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Abstract

In robotic assistive devices, the determination of required assistance is vital for proper functioning of
assistive control. This paper presents a novel solution to measure conveniently and accurately carried
payload in order to estimate the required assistance level. The payload is estimated using upper arm
forcemyography (FMG) through a sensor band made of force sensitive resistors. The sensor band is worn
on the upper arm and is able to measure the change of normal force applied due to muscle contraction.
The readings of the sensor band are processed using support vector machine (SVM) regression technique
to estimate the payload. The developed method was tested on human subjects, carrying a payload.
Experiments were further conducted on an upper-body exoskeleton to provide the required assistance.
The results show that the developed method is able to estimate the load carrying status, which can be
used in exoskeleton control to provide effectively physical assistance needed.
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1 Introduction

With the advancement in robot technology, exoskele-
tons are being developed for medical, industrial and
service applications. Based on the applications, ex-
oskeletons are categorized in three types i.e. rehabil-
itation, assistance and power augmentation exoskele-
tons Fan and Yin (2013); Hsieh et al. (2017); Cui et al.
(2016); Keller et al. (2016); Huang et al. (2015); Castro
et al. (2019); Christensen and Bai (2018); Gunasekara
et al. (2012); Zhou et al. (2015). Rehabilitation and
power augmentation exoskeletons are mainly focused
on serving humans to regain their mobility and helping
the users with extra power to enhance their capability,
respectively Bai et al. (2018). In this work, our inter-
est is to use exoskeletons to assist users, which can be
either factory workers, elderly or person weak muscle
strength, in load carrying tasks.

For physical assistance exoskeletons, the determina-

tion of required assistance level is one of primary con-
cerns. In load carrying tasks, one method to determine
required assistance level is by knowing the payload
value and joint configuration. In existing upper body
exoskeleton systems, payload information is acquired
by integrating force sensors at the end-effector, where
the weight is hanged on to the exoskeleton and not car-
ried by the human Rosen et al. (2001); Lee et al. (2014).
This method is useful in specific applications, partic-
ularly heavy-load carrying tasks. The implementation
of this method for daily routine activities or factory
tasks is not feasible, where the user carries objects of
different attributes. To overcome this challenge, Elec-
tromyography (EMG) based estimation methods are
used instead to determine joint torques and provide as-
sistance through exoskeletons McDonald et al. (2017);
Mangukiya et al. (2017); Leonardis et al. (2015); Ab-
dallah et al. (2017); Mghames et al. (2017); Tang et al.
(2014); Rahman et al. (2015); Li et al. (2013); Kiguchi
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and Hayashi (2012). In these methods the assistance
to each joint is provided by analyzing the muscle activ-
ities of its prime mover muscle group. In upper body
multi DOF exoskeleton, this approach brings computa-
tional complexity, as large number of EMG electrodes
need to be processed. Moreover, for daily usage place-
ment of EMG electrodes to right place, proper skin
preparation, low S/N ratio and convenience are other
challenges to be addressed.

In this work, we proposed FMG based method to
estimate the payload level. This method requires no
load cell to be attached at the end-effector and only
requires an Force Sensitive Resistor (FSR) sensor band
to perceive upper arm muscles activity and joint con-
figuration in estimating payload level. Compared with
other methods like EMG sensors, the new method re-
quires simple electronics. S/N ratio is also better and
is not affected by skin condition.

In literature, there are some reported works on using
FMG to detect upper body and lower body movements
Cho et al. (2016); Kadkhodayan et al. (2016); Xiao and
Menon (2017); Sadarangani and Menon (2017); Islam
and Bai (2017); Jiang et al. (2016); Xiao et al. (2014);
Islam et al. (2018). However, this approach has not
been used yet for payload estimation to control upper-
body exoskeleton in load carrying tasks. In this work,
we developed an FSR sensor band, which measures the
normal force applied by the muscles as they contract.
The required assistance level is then estimated from
the sensor readings, processed by machine learning, in
terms of carried payload. The new method provides
convenient and accurate estimates of payload carried
by a person.

This paper is organized as follow: Design and imple-
mentation of the sensor band is described in Section
2. Section 3 presents the algorithm design of payload
estimation. Experimental setup for sensor testing and
its results are described in Section 4. In Section 5, we
include briefly exoskeleton control with the developed
sensor band to demonstrate the application. Discus-
sion on the developed method is presented in Section
6 and the work is concluded in Section 7.

