
Modeling, Identification and Control, Vol. 40, No. 4, 2019, pp. 199–211, ISSN 1890–1328

Model-Free PI/PID Controller Tuning of Higher
Order Nonlinear Dynamic Systems

Christer Dalen 1 David Di Ruscio 2

1Skien, Norway. E-mail: christerdalen@hotmail.com

2University of South-Eastern Norway, P.O. Box 203, N-3901 Porsgrunn, Norway. E-mail: David.Di.Ruscio@usn.no

Abstract

This paper concerns model-free PI/PID controller tuning of possible (nonlinear) higher order systems. The
method can be considered as a three-step procedure. The first step is to persistently excite the system
in open loop and identify the dynamic model using a subspace identification method. The second step is
to approximate the model to an integrator plus time delay or double integrator plus time delay dynamic
model. The third step is to compute the PI/PID controller parameters. The proposed method/theory is
verified on some motivated nonlinear higher order dynamic models.

Keywords: model-free; process control; PI/PID control; subspace system identification; nonlinear

1. Introduction

This paper proposes a method which may be viewed
as an extension of the previous methods of the work in
Dalen and Di Ruscio (2018a,b,c).

We will focus here on Proportional Integral (PI) or
PI Derivative (PID) controller tuning of stable Single
Input Single Output (SISO) parts of possible (nonlin-
ear) higher order systems. Note that, an integrator
plus time delay or double integrator plus time delay
transfer function model, viz.

Hp(s) = K
e−τs

sm
, (1)

where, m = 1, or, m = 2, may serve as a sufficient
model approximation for PI or PID controller tuning,
i.o1. In Eq. (1), K, is known as the gain velocity when,
m = 1, and the gain acceleration when, m = 2, τ ≥ 0,
is the time delay, and, s, is the Laplace operator.

The PI/PID controller parameters in the proposed
method evolve only from a collection of open loop2

1i.o is a Latin abbreviation for the phrase in illo ordine, meaning
in that order.

2Note that, it would be possible to generate PI/PID controller

SISO data, hence some circles (including this paper
and previous work in Dalen et al. (2015); Dalen and
Di Ruscio (2016)) may describe this method as model-
free or data-driven (e.g. Dong et al. (2015); Wang et al.
(2018); Hou and Wang (2013); Fliess and Join (2009,
2013)).

Note that, computing PI/PID controllers directly
from open loop SISO data is not new, see e.g. the
step response or Process Reaction Curve (PRC) meth-
ods in Ziegler and Nichols (1942); Dalen and Di Ruscio
(2018a). However, using only a single step is only per-
sistently exciting of the order equal to one (Söderström
and Stoica (1989)), and to deal with noisy systems,
a system identification step should be used. There
exist limited papers on such methods in the litera-
ture. To the authors’ knowledge, the closest to the
proposed method is the pidTuner application (MAT-
LAB (2016)), which combines the system identification
Prediction Error Methods (PEMs) (Ljung (1999)) with
a frequency-domain based pidtune algorithm patented
by MathWorks. Note that, the pidTuner application

parameters using closed loop SISO data, however this is a
topic in future work.

doi:10.4173/mic.2019.4.2 c© 2019 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2019.4.2

Modeling, Identification and Control

is a graphical user interface tool for interactive system
analysis and control design and not a MATLAB m-file
function.

The contributions in this paper may be itemised as
follows:

• The PI/PID controller tuning algorithms pro-
posed in the works of Dalen and Di Ruscio
(2018a,b,c) are further developed, i.e. a sys-
tem identification step using the Deterministic
and Stochastic and Realization (DSR) algorithm
Di Ruscio (1996) is added. A complete algorithm
is presented, i.e. from SISO, generally noisy pro-
cess data to PI/PID controller parameters. We
assume persistently excitation input data.

• The proposed PI/PID controller tuning method
is compared to the MATLAB pidTuner method
applied to two motion problems and one offshore
problem, i.e. three stable SISO parts of higher
order motivated nonlinear models.

• The proposed PI/PID controller tuning method
is applied to a nonlinear Deep Submergence Res-
cue Vehicle (DSRV) model in the Marine Systems
Simulator toolbox (Fossen and Perez (2004)). The
proposed PI/PID controller tuning method is ap-
plied to a nonlinear rocket model found in the work
of Mracek and Cloutier (1997).

• The proposed PI/PID controller tuning method
is applied to the well-pipeline-riser example in-
tegrated in the K-Spice/LedaFlow simulator (K-
Spice; LedaFlow).

• A software solution implemented in MATLAB for
the proposed PI/PID controller tuning method is
given.

All numerical calculations and plotting facilities are
provided by using the MATLAB software (MATLAB
(2016)). The rest of this paper is organised as in the
following. In Section 2 the preliminary definitions are
given. In Section 3 the PI/PID controller tuning algo-
rithm is proposed. In Section 4 the motivated nonlin-
ear process models are used to compare the proposed
method with the MATLAB pidTuner. In Section 5 the
concluding and discussion remarks are given. The soft-
ware of the proposed PI/PID controller tuning method
is given in App. A.

2. Preliminary Definitions

2.1. System Definition

Assume that the underlying system can be described by
a linear, discrete-time invariant, strictly proper, com-

bined deterministic and stochastic State Space Model
(SSM), viz.,

xk+1 = Axk +B uk + vk

{
Initial state x0, (2)

yk = Dxk + wk, (3)

where the integer, k ≥ 0, is discrete-time, xk ∈ Rn, is
the state vector and, n ≥ 1, the system order, uk ∈ R,
is the manipulative control input, yk ∈ R, is the mea-
sured output, vk ∈ Rn, is process disturbance and,
wk ∈ R, is measurement noise. A, is the state transi-
tion matrix, B, is the external input matrix and, D, is
the output matrix.

