parameters identifiable. The resulting model, named
R2C2, is used in the sequel and further analysed.

3.2.2 Profile Likelihood of R2C2

The first analysis performed on the reduced R2C2
model is a combination of the PL1 method and the
URP method. The results, presented in Fig. 21, show
that all four parameters are now identifiable, since the
likelihood based confidence intervals are bounded with
a clearly defined minima. Secondly, comparing URP to
PL1 shows that although the URP method successfully
captures the general shape of the objective function
around θ̂ using K = 500.000 randomly drawn paramet-
ers, it is not enough to properly capture the optimal
front. Hence, there is some small difference between
the PL1 and URP results. By its use of numerical
optimisation, the PL1 method successfully finds the
optimal profile in likelihood space for each parameter.
The main result from the application of PL1 is to ob-
tain reasonable bounds θmin and θmax on Θ for fur-
ther analysis, something for which the PL1 method is
ideally suited.

Next, the PL2 method is used to further analyse
the parameter space Θ, in particular to test for inter-
dependency of parameters and further study the iden-
tifiability. For comparison, the Hessian method from
Section 2.3.3 is used to compute the covariance of the
estimated parameters Σθ, and subsequently compute
an elliptic confidence region for the true parameters
θ∗. The Hessian ellipses are superimposed on the PL2
heat-maps in Fig. 22. Two interesting observations
can be made from these results. First, the results show
that after removing Rg, all parameters are identifi-
able, i.e., the confidence regions are bounded, given the
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Figure 19: PL1 results for the R3C2 model.

Figure 20: Selected PL2 results for the R3C2 model shows that the parameters Rw and Rb are inter-dependent.

Figure 21: PL1 and URP results for the reduced R2C2
model show that even with K = 500.000
randomly drawn parameter vectors, the
coverage is not good enough, since the op-
timal front from the PL method is not the
same as that of the URP method. However,
the shape of the objective is still approx-
imated by the URP method, indicating its
usefulness also for higher dimensional para-
meter spaces.

Figure 22: PL2 and Hessian ellipses (thick black) for
the R2C2 model. Iso-lines trace the 90%,
95% and 99% confidence bounds computed
from the PL2 results, based on the χ2

ndf
-

distribution with ndf = 2. The Hessian
method is used to compute Σθ and super-
impose an elliptic approximate confidence
region at α = 95%.
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Figure 23: Consistency of dynamic information for the R2C2 model. The top four plots show the results of
applying PL1 to a moving window of length 96 (2 days), while the lower four plots use a window
length of 192 (4 days).

data in Fig. 18. The parameters Rb and Rw are still
inter-dependent, as illustrated by the rotation of the
approximately elliptic PL2 profile, but there is still a
clearly defined optimum. Second, the Hessian method
produces a reasonable approximation of the 95% iso-
line confidence bounds in all the projected parameter
planes. Where the PL2 method and Hessian method
differ, it can be observed from Fig. 22 that the PL2
method, which by brute force computation captures
the true projection of ` (θ) onto Θi,j , finds profiles that
are not quite elliptic. The discrepancies observed visu-
ally therefore seem reasonable w.r.t. the shape of the
PL2 profile. Observe for example that the Cb vs Cw

profile is elongated in the increasing direction of both
parameters, hence the discrepancy between PL2 and
Hessian ellipse is mostly located towards the decreas-
ing parameter directions.

Table 4: Optimal parameters with normalised stand-
ard deviations computed with the Hessian
method for the R2C2 model.

Rb Rw Cb Cw

θ̂i 0.0434 0.0512 1.446× 106 0.481× 106

σi
θ̂i

0.0233 0.0210 0.0467 0.0702

The optimal parameters, which are the same for both
PL2 and Hessian methods, are shown in Table 4 to-
gether with the standard deviations computed from in-
verting the Hessian, normalised over the optimal para-
meters.

3.2.3 Consistency of dynamic information

Since it is of interest to test bootstrapping methods
also on the R2C2 model, a verification of the dynamic
information content is first needed. A typical challenge
for building thermal behaviour models is the restric-
tions on experimental design, since weather, includ-
ing outside temperature, is a model input. Addition-
ally, there are limitations to acceptable ranges of in-
door temperature and limited available input power for
heating, which further complicates the experimental
design for this type of models. Therefore, model cal-
ibration must often be performed on low informative
data. Hence, methods that can evaluate the quality of
the dynamic information in the data is of interest. By
using the PL1 method for a moving window of data,
as discussed in Section 2.3.7, it is possible to obtain a
visual diagnosis of estimation accuracy and parameter
identifiability for segments of the data.