2 Sensor band design

Figure 1 shows an FSR sensor band developed. When
the sensor band is worn on an upper arm, it measures
the normal force applied due to muscle contraction,
called muscle contraction-induced (MCI) force. FSR
sensors register this applied force in terms of varying
resistance. An amplifier is used to read the resistance
change and output a smooth and amplified voltage sig-
nal. The output voltage signal is passed to a computer
for post processing. In post processing, the voltage

signal is converted to respective force measured by the
FSRs. Moreover, machine learning is implemented to
interpret the force signal in terms of payload. The de-
tails of all major components are described presently.

2.1 FSR distribution

The sensor band is comprised of an array of FSRs em-
bedded inside a flexible strap. In the current setup,
four FSR sensors of model FSR-402 are utilized, which
are able to measure applied force in the range of 0.1-
10N.

Figure 1: Sensor band working principle and it’s place-
ment on the upper arm.

FSRs distribution over the sensor band and its place-
ment on arm are shown in Fig. 1. The sensors are
distributed in a way that they can cover some areas
of muscles, specially, where they can read the maxi-
mum normal force. The flexibility of strap ensures a
good contact between FSRs and arm muscles, which
allows the FSRs to sense the normal force exerted by
the muscles on them. Moreover, the design of sensor
band allows it to apply same pressure over the muscles
every time the user puts it on.

2.2 FSR-amplifier coupling

The FSR responds to the applied force by varying its
resistance. Therefore, a non-inverting amplifier is in-
terfaced with the FSRs according to Fig. 2.

The output of the amplifier is given by the following
equation,

Vout = (1 +
Rref

Rfsr
)Vin (1)

where Vout is the output voltage of the amplifier, Vin
is the input voltage to the positive terminal of the am-
plifier, Rref is the reference resistance and Rfsr repre-
sents the resistance of FSR. The output of the amplifier
can be changed by varying Vin and Rref . In the imple-
mentation Vin was fixed and Rref was varied to read
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Figure 2: FSR amplification circuitry.

the desired force range of the FSR. Rref was finally
selected, so that the full range of amplifier output is
utilized and maximum resolution is obtained. In the
circuit a low pass filter is also included to filter out
high frequency noises.

3 Estimation algorithm

The algorithm of payload estimation is based on MCI
force and joint orientation. In this method two MCI
force profiles are modeled for carrying two different
payloads across human arm range of motion in sagit-
tal plane. The profiles are obtained using SVM based
regression technique, in which MCI force is treated as
output parameter and elbow and shoulder joint angles
as input parameters. In the real-time testing the given
MCI force is compared with the developed MCI profiles
to estimate the payload.

3.1 System setup

The data for training SVM regression models is ac-
quired through an instrumented passive exoskeleton.
As shown in Fig. 3, the passive exoskeleton has an ab-
solute encoder, Novotechnik RFD-4021, at elbow joint
and an accelerometer ADXL 335 to monitor the up-
per arm movement. The output of RFD-4021 encoder
determines the elbow joint angle, whereas the output
of accelerometer is calibrated and mapped to shoulder
joint (flexion/extension) angle as,

θs = −154.93V 2
a + 217.33Va + 18.53 (2)

here Va represents the x-axis output voltage of the ac-
celerometer.

3.2 Datasets

Two datasets are recorded in the training session,
namely, D1 and D2 to train the regression models for
payload estimation. The contents of these datasets are
as follows.

Figure 3: An instrumented passive arm exoskeleton to
collect the data for SVM training.

3.2.1 D1

This dataset is comprised of net MCI force fa mea-
sured by the sensor band in carrying a payload ρa. In
collecting the data subject lifts the payload in several
elbow and shoulder joint angle configurations.

3.2.2 D2

This dataset is comprised of net MCI force fa measured
by the sensor band in carrying a payload ρb. Arm
configuration used for D1 is followed in collecting this
dataset.

After collecting these datasets two regression mod-
els are trained, whose details are given in forthcoming
section.

3.3 Regression models

Both datasets, explained earlier, are used to train two
regression models i.e. R1 and R2.

Taking R1 as an example. Dataset D1 is used to
train this regression model with joint angles θe and
θs as predictor and net MCI force fa, sum of forces
measured by FSR sensors embedded inside the sensor
band, as response variable. Hence, during the real-time
testing, the regression model uses the joint angles θe
and θs to estimate the force, f1, that muscle generated
if a person lifts or carries payload ρa. Similarly, model
R2 is trained with dataset D2. The inputs and outputs
of both regression models are illustrated in Fig. 4.