Note that, the deterministic part of the SSM in Eqs.
(2) and (3) is expressed as,

xdk+1 = Axdk +B uk

{
Initial state xd0, (4)

ydk = Dxdk. (5)

Furthermore, assume the following:

• The pair (A,D) is observable and (A,B) is con-
trollable.

• The system is stable, i.e., the eigenvalues of A are
inside the unit circle except for the possibility of
one being on the unit circle (single integrator). To
not be mistaken with the approximation model in
Eq. (1), where a double integrator is used when
m = 2.

• Consider a continuous time nonlinear SSM de-
scribing the dynamical system, ẋ = f(x, u)+v, y =
g(x)+w, where, x ∈ Rn, is the state vector, u ∈ R,
is the control signal, y ∈ R, is the output vector,
x(t0 = 0), is the initial state, vector functions,
f(x, u) ∈ Rn, and, g(x) ∈ R, are assumed Lips-
chitz continuous.

• Note that, the data may have been generated from
real systems.

Consider the PID controller on ideal or parallel form,

Hc(s) = Kp(1 +
1

Tis
+ Tds), (6)

where, Kp is the proportional gain, Ti is the integral
time constant and Td is the derivative time constant.

3. From Data to PI/PID Controller
Parameters

Given known output and excited input time series,

tk

yk

uk

∀ k = 0, . . . , N − 1, (7)

200

Christer Dalen and David Di Ruscio, ”Model-Free PI/PID Controller Tuning”

which are organised as output and input vectors,

Y =


y0
y1
...

yN−1

 ∈ RN , U =


u0
u1
...

uN−1

 ∈ RN . (8)

The time duration, tN−1, and amplitude of the ex-
citation signal, uk, should be as small as possible, i.e
not to disrupt the operation of the process too much.
Note that, the ratio of the variance of the signal to
noise should be as small as possible, however, a value,
< 10%, seems advisable. In this paper, we consider a
Pseudo Random Binary Signal (PRBS). The reason for
using a PRBS excitation signal is that we want to be
able to identify a model with a sufficiently high system
order, n. Consider the excited input vector as,

U = prbs1(N,Tmin, Tmax), (9)

where, uk ∈ {−1, 1} ∀ k = 0, . . . , N − 1. The signal,
uk, is constant on random intervals, T , specified by the
band, Tmin ≤ T ≤ Tmax. A MATLAB m-file function
prbs1.m is available on request. Note that, normally,
we have user-chosen scaling and offset parameters in
the excitation signal in Eq. (9), however these are re-
moved for simplicity.

We will identify the model matrix triples (A,B,D)
of the deterministic SSM in Eqs. (4) and (5) by using
the DSR algorithm (Di Ruscio (1996)). A MATLAB
p-file function dsr.p is available on request.

The PI/PID controller parameters are based on the
work in Dalen and Di Ruscio (2018a,b,c), and found
as,

[Kp, Ti] = delta prc pi tun(T 1, Y 1,∆t, δ, ζ), (10)

[Kp, Ti, Td] = delta prc pid tun1(T 1, Y 1,∆t, δ, ζ), (11)

where, T 1 and Y 1, are the PRC or open loop unit step
response data obtained from the (identified) determin-
istic SSM (Eqs. (4) and (5)) on continuous time form
(i.e. converted using zero-order hold with sampling in-
terval, ∆t = tk−tk−1). In Eqs. (10) and (11), ζ > 0, is
the ”response speed” parameter and, δ > 0, is the rel-
ative time delay error. The MATLAB m-file functions
delta prc pi tun.m and delta prc pid tun1.m are
enclosed in Apps. B and C.

The following algorithm is proposed.

Algorithm 1 Given output and excited input data,
Y and U . The following pseudocode calculates the
PI (m = 1) or PID (m = 2) controller parameters.
The future horizon, L, the relative time delay error, δ,
”speed of response” ζ, and, J (default: J = L) are the
tuning parameters.

function : [Kp, Ti, Td] = pidtun . . .
(Y,U,∆t,m,L, δ, J, ζ, n)
Y := Y −mean(Y); U := U −mean(U)
switch nargin

case 3; m = 1; L = 5; δ = 3.6; ζ = 1
[A,B,D] = dsr(Y,U, L, 0)

case 4; L = 5; δ = 3.6; ζ = 1
[A,B,D] = dsr(Y,U, L, 0)

case 5; δ = 3.6; ζ = 1
[A,B,D] = dsr(Y,U, L, 0)

case 6; ζ = 1
[A,B,D] = dsr(Y,U, L, 0)

case 7; ζ = 1
[A,B,D] = dsr(Y,U, L, 0, J)

case 8;
[A,B,D] = dsr(Y,U, L, 0, J)

case 9;
[A,B,D] = dsr(Y,U, L, 0, J, 1, n)
end
dsys = ss(A,B,D, 0,∆t); csys = d2c(dsys)
[Y 1, T 1] = step(csys)
if m == 1

[Kp, Ti] = delta prc pi tun(T 1, Y 1,∆t, δ, ζ)
Td = 0

elseif m == 2
[Kp, Ti, Td] = . . .
delta prc pid tun1(T 1, Y 1,∆t, δ, ζ)

end

A MATLAB m-file function pidtun.m for Algorithm
1 is enclosed in App. A. A block diagram illustrating
a control system with the proposed PI/PID controller
tuning method in Algorithm 1 is shown in Figure 1.

3.1. Parameter Recommendations

Suggestions on choosing parameters for Algorithm 1
are given in the following.