As shown in Fig. 23, the estimation accuracy of
parameters in a window of length 96 samples (2 days)
is somewhat poor for significant segments of data, in
particular for the first part of the data-set. The para-
meter Cw is particularly difficult to identify, even for
the 192 sample (4 days) window. From inspecting the
calibration data in Fig. 18 this result is expected, due
to the limited variation observed in temperature Tw.
For the parameters Rb, Rw and Cb, the consistency
test shows that the uncertainty is mostly consistent in
time, with only minor variations, for the 4 day window
case. The results also show that the optimal value for
these three parameters do not vary significantly over
time, for the window length of 4 days. However, the
parameter Cw is estimated with significant time vari-
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Figure 24: Bootstrap results for the R2C2 model, with M = 10.000 iterations represented as scatter plots with
95% confidence ellipses, simultaneous for the projected parameters, for the mean estimate (left) and
corresponding 2D histograms (right). Both the scatter plots and the histograms are presented as
two-dimensional projections onto each possible parameter combination plane Θi,j .

ations also for the longest window length, as shown in
the lower right panel of Fig. 23. This indicates poor
identifiability of Cw, and may result in unsatisfactory
results if block-based bootstrapping methods are used
to estimate uncertainty.

3.2.4 Bootstrapping

The parameters of the R2C2 model is next analysed
using Stationary bootstrapping with p = 0.005, which
gives expected, i.e., average, block length E (l) = 200,
since a window length of 192 samples (4 days) appears
to be an acceptable choice based on the results in Fig.
23. The resulting mean parameters and normalised
standard deviations, after running bootstrapping for
M = 10.000 iterations, is shown in Table 5.

Table 5: Optimal parameters with normalised stand-
ard deviations computed with the Bootstrap-
ping method for the R2C2 model.

Rb Rw Cb Cw

θ̄i 0.0432 0.0509 1.443× 106 0.528× 106

σi
θ̄

0.043 0.067 0.093 0.131

Comparing the results in Table 5 with Table 4,
the estimated mean of the M bootstrapped iterations
agrees well with the result obtained by optimisation
and PL2 brute force exhaustive search. The normalised
covariances obtained by bootstrapping, i.e., the covari-

ance of M iterations of repeated generation of pseudo
data-sets with subsequent parameter estimation, are
approximately two times larger than those obtained by
inverting the Hessian of the likelihood function. Con-
sidering the significantly different theoretical founda-
tion of these two methods of uncertainty estimation,
a difference of a factor of two or three may be con-
sidered a reasonable agreement between the two meth-
ods, in particular since the consistency test in Fig. 23
showed that the calibration data contains some low in-
formative regions which can cause outliers in the boot-
strapped parameter estimates. A histogram over all
M iterations is shown in Fig. 24. Since the para-
meter space is of a dimension higher than two, the
histograms are plotted as projections onto parameter
planes Θi,j , similar to the projected profiles obtained
from the PL2 method. Interestingly, the shape of the
histograms is similar to the PL2 profiles obtained in
Fig. 22. However, due to the effect of outliers caused
by some of the randomised pseudo data-sets being sig-
nificantly less informative than the full data-set, the
spread of the histogram. i.e., the covariance of the
mean estimate, is larger than the covariance obtained
from the Hessian in Table 4. Observe also the cluster-
ing of parameter estimates at the edges of the histo-
gram plots, which indicates that for certain iterations
of the bootstrap methods, the obtained parameters are
located at the constraints of the parameter space Θ.
This is a further indication that some pseudo data-sets
are non-informative w.r.t. parameter estimation, since
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the resulting parameters at the bounds of Θ deviate
significantly from those obtained when the full data-
set is used.

3.2.5 Computation time

Computation times for the various analysis methods
applied to the R2C2 model are shown in Table 6. First,
observe that the computation times are considerably
longer than those found for the simple first order model
in Table 3, e.g., the URP method with K = 500.000
randomly drawn parameters was completed in ∼ 160s
for the first order model but took ∼ 0.15h = 540s for
the R2C2 model. Despite using a dataset with only ap-
proximately half the number of samples, 480 vs 1000,
the computation time for the R2C2 model is approx-
imately 3.4 times longer. This extended computation
time is caused by increased model complexity. First,
the model has two states rather than one. Addition-
ally, the R2C2 model uses a UKF rather than a stand-
ard KF, which further increases computational time.
When analysing the R2C2 model, the software evalu-
ates the model’s equations ∼ 540.000 times per second
for a total of ∼ 1100 simulations per second. Com-
parably, the simpler first order model’s equations are
evaluated ∼ 3.100.000 times per second, for a total
of ∼ 3100 simulations per second. Since the URP
method does not use optimisation, model complexity,
length of the data-set and the number of URP itera-
tions K are the main factors that influence computa-
tion time, hence the results can be directly compared.
Accounting for differences in data-set length, the in-
creased model complexity of the R2C2 model, includ-
ing its use of UKF with Runge-Kutta 4th order dis-
cretisation Runge [1895] of the state equation, increases
computation time by approximately 540

160
1000
480 = 7 times.