3.4 Real-time estimation model

During real-time estimation, the algorithm first com-
putes forces f1 and f2 using regression models R1 and
R2, respectively.

After all forces are obtained, payload is determined
by following equation,
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ρ = (ρb − ρa)(fa − f1)/(f2 − f1) (3)

where ρ represent the estimated payload.

(a)

(b)

Figure 4: Flow diagram of algorithm design, (a) SVM
training session to compute regression mod-
els, (b) real-time estimation of payload.

A 3D surface plot illustrating the MCI variation with
respect to θe and θs is shown in Fig. 5.

Figure 5: Illustration of payload estimation when two
payloads are used for training the regression
models.

4 Payload estimation

Experiments were carried out to test the performance
of the developed payload determination method. The

experiments of payload estimation first include training
of SVM regression models, which is followed by real-
time testing of the developed estimation method.

4.1 Data collection protocol

A MATLAB based GUI is developed to collect the
data, which is comprised of MCI force readings from
sensor band, elbow joint and shoulder joint angles. The
GUI allows the data to be collected at a frequency of
200 Hz and sorting out the necessary information for
training session.

The protocol of data collection involves a set of static
postures, shown in Fig. 6, that the user maintains for
a few seconds. The detailed description of protocol is
as follow.

• Subject wears the sensor band and passive ex-
oskeleton as shown in Fig. 3.

• Subject is free of payload, i.e. ρa = 0 kg, and
keeps the elbow and shoulder angles according to
Fig. 6(a) for 10 s.

• Subject rests for 20 s and raises his/her arm to
the next configuration as shown in Fig. 6(b) and
maintains the pose for 10 s.

• Subject repeats the task for all the positions shown
in Fig. 6, with a rest for 20 s in between each
position.

• After completing all positions subject rests for 10
minutes and repeats the whole process for payload
ρb = 2.5 kg.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Joint configurations selected for collecting
sensors data.

The data collected in these experiments is divided
into two sets i.e. D1 and D2, which is followed by the
training of regression models R1 and R2, respectively.
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(a) (b)

(c)

Figure 7: Payload estimation testing results, (a) MCI forces measured by sensor band for a configuration of θe
= 76◦ and θs = 34◦, (b) payload estimated for case (a), and (c) payload estimated for a configuration
of θe = 76◦ and θs = 52◦.

4.2 Results of real-time testing

Five healthy subjects, aged between 20-30, partici-
pated in this experiment. Subjects were provided with
written consent forms prior to the experiments. More-
over, experiments were performed with ethical approval
obtained from ethical committee, Region Nordjylland,
Denmark.

In this testing the regression models for payload es-
timation were trained and tested for each subject sep-
arately. After training the regression models, real-time
testing was carried out with the passive exoskeleton, in
which three different payloads in the range of 0 kg to
5 kg were lifted by the subjects.

Figure 7 shows the test results with three payloads
ρ1 = 0.8 kg, ρ2 = 2.5 kg and ρ3 = 4 kg, which were
held by Subject 1 at his hand sequentially.

The testing is static, which means that the elbow
and shoulder joint angles remain fixed. Figure 7(a)
displayed raw data of FSR readings measured for an-
gles θe = 76◦ and θs = 34◦. Figure 7(b) shows the
estimated payload. Another result of payload estima-
tion is shown in Fig. 7(c), with the arm configuration
slightly changed i.e. θe = 76◦ and θs = 52◦.

The testing shows that the developed method can
determine the payload level correctly and close to real
values for varying configurations. It is also noticed in
Figs. 7(b) and 7(c) that even though the SVM models

were trained for up to 2.5 kg payload, the sensor can
even estimate correctly the payload level higher than
the top level used in the training.

The results of all the other subjects are shown in
Fig. 8, displaying errors in payload estimation. The
error in estimated payload is computed for all the tasks
performed in saggital plane, as the training condition
in payload estimation included arm configurations for
different shoulder and elbow joint angles.

Figures 8(a) and 8(b) show absolute and relative er-
ror of estimation, respectively. Absolute error is com-
puted as the difference between actual and estimated
payload value, whereas, relative error is obtained by
normalizing the error w.r.t the maximum payload. It
can be seen in Fig. 8(a) that the mean value of abso-
lute error varies from 0.14 kg to 0.37 kg. In Fig. 8(b)
mean value of relative error varies from 0.07 to 0.17 for
the five subjects.