• Generally, we want to choose the future horizon,
L, as low as possible. Ideally, a good choice could
be, L = n + 1, if the model order, n, is a priori
known and one extra state to identify a possibly
unknown offset. We suggest using, L = 5, as the
default setting.

• The relative time delay error, δ, is usually chosen
in the interval, 1.1 ≤ δ ≤ 3.6 (as suggested in
Di Ruscio (2010); Di Ruscio and Dalen (2017)). In
this paper, we will use, δ = 3.6, as default (robust)
setting.

• Choose the past horizon integer, J > 1, and nor-
mally ”large” for noisy systems. Or, use the de-
fault setting, J = L.

201

Modeling, Identification and Control

Process

DSRδ-tuning

PRC

r
PID

PRBS

−
+

A,B,D,∆t

R1

×

× L

1
2π

1

ζ

δ

×

K

τ

÷
××

×

Kp, Ti, Td

v w

m = 1 (2)

1

YU

L, J, n

Figure 1: The figure is illustrating the proposed Algo-
rtihm 1 with a standard feedback system.
The data, U and Y , are logged as long as
the PRBS switch is turned on. The figure
shows the integrator plus time delay (m = 1)
or double integrator plus time delay model
(m = 2) (Eq. (1)) approximation method
based on the unit reaction rate, R1, and lag,
L, computed from a open loop unit step re-
sponse or Process Reaction Rate (PRC) (see
the works Dalen and Di Ruscio (2018a,b,c)
for details).

• The ”speed of response”, ζ > 0, is normally chosen
as, ζ = 1 or ζ = 6, (as suggested in Dalen and
Di Ruscio (2018a,b)).

4. Numerical Examples

The closest to the proposed method is arguably the
pidTuner application (MATLAB (2016)), which com-
bines the system identification PEMs (Ljung (1999))
with the patented frequency-domain based pidtune al-
gorithm. The pidTuner application has in general two
tuning parameters; the prescribed gain crossover fre-
quency, ωc > 0, and phase margin, PM > 0.

In the numerical examples we use the following al-
gorithm.

Algorithm 2 Given output and excited input data, Y
and U . The following pseudocode calculates the PI
(m = 1) or PID (m = 2) controller parameters. The
phase margin, PM , (default: PM = 60) and gain
crossover frequency, ωc, are the tuning parameters.

function : [Kp, Ti, Td] = pidTuner1 . . .
(Y,U,∆t,m, PM,ωc, n)
dat = iddata(Y,U,∆t)
switch nargin

case 3; dsys = pem(dat); m = 1; PM = 60
ωc = []

case 4; dsys = pem(dat); PM = 60
ωc = []

case 5; dsys = pem(dat); ωc = []
case 6; dsys = pem(dat)
case 7; dsys = pem(dat, n)

csys = d2c(dsys)
opt = pidtuneOptions(′PhaseMargin′, PM)
if m == 1

c = pidtune(csys,pidstd(1, 1), ωc, opt)
Td = 0

elseif m == 2
c = pidtune(csys,pidstd(1, 1, 1), ωc, opt)
Td = c.Td

end
Kp = c.Kp; Ti = c.T i

A MATLAB m-file function pidTuner1.m for Algo-
rithm 2 is enclosed in App. D.

We adopt the performance indices from Åström
and Hägglund (1995); Seborg et al. (1989); Skogestad
(2003). We define these in the following. In order to
measure performance in a feedback system, the Inte-
grated Absolute Error (IAE) is defined as,

IAE =

∫ ∞
0

| e(t) | dt, (12)

where r is the reference and, e = r − y, is the error.
Furthermore, the following is defined:

202

Christer Dalen and David Di Ruscio, ”Model-Free PI/PID Controller Tuning”

• IAEv, evaluates the performance in the case of
input disturbance step, v, with constant reference,
r.

• IAEr, evaluates the performance in the case of a
reference step, r, with constant disturbance, v.

To evaluate the amount of input usage we include
the following Total input Value (TV) measure,

TV =

∫ ∞
0

|∆uk | dt, (13)

where, ∆uk = uk − uk−1, is the control rate of change.

• TVv, evaluates the input usage in the case of input
disturbance step, v, with constant reference, r.

• TVr, evaluates the input usage in the case of a
reference step, r, with constant disturbance, v.

Example 4.1 (Deep Submergence Rescue Vehicle)
Consider the closed loop system illustrated in Figure
2 where the system is a DSRV, i.e. the continuous
time fifth order nonlinear SSM, ẋ = DSRV(x, u),
with measurement Eq., y = x5, where DSRV.m is a
m-file function found in the Marine Systems Simulator
toolbox (Fossen and Perez (2004)). We will consider
the following SISO control case:

yk ∈ R :=
{

Pitch angle, [deg]

uk ∈ R :=
{

Stern angle, [deg]

The PID controller (m = 2) parameters, given in Ta-
ble 1 (rows 2:4, columns 2:3), are found using pidtun
(Algorithm 1) and pidTuner1 (Algorithm 2), where
both algorithms are used with default parameters. Note
that, the output and excited input data, Y and U , are
shown in Figure 3 (Time 400 : 900).

It is seen in Table 1 (rows 5:8, columns 2:3) that
the proposed pidtun method has an edge over MAT-
LAB pidTuner1 in terms of the input disturbance

response, viz. pidtun is seen to be,
IAEpidTuner1

v

IAEpidtun
v

=

2.5, times better than pidTuner1 in performance and,
TV pidTuner1

v

TV pidtun
v

= 1.2, times better in terms of input usage.

In terms of the reference response, the pidTuner1 is

seen,
IAEpidtun

r

IAEpidTuner1
r

= 1.2, times better than pidtun in

performance, however pidtun is seen,
TV pidTuner1

r

TV pidtun
r

=

1.8, times better than pidTuner1 in terms of input
usage.