Next, observe that the stationary bootstrap, which
shows similar results to the PL2 method, is about 40
times faster. This increased computation speed is ob-
tained at the cost of inducing outlier estimates, caused
by Bootstrapped pseudo data-sets that are less inform-
ative w.r.t. parameter estimation than the full data-
set. Hence, due to these outliers, the uncertainty es-
timate is somewhat inflated compared to that obtained
when computing the Hessian of the Likelihood function
over the whole data-set.

Finally, observe from Table 6 that the Moving Win-
dow analysis computation time is only approximately
linear in the window length l. The analysis using a
longer window length of 192 is finished with a 1.62
times longer computation time, compared with the
window length of 96. While this method is theoret-
ically linear in window length l, the shorter window is
less informative w.r.t. parameter estimation, as Fig.
23 shows. Hence, the task of the numerical optimiser

Table 6: Computation time for the LP model from the
Step data-set. The other data-sets produce
comparable execution times.

Method Time
PL1 (resolution 500) ∼ 4.35h
URP (K = 500.000) ∼ 0.15h
Moving Wnd. (res. 200, w = 1, l = 96) ∼ 3.60h
Moving Wnd. (res. 200, w = 1, l = 192) ∼ 5.77h
PL2 (400× 400 resolution) ∼ 15.18h
Stationary Bootstrap (M = 10.000) ∼ 0.35h

is more challenging, which increases the computation
time slightly for the shorter window. This example
illustrates that calculating computation time for com-
plex analysis methods is not straight forward. The
Moving Window with PL1 method consists of both a
numerical optimisation method, a Kalman filter imple-
mentation, the model structure, and the Profile Likeli-
hood algorithm, all of which influence the computation
time.

3.3 Method recommendations

Each of the methods presented in this paper has its ad-
vantages and disadvantages. Since they each compute
and represent the uncertainty of estimated parameters
in different ways, they can be used for different applic-
ations.

First, with regards to representation of uncertainty
as profiles or regions, this is a question of usage. As
an uncertainty estimate for comparison, regions or in-
tervals may be preferable, since they can be quantit-
atively compared. Profiles are more descriptive, since
they can represent how the uncertainty is distributed
across an entire parameter domain. Hence, for applic-
ations where the parameters themselves are of interest,
i.e., assumed to be determined by the physical proper-
ties of the system, representing parameters as distribu-
tions is perhaps preferable since they capture the most
information about the underlying physical system.

Second, with respect to choosing what methods to
use, the first question to consider is whether it is reas-
onable to assume that the parameters are well approx-
imated by a Gaussian distribution, such that a quad-
ratic approximation can be used to obtain ellipsoid re-
gions for describing the uncertainty. In such cases, and
when confidence regions rather than profiles are de-
sirable representations, the Hessian method for com-
putation of estimation covariance is preferable, due
to its computational simplicity and speed. The Hes-
sian method is based on analysing the curvature of the
likelihood function ` (θ) around an optimal estimate θ̂,
which must first be obtained by calibration of all para-
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meters and hence is subject to local minima problems.
Hence, the Hessian method may only estimate the un-
certainty of a pre-determined, presumed optimal, θ̂.
Therefore, it should be ascertained, if possible, whether
a particular θ̂ is a global or local optimum.

The Profile Likelihood (PL1) method Maiwald and
Timmer [2008], Meeker and Escobar [1995], Murphy
and Van der Vaart [2000], Raue et al. [2009], Venzon
and Moolgavkar [1988] is an attractive choice if the
practical identifiability of parameters is questionable.
This method, unlike the Hessian based method, can
represent non-symmetric confidence regions which can
be used to diagnose identifiability Raue et al. [2009].
Further, the method allows representation as profiles,
which may also be an advantage in some cases. The
PL1 method can also be used for obtaining reasonable
limitations on parameters in an exploratory analysis.
Although it is known to give projections onto single
parameters, which can be too wide if there are inter-
dependent parameters, it is still a useful analysis tool.

The Uninformed Random Picking (URP) method
Hoos and Stützle [2004] is a simple alternative to
PL1, and provides approximately the same results if
the number of randomly drawn parameters K is large
enough. However, being a stochastic method, the dis-
tribution of randomly drawn parameters across para-
meter space can not be guaranteed. Hence, the optimal
front in parameter space may not be detected unless a
sufficiently large number of parameters is used. This is
challenging for high dimension parameter spaces. The
main advantage of URP is its simplicity, and that it
does not require an optimisation algorithm.