Example 4.2 (Rocket)
Consider a rocket, i.e. the continuous time sixth order
nonlinear SSM, ẋ = rocket(x, u), with measurement

PID
r u y

v

−
+

+
+

Figure 2: Example 4.1. The figure shows the closed
loop system where the process is a nonlinear
deep submergence rescue vehicle. Output,
y := Pitch angle [deg]. Input, u := Stern
angle [deg].

500 1000 1500 2000 2500

y

-6

-4

-2

0

2

y: Pitch angle [deg]
pidtun

pidTuner1

reference

Time, [samples]
500 1000 1500 2000 2500

u

-20

-10

0

10

20

30

PRBS start

PRBS stop

Control on

Input dist. step, v = !30

u: Stern plane [deg]

Figure 3: Example 4.1. The figure shows the open loop
output and excited input data used for com-
puting the PID controller (m = 2) parame-
ters (see Table 1) in pidtun (Algorithm 1)
and pidTuner1 (Algorithm 2). It shows the
reference, r = −4, and input disturbance
step, v = −30, time domain responses of the
closed loop system in Figure 2, comparing
pidtun vs. pidTuner1. The correspond-
ing performance and input usage indices are
found in Table 1.

203

Modeling, Identification and Control

Table 1: Example 4.1. The table shows the PID con-
troller (m = 2) parameters, Kp, Ti, and, Td.
It shows performance and input usage indices,
IAEr, IAEv, TVr, and, TVv, corresponding to
the reference and input disturbance step time
domain responses shown in Figure 3.

pidtun pidTuner1

Kp -15.0911 -4.6345
Ti 0.7094 0.5648
Td 0.3346 0.1372
IAEr 0.0650 0.0560
IAEv 0.0267 0.0679
TVr 0.1147 0.2109
TVv 1.0524 1.2607

Eq., y = x2, where rocket.m is a MATLAB m-file
function found in App. E. The m-file implementation
is based on the nonlinear SSM in Eqs. (40) and (44)
in Mracek and Cloutier (1997). The closed loop system
with the rocket is illustrated in Figure 4.

We will consider the following SISO control case:

yk ∈ R :=
{

Angle of attack, [deg]

uk ∈ R :=
{

Rudder angle, [deg]

PID
r u y

v

−
+

+
+

Figure 4: Example 4.2. The figure shows the closed
loop system where the process is a nonlin-
ear rocket. Output, y := Pitch angle [deg].
Input, u := Stern angle [deg].

The PID controller (m = 2) parameters, given in Ta-
ble 2 (rows 2:4, columns 2:3), are found using pidtun
(Algorithm 1) and pidTuner1 (Algorithm 2), where
both algorithms are used with default parameters. Note
that, the output and excited input data, Y and U , are
shown in Figure 5 (Time 200 : 600).

It is seen in Table 2 (rows 5:8, columns 2:3) that the
proposed pidtun method has an edge over MATLAB
pidTuner1 in terms of the input disturbance response,

viz. pidtun is seen to be,
IAEpidTuner1

v

IAEpidtun
v

= 2.1, times

better than pidTuner1 in terms of performance and,
TV pidTuner1

v

TV pidtun
v

= 1.1, times better in terms of input usage.

In terms of the reference response, the methods are seen

similar, i.e., pidtun is seen,
IAEpidTuner1

r

IAEpidtun
r

= 1.1, times

better in terms of performance, however pidTuner1 is

seen,
TV pidtun

r

TV pidTuner1
r

= 1.0, equal to pidtun in terms of

input usage.

0 500 1000 1500 2000
y

-10

-5

0

5

10
y: Angle of attack [deg]

pidtun

pidTuner1

reference

Time, [samples]
0 500 1000 1500 2000

u

-20

-10

0

10

20

PRBS start

PRBS stop

Control on

Input dist. step, v = 30

u: Rudder de.ection [deg]

Figure 5: Example 4.2. The figure shows the open loop
output and excited input data used for com-
puting the PID controller (m = 2) parame-
ters (see Table 2) in pidtun (Algorithm 1)
and pidTuner1 (Algorithm 2). It shows the
reference, r = 4, and input disturbance step,
v = 30, time domain responses of the closed
loop system illustrated in Figure 4, compar-
ing pidtun vs. pidTuner1. The corre-
sponding performance and input usage in-
dices are found in Table 2.

Example 4.3 (Offshore: Topside choking)
Consider in the following an anti-slug control case
on a well-pipeline-riser example integrated in the K-
Spice/LedaFlow simulator (K-Spice; LedaFlow). Ini-
tially meant for the operators to predict incoming slug-
ging regime, the bottom-hole riser pressure is suitable
for measurement output. The (general) goal is to max-
imise or minimise the outlet flow or bottom-hole pres-
sure, i.o. The work in Schmidt et al. (1979) documents
the first successful application of an automatic control
system on a pipeline-riser process with a topside choke

204

Christer Dalen and David Di Ruscio, ”Model-Free PI/PID Controller Tuning”

Table 2: Example 4.2. The table shows the PID con-
troller (m = 2) parameters, Kp, Ti, and, Td.
It shows the performance, and input usage
indices, IAEr, IAEv, TVr, and, TVv, corre-
sponding to the reference and input distur-
bance step time domain responses shown in
Figure 5.

pidtun pidTuner1

Kp -5.1808 -1.8596
Ti 0.4220 0.2923
Td 0.1991 0.0679
IAEr 0.0453 0.0513
IAEv 0.0428 0.0905
TVr 0.2040 0.1965
TVv 1.4470 1.5740

as the manipulative control input. Note that, if the PI
controller (m = 1) tuner method works on this simula-
tor, it is likely to work on the real process 3.

Hence, we consider the following SISO control case:

yk ∈ R :=
{

Bottom hole riser pressure, [bara]

uk ∈ R :=
{

Topside choke valve, [%]

PI
r u y

−
+

Figure 6: Example 4.3. The figure illustrates the closed
loop system with an anti-slugging case ex-
ample implemented in the K-Spice/Ledaflow
simulator (K-Spice; LedaFlow). Output,
y := Bottom hole riser pressure, [bara]. In-
put, u := Topside choke valve, [%].

600, input and output samples were logged from
an open loop PRBS input experiment in the K-
Spice/LedaFlow simulator where the first 400 samples
was used for identification and the last 200 samples for
validation (see Figure 7).

Consider the mean squared error, V = 1
N

∑N
k=1(yk−

ydk)2, where ydk is the output of the (identified) deter-
ministic SSM in Eqs. (4) and (5) and actual output,
yk. The model identified from using the DSR algorithm

3Personal communication with Kongsberg Digital, The closest
you can get to the real plant behavior.

(i.e. the SSM as in Eqs. (4) and (5) with matrices as in
Eq. (14)) showed a slight edge over PEM, i.e. the DSR
model was seen in Table 3 (rows 2:3, columns 2:3) to

be,
V pem
id

V dsr
id

= 1.12, and,
V pem
val

V dsr
val

= 1.03, times better then

PEM on the identification and validation set, i.o. See
Figures 8 and 9 for the corresponding simulated out-
puts, ydk, from the the (identified) deterministic SSMs
(Eqs. (4) and (5)), vs. the identification and valida-
tion set, i.o. Note that, the results shown in Table 3
(similar results are also seen in Dalen and Di Ruscio
(2016)) may be explained by a trade-off between bias
and variance (Di Ruscio (2009)).

The PI controller (m = 1) parameters, given in
Table 4 (rows 2:3, columns 2:3), are computed us-
ing pidtun (Algorithm 1) and pidTuner1 (Algorithm
2), where both methods are used with default param-
eters, except that the ”speed of response”, ζ = 2,
and, gain crossover frequency, ωc = 0.01, are both
used to prescribe the sensitivity function peak, Ms =
max0≤ω<∞ | 1

1+Hp(jω)Hc(jω)
| = 1.3,4 where, Hp(s), is

the transfer function corresponding to the (identified)
deterministic SSM in Eqs. (4) and (5).

The two PI controllers (m = 1) performed approxi-
mately equal when applied to the well-pipeline-riser ex-
ample in the K-Spice/LedaFlow simulator. See Figure
10 for the time series of the reference ramping experi-
ment and Table 4 (rows 2:3, columns 4:5) for the cor-
responding performance and input usage indices.

A =

DSR︷ ︸︸ ︷[
0.9563 1.1959
−0.0030 0.9898

]
,

B =

[
0.2688
0.0064

]
,

D =
[
−0.6016 0.6941

]
.

(14)

Table 3: Example 4.3. The table shows the mean

square error, V = 1
N

∑N
k=1(yk − ydk)2, where

ydk is the output of the (identified) determin-
istic SSM in Eqs. (4) and (5) and actual out-
put, yk, corresponding to the identification
and validation data shown in Figures 8 and
9, i.o.
Valg Identification set Validation set

VDSR 0.2378 0.1455
VPEM 0.2672 0.1498

4For robust controllers we consider the interval, 1.3 ≤ Ms ≤ 2.0
(p. 125 in Åström and Hägglund (1995)).

205

Modeling, Identification and Control

0 100 200 300 400 500 600

u

8.5

9

9.5

10

10.5

11

Identi-cation Validation

u:=Topside choke valve [%]

Time [samples]
0 100 200 300 400 500 600

y

106

108

110

112

114
y:=Bottom-riser pressure [bara]

Figure 7: Example 4.3. The figure shows the open loop
PRBS input experiment of the well-pipeline-
riser example in the K-Spice/LedaFlow
simulator.

Time [samples]
0 50 100 150 200 250 300 350 400

y

-4

-3

-2

-1

0

1

2

3

4
Identi-cation: Actual vs. DSR and PEM model outputs

DSR

Actual

PEM

Figure 8: Example 4.3. The figure shows the compar-

ison of the simulated output, ydk, from the
DSR and PEM model, with the actual out-
put, yk, from the identification set. The cor-
responding mean square errors are given in
Table 3.

Time [samples]
0 20 40 60 80 100 120 140 160 180 200

y

-4

-3

-2

-1

0

1

2

3
Validation: Actual vs. DSR and PEM model outputs

DSR

Actual

PEM

Figure 9: Example 4.3. The figure shows the compar-

ison of the simulated output, ydk, from the
DSR and PEM model, with the actual out-
put, yk, from the validation set. The cor-
responding mean square errors are given in
Table 3.

Table 4: Example 4.3. The table shows the perfor-

mance index, IAEr =
∫∞
0
| e(t) | dt, and the

input usage index, TVr =
∫∞
0
|∆uk|dt, for

prescribed sensitivity function peak, Ms =
max0≤ω<∞ | 1

1+Hp(jω)Hc(jω)
| = 1.3. The corre-

sponding reference stepping time domain re-
sponses are found in Figure 10.

Algorithm Kp Ti IAEr TVr Ms

pidtun 1.55 183.5 57207 6794 1.3
pidTuner1 1.89 163.0 57089 6800 1.3

206

Christer Dalen and David Di Ruscio, ”Model-Free PI/PID Controller Tuning”

50 100 150 200 250 300 350 400 450 500

10

15

20

u

u:=Topside choke valve [%]

50 100 150 200 250 300 350 400 450 500
Time [samples]

100

105

110

y

y:=Bottom-riser pressure [bara]

pidtun
pidTuner1
reference

Figure 10: Example 4.3. The figure shows the ref-
erence ramping experiment of the closed
loop system illustrated in Figure 6, i.e.
comparing the PI controllers (m = 1)
from the proposed pidtun (Algorithm 1)
vs. pidTuner1 (Algorithm 2). The corre-
sponding performance and input usage in-
dices are found in Table 4.