The two-dimensional Profile Likelihood (PL2)
method provides the most information about the para-
meter domain. In particular, it is the only method
presented in this paper which can diagnose para-
meter inter-dependency and identifiability, as well as
handle multimodal objective functions with local min-
ima. Bootstrapping methods may show large disper-
sion in estimated parameters if parameters are non-
identifiable, but the exhaustive exploration of the en-
tire parameter space Θ offered by the PL2 method
still provides more detailed and clear diagnostic con-
clusions. Since the method obtains highly descript-
ive profiles of combinations of parameters, this method
provides the most detailed information about the para-
meter space Θ. Hence, if methods like PL1 or URP
indicate problems with identifiability, it may be useful
to apply the PL2 method to obtain a better analysis of
the parameter space. Finally, the PL2 method is guar-
anteed to find the global optimum in Θ, within the ac-
curacy allowed by the discretisation for the brute force
search.

Repeatedly optimising the parameters with random

initial guesses can be used to test the parameter op-
timisation procedure for sensitivity to the initial con-
ditions. Additionally, this method is a useful tool for
identification of local minima in the objective func-
tion. If there are multiple locally optimal solutions,
this method will likely find them faster than the PL2
method, provided that the distribution of randomised
initial conditions is dense enough, i.e., it needs a large
enough number of repeated randomised initial condi-
tions with subsequent optimisation of parameters such
that at least one of the randomly drawn initial guesses
will be close enough to the local optima to find them.

Bootstrapping Politis [2003] is perhaps the most in-
tuitive way to obtain confidence regions, since it re-
sembles the basic idea of computing coverage probab-
ilities for multiple experiments Neyman [1937]. How-
ever, as the results have shown, if the dynamic inform-
ation content in the data varies in time, block based
bootstrapping can create pseudo data-sets that are un-
informative w.r.t. parameter estimation and hence
provide poor parameter identifiability. Subsequently,
there can be outlier parameter estimates among the M
iterations which affect the computation of mean para-
meters and the covariance. When there are variations
in dynamic information content in the calibration data,
special care should be taken when selecting the block
lengths for bootstrapping. Regardless, bootstrapping
is much faster than the PL2 method, and is there-
fore a useful alternative or augmentation to the PL2
method, in particular where computational resources
and/or time is a challenge. Arguably, bootstrapping
may also provide a more realistic estimation of the un-
certainty of the parameters, provided the consistency of
dynamic information in the calibration data is accept-
able, since the method approximates running repeated
experiments in a way that is similar to the idea of cov-
erage probability calculation for confidence intervals.
Due to its simplicity of implementation, bootstrapping
methods may be preferable as an initial estimate of the
uncertainty of estimated parameters.

Finally, a moving window combined with the PL1,
or the Hessian method, can be used to test for con-
sistency in dynamic information w.r.t. a particular
model. Since this method, especially based on the PL1
method, is somewhat time consuming, it is most use-
ful as a diagnostic tool to test for sources of diverging
results in other methods, such as block based boot-
strapping.

4 Conclusion

In this paper, a number of different methods for para-
meter estimation and analysis has been presented. Two
test cases, a simple first order model with simulated
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data, and a thermal network building grey-box model
with measurement data from a physical building, was
used to demonstrate the application of these methods.

The main results from these two test cases are,
firstly, demonstrating the usefulness of one- and two-
dimensional Profile Likelihood Raue et al. [2009].
These methods obtain descriptive profiles for each
parameter, which can both estimate the uncertainty
of the parameter estimate, diagnose the identifiabil-
ity of the parameters and test for presence of local
minima. The two-dimensional Profile Likelihood was
shown to be particularly useful for detecting over-
parametrisation for the second test case. Further, the
one dimensional profile likelihood method was used
with a moving window to check the consistency of dy-
namic information, and subsequently the identifiability
and estimation uncertainty of the parameters as a func-
tion of time, with respect to a specific model structure.
The latter was shown to be useful in combination with
block based bootstrapping, to test for segments of data
that are uninformative w.r.t. parameter estimation.

For the first test case, six different simulated data-
sets were used. Of these six sets, the simple input
step and the Pseudo Random Binary Sequence with
0.5s bit length gave the lowest overall estimation un-
certainty. However, since the step data-set contains
significant segments of data in which the system is in
steady state, and hence produce non-identifiable para-
meters, the use of block based bootstrapping method
results introduce outliers in the parameter estimates
which significantly inflate the covariance of the mean
parameter estimate. Hence, the interesting conclusion
for this test case is that the data-set which produces
the lowest estimation uncertainty for the Profile Like-
lihood and Hessian based method gives the highest un-
certainty for the block based bootstrap method. Hence,
what methods to use is also affected by the dynamic
information content in the calibration data, and con-
sequently the experimental design used to obtain that
data, in addition to the application requirements and
desired representation of resulting parameters.
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