5. Concluding and Discussion
Remarks

The discussion and concluding remarks are itemised as
follows:

• A model-free PI/PID controller tuning method
pidtun (Algorithm 1) algorithm was presented in
Section 3, i.e. a method which computes PI/PID
controller parameters only based on open loop out-
put and excited input data.

• The proposed pidtun (Algorithm 1), and the
MATLAB pidTuner1 (Algorithm 2) method are
successfully applied and compared on two motion
problems and one offshore problem in Section 4,
i.e. three stable SISO parts of higher order moti-
vated nonlinear SSMs.

• Consider the motion problems in the numerical
examples in Section 4 in the following. The PID
controllers (m = 2) computed from the pro-
posed pidtun is seen to have an edge over MAT-
LAB pidTuner1 in terms of the input distur-
bance response, viz. pidtun is seen to be atleast,
IAEpidTuner1

v

IAEpidtun
v

= 2.1, times better than pidTuner1

in performance and,
TV pidtun

v

TV pidTuner1
v

= 1.1, times bet-

ter in terms of input usage. However, in terms of
the reference response, both algorithms are seen
similar in performance, however pidtun is seen,
TV pidTuner1

r

TV pidtun
r

= 1.8, times better than pidTuner1

in terms of input usage for Example 4.1.

• Consider the results in the offshore problem in
Example 4.3 in the following. The PI controllers
(m = 1) from pidtun and pidTuner1 were seen
to perform approximately equal. This is because
both PI controllers (m = 1) were designed on pre-
scribing the maximum sensitivity peak, Ms = 1.3.

• It was demonstrated in the numerical examples
in Section 4 that the default settings for pidtun,
proposed in Subsection 3.1, were found satisfying
for all the 3 examples, with exception of Example
4.3 where the ”speed of response”, ζ = 2 was pre-
scribing the maximum sensitivity peak, Ms = 1.3.

• Note that, given PID control (m = 2), it is in
practice suggested to add a filter on the derivative
term with a first order system with time constant,
Td

Nf
, where typical values for, Nf , are 8 to 20 (see

p. 77 in Åström and Hägglund (1995)).

• Note that, the pidtune algorithm is patented by
MathWorks.

207

Modeling, Identification and Control

A. pidtun method m-file
implementation

A MATLAB m-file function for the pseudocode in Al-
gorithm 1 is given.

function...

[Kp,Ti,Td] =pidtun(Y,U,dt,m,L,delta,J,zeta,n)

% PURPOSE. Tuning an ideal PI/PID controller

% hc(s)=Kp(1+1/(Ti*s)+Td*s)

% based on input step response data.

%[Kp,Ti,Td] =pidtun(Y,U,dt,m,L,delta,J,zeta,n)

% T, Y - Step response data

% T time vector

% Y output vector

%

% delta - Tuning parameter,

% relative time delay error

% delta=2.3 (default)

%

% Kp - Proportional gain

% Ti - Integral time constant

% Td - Derivative time constant

Y=Y-mean(Y);U=U-mean(U);

switch nargin

case 3;m=1;L=5;delta=3.6;zeta=1;

[A,B,D]=dsr(Y,U,L,0);

case 4;L=5;delta=3.6;zeta=1;

[A,B,D]=dsr(Y,U,L,0);

case 5;delta=3.6;zeta=1;

[A,B,D]=dsr(Y,U,L,0);

case 6;zeta=1;

[A,B,D]=dsr(Y,U,L,0);

case 7;zeta=1;

[A,B,D]=dsr(Y,U,L,0,J);

case 8;

[A,B,D]=dsr(Y,U,L,0,J);

case 9

[A,B,D]=dsr(Y,U,L,0,J,1,n);

end

dsys=ss(A,B,D,0,dt); csys=d2c(dsys);

[Y1,T1]=step(csys);

if m==1

[Kp,Ti]=delta_prc_pi_tun(T1,Y1,dt,delta,zeta);

Td=0;

elseif m==2

[Kp,Ti,Td]...

=delta_prc_pid_tun1(T1,Y1,dt,delta,zeta);

end

The DSR algorithm (Di Ruscio (1996)) is implemented
in MATLAB, and available as a p-file function dsr.p in
the D-SR Toolbox. The toolbox is available on request.

The MATLAB m-file functions delta prc pi tun.m
and delta prc pid tun1.m are enclosed in Apps. B
and C.

B. δ-PRC method MATLAB m-file

function [Kp,Ti]=delta_prc_pi_tun...

(T,Y,dt,delta,z,cb,du)

% PURPOSE. Tuning an ideal PI controller

% hc(s)=Kp(1+1/(Ti*s))

% based on input step response data.

% [Kp,Ti]=delta_prc_pi_tun...

% (T,Y,delta,z,cb,du)

%

% T, Y - Step response data

% T time vector

% Y output vector

%

% delta - Tuning parameter,

% relative time delay error

% delta=2.12 (default)

%

% du - Input step change

% du=1 (default)

%

% Kp - Proportional gain

% Ti - Integral time constant

if nargin == 4; z=1; cb=2.5; du=1; end

if nargin == 5; cb=2.5; du=1; end

if nargin == 6; du=1; end

h=T(2)-T(1); A=diff(Y)/h;

if Y(end)<0

[R,i]=min(A);

else

[R,i]=max(A);

end

R1=R/du;

t1=T(i);

y1=Y(i); L=t1-y1/R1;

k=z*R1; tau=L+dt/2;

[alfa,beta]=pi_tun_maxdelay(cb,delta);

Kp=alfa/(k*tau);

Ti=beta*tau;

% end delta_prc_pi_tun.m

Note that, the above MATLAB m-file function was

208

Christer Dalen and David Di Ruscio, ”Model-Free PI/PID Controller Tuning”

not given in the paper Dalen and Di Ruscio (2018c).

C. Modified δ-PRC method
MATLAB m-file

function [Kp,Ti,Td]=delta_prc_pid_tun1....

(T,Y,dt,delta,zeta)

% PURPOSE. Tuning an ideal PID controller

% hc(s)=Kp(1+1/(Ti*s)+Td*s)

% based on input step response data.

% [Kp,Ti,Td]=delta_prc_pid_tun1...

% (T,Y,delta,zeta)

%

% T, Y - Step response data

% T time vector

% Y output vector

%

% delta - Tuning parameter,

% relative time delay error

% delta=2.12 (default)

%

% zeta - "speed of response"

%

% Kp - Proportional constant

% Ti - Integral time constant

% Td - Derivative time constant

if nargin == 4; zeta=1; end

if nargin == 5; delta=2.12; zeta=1; end

h=T(2)-T(1); calA=diff(Y)/h;

if Y(end)<0

[R1,i]=min(calA);

else

[R1,i]=max(calA);

end

t1=T(i);

y1=Y(i); L=t1-y1/R1;

tau=L/(2*pi)+dt/2;

K=zeta*R1/L;

cb=2.12; gamm=2.12;

[Kp,Td]=pd_tun_maxdelay(K,tau,delta,cb,1);

Ti=gamm*Td;

% end delta_prc_pid_tun1.m

Note that, this MATLAB m-file function is a slightly
modified version of the m-file in App. A in Dalen and

Di Ruscio (2018b).

D. pidTuner1 method m-file
implementation

A m-file function for the pseudocode in Algorithm 2 is
given.

function...

[Kp,Ti,Td]=pidTuner1(Y,U,dt,m,pm,wc,n)

dat=iddata(Y,U,dt);

switch nargin

case 3;dsys=pem(dat);m=1;pm=60;wc=[];

case 4;dsys=pem(dat);pm=60;wc=[];

case 5;dsys=pem(dat);wc=[];

case 6;dsys=pem(dat);

case 7;dsys=pem(dat,n);

end

opt = pidtuneOptions(’PhaseMargin’,pm);

csys=d2c(dsys);

if m==1

c=pidtune(csys,pidstd(1,1),wc,opt);Td=0;

elseif m==2

c=pidtune(csys,pidstd(1,1,1),wc,opt);Td=c.Td;

end

Kp=c.Kp;Ti=c.Ti;

E. Rocket function m-file
implementation

function f=rocket(t,x,u)

f=zeros(6,1);

f(1)=0.4008*x(1)^2*x(2)^3*sin(x(2))...

-0.6419*x(1)^2*abs(x(2))*x(2)*sin(x(2))...

-0.2010*x(1)^2*(2-x(1)/3)*x(2)*sin(x(2))...

-0.0062*x(1)^2-0.0403*x(1)^2*sin(x(2))*x(5)...

-0.0311*sin(x(3));

f(2)=0.4008*x(1)*x(2)^3*cos(x(2))...

-0.6419*x(1)*abs(x(2))*x(2)*cos(x(2))...

-0.2010*x(1)*(2-x(1)/3)*x(2)*cos(x(2))...

-0.0403*x(1)*cos(x(2))*x(5)...

-0.0311*cos(x(3))/x(1)+x(4);

f(3)=0.4008*x(1)*x(2)^3*cos(x(2))...

-0.6419*x(1)*abs(x(2))*x(2)*cos(x(2))...

-0.2010*x(1)*(2-x(1)/3)*x(2)*cos(x(2))...

-0.0403*x(1)*cos(x(2))*x(5)...

-0.0311*cos(x(3))/x(1);

f(4)=49.82*x(1)^2*x(2)^3 ...

-78.86*x(1)^2*abs(x(2))*x(2)...

+3.6*x(1)^2*(-7-8*x(1)/3)*x(2)...

-14.54*x(1)^2*x(5)-2.12*x(1)^2*x(4);

f(5)=x(6);

209

Modeling, Identification and Control

xi=0.7; wa=50;

f(6)=-wa^2*x(5)-2*xi*wa*x(6)+wa^2*u;

end

The m-file implementation is based on the nonlinear
SSM in Eqs. (40) and (44) in Mracek and Cloutier
(1997).

References

Åström, K. and Hägglund, T. PID Controllers: The-
ory, Design, and Tuning. Instrument Society of
America, 1995.

Dalen, C. and Di Ruscio, D. Model-Free Predictive
Anti-Slug Control of a Well-Pipeline-Riser. Model-
ing, Identification and Control, 2016. 37(1):41–52.
doi:10.4173/mic.2016.1.4.

Dalen, C. and Di Ruscio, D. A Novel Process-Reaction
Curve Method for Tuning PID Controllers. Model-
ing, Identification and Control, 2018a. 39(4):273–
291. doi:10.4173/mic.2018.4.4.

Dalen, C. and Di Ruscio, D. A Semi-Heuristic
Process-Reaction Curve PID Controller Tuning
Method. Modeling, Identification and Control,
2018b. 39(1):37–43. doi:10.4173/mic.2018.1.4.

Dalen, C. and Di Ruscio, D. PI Controller Tuning
Based on Integrating Plus Time Delay Models: Per-
formance Optimal tuning. Algorithms, 2018c. 11(4).

Dalen, C., Di Ruscio, D., and Nilsen, R. Model-
free optimal anti-slug control of a well-pipeline-
riser in the K-Spice/LedaFlow simulator. Model-
ing, Identification and Control, 2015. 36(3):179–188.
doi:10.4173/mic.2015.3.5.

Di Ruscio, D. Combined Deterministic and Stochas-
tic System Identification and Realization: DSR - A
Subspace Approach Based on Observations. Model-
ing, Identification and Control, 1996. 17(3):193–230.
doi:10.4173/mic.1996.3.3.

Di Ruscio, D. A Bootstrap Subspace Identifica-
tion Method: Comparing Methods for Closed Loop
Subspace Identification by Monte Carlo Simula-
tions. Modeling, Identification and Control, 2009.
30(4):203–222. doi:10.4173/mic.2009.4.2.

Di Ruscio, D. On Tuning PI Controllers for In-
tegrating Plus Time Delay Systems. Modeling,
Identification and Control, 2010. 31(4):145–164.
doi:10.4173/mic.2010.4.3.

Di Ruscio, D. and Dalen, C. Tuning PD and PID Con-
trollers for Double Integrating Plus Time Delay Sys-
tems. Modeling, Identification and Control, 2017.
38(2):95–110. doi:10.4173/mic.2017.2.4.

Dong, H.-R., Jin, S., and Hou, Z.-S. Model free adap-
tive control for automatic car parking systems. 2015.
2015:1769–1774.

Fliess, M. and Join, C. Model-free control and intel-
ligent PID controllers: towards a possible trivializa-
tion of nonlinear control? In 15th IFAC Sympo-
sium on System Identification (SYSID 2009). IFAC,
Saint-Malo, France, 2009.

Fliess, M. and Join, C. Model-free control. Interna-
tional Journal of Control, 2013. 86(12):2228–2252.
doi:10.1080/00207179.2013.810345.

Fossen, T. I. and Perez, T. Marine Systems Simu-
lator (MSS). 2004. URL https://github.com/

cybergalactic/MSS.

Hou, Z.-S. and Wang, Z. From model-based control
to data-driven control: Survey, classification and
perspective. Information Sciences, 2013. 235:3–35.
doi:10.1016/j.ins.2012.07.014.

K-Spice. K-Spice version 2.11. 2015. URL
kongsberg.com/k-spice.

LedaFlow. LedaFlow version 1.7. 2015. URL
kongsberg.com/ledaflow.

Ljung, L. System Identification (2nd ed.): Theory for
the User. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1999.

MATLAB. Version 9.1.0.441655 (R2016b). The
MathWorks Inc., Natick, Massachusetts, USA, 2016.
Control System Toolbox, Version 9.3. Optimization
Toolbox, Version 6.2.

Mracek, C. and Cloutier, J. Missile longitudinal au-
topilot design using the state-dependent riccati equa-
tion method. Guidance, Navigation, and Control
Conference, 1997. pages 1–6.

Schmidt, Z., Brill, J. P., and Beggs, H. D. Choking
can eliminate severe pipeline slugging. Oil & Gas J.,
1979. (12):230–238.

Seborg, D., Edgar, T., and Mellichamp, D. Process
Dynamics and Control. Number v. 1 in Chemical
Engineering Series. Wiley, 1989.

Skogestad, S. Simple analytic rules for model reduc-
tion and PID controller tuning. Journal of Process
Control, 2003. 13(4):291–309. doi:10.1016/S0959-
1524(02)00062-8.

210

http://dx.doi.org/10.4173/mic.2016.1.4
http://dx.doi.org/10.4173/mic.2018.4.4
http://dx.doi.org/10.4173/mic.2018.1.4
http://dx.doi.org/10.4173/mic.2015.3.5
http://dx.doi.org/10.4173/mic.1996.3.3
http://dx.doi.org/10.4173/mic.2009.4.2
http://dx.doi.org/10.4173/mic.2010.4.3
http://dx.doi.org/10.4173/mic.2017.2.4
http://dx.doi.org/10.1080/00207179.2013.810345
https://github.com/cybergalactic/MSS
https://github.com/cybergalactic/MSS
http://dx.doi.org/10.1016/j.ins.2012.07.014
kongsberg.com/k-spice
kongsberg.com/ledaflow
http://dx.doi.org/10.1016/S0959-1524(02)00062-8
http://dx.doi.org/10.1016/S0959-1524(02)00062-8

Christer Dalen and David Di Ruscio, ”Model-Free PI/PID Controller Tuning”

Söderström, T. and Stoica, P. System Identification.
Prentice-Hall international series in systems and con-
trol engineering. Prentice-Hall, 1989.

Wang, J., Zhang, Y., Jin, X., and Su, H. A Recursive
Tuning Approach for the Model-Free PIDController
Design. IFAC-PapersOnLine, 2018. 51(4):143–
147. doi:10.1016/j.ifacol.2018.06.116. 3rd IFAC
Conference on Advances in Proportional-Integral-
Derivative Control PID 2018.

Ziegler, J. G. and Nichols, N. B. Optimum Settings for
Automatic Controllers. Trans. American Society of
Mechanical Engineers, 1942. 64:759–768.

211

http://dx.doi.org/10.1016/j.ifacol.2018.06.116
http://creativecommons.org/licenses/by/3.0

	Introduction
	Preliminary Definitions
	System Definition

	From Data to PI/PID Controller Parameters
	Parameter Recommendations

	Numerical Examples
	Concluding and Discussion Remarks
	pidtun method m-file implementation
	-PRC method MATLAB m-file
	Modified -PRC method MATLAB m-file
	pidTuner1 method m-file implementation
	Rocket function m-file implementation