5 Exoskeleton control

With the developed sensor for payload determina-
tion, we conducted further experiments of physical
assistance control on a 4-DOF upper-body exoskele-
ton (see Fig. 9), developed at AAU, Aalborg, Den-
mark Bai et al. (2017). The exoskeleton has 3 ac-
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(a)

(b)

Figure 8: Errors of estimation, (a) absolute error, and
(b) relative error, where red dot refers to the
mean values.

tive joints (i.e. elbow flexion/extension, shoulder flex-
ion/extension and shoulder abduction/adduction) and
1 passive joint (shoulder internal/external rotation). In
these experiments shoulder abduction/adduction and
internal/external rotation motions are restricted and
only elbow/shoulder flexion/extension motors are ac-
tuated.

Figure 9: Upper-body exoskeleton for physical assis-
tance testing.

The exoskeleton adapts admittance control and grav-
ity compensation. Admittance control is implemented
to control the elbow actuator motion, whereas, grav-

ity compensation is implemented to provide support
at shoulder joint. The block diagram of the control
algorithm is presented in Fig. 10.

The control input u relayed to exoskeleton is,

u = [τe τs] (4)

where τe represents the elbow actuator control input
and τs the shoulder actuator control input.

The elbow torque is dependent on interaction torque
τint at attachment cuff and assistance torque τa asso-
ciated to the payload ρ, which are computed by

τint = fp · r (5)

τa = kAL ρglpsin(θe + θs) (6)

where fp is the interaction port force that is measured
from the port cuff in Fig. 9, r is the distance from the
middle point of the interaction port cuff to elbow joint,
g is the gravity acceleration, lp is the distance from
elbow joint to the center of palm and kAL is assistance
coefficient, which is computed through

kAL =
A

1−A
(7)

where A ∈ [0, 1), defines the percentage of assistance
provided by the exoskeleton. Eq. 7 ensures the equi-
librium between human effort and exoskeleton’s assis-
tance for a desired value of A, in order to perform the
task jointly.

After determining the interaction and assistive force,
the corresponding joint torque is computed, which is
followed by the admittance filter (Y(s)) to obtain the
desired velocity. Both are mathematically represented
as,

τnet = τint + τa (8)

Y (s) =
ωd(s)

τnet(s)
=

1

Bs+D + K
s

(9)

where τnet is the required joint torque, ωd is the de-
sired velocity and B, D and K represent the inertia,
damping and stiffness parameters of the admittance fil-
ter. Furthermore, the desired joint velocity is tracked
through a PI controller which outputs the control input
τe given by,

τe = kp ωe + ki

∫
ωedt (10)

where kp and ki are the proportional and integral gains,
respectively. ωe is the error signal and is given by,

ωe = ωd − ωa (11)
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Figure 10: Exoskeleton control block diagram, where A* and B* are two blocks for control of shoulder and elbow
joint, respectively.

Table 1: Exoskeleton and control parameters

Parameter Value Parameter Value
me 1.39 kg A 0.5
ms 0.307 kg ks 50
le 0.165 m B 0.05 kgm2

ls 0.15 m D 0.105 Nsm−1

lse 0.33 m K 0 Nm−1

r 0.27 m kp 1
rfr 0.30 m ki 0.0067

where ωa represents the actual joint angular velocity.
The shoulder actuation is controlled with gravity

compensation. The shoulder joint control input τs is
computed by,

τs = msglssinθs+(me+ρkAL)g(lesin(θe+θs)+lsesinθs)
(12)

where me and ms represent the forearm and upper arm
link mass, le is the distance from elbow joint to the
center of mass of forearm link, ls is the distance from
shoulder joint to the center of mass of upper arm link
and lse is the distance from shoulder joint to elbow
joint. The values of the exoskeleton and control pa-
rameters are provided in Table 1.

The results of the estimated payload and physical
assistance provided by exoskeleton are shown in Fig.
11. Figure 11(a) shows the results of subject holding a
payload of 2.5 kg without wearing the active exoskele-
ton, in an arm configuration i.e. θe = 88◦ and θs =
24◦ approximately. It can be seen that the estimated
payload value is close to the actual payload value i.e.
2.5 kg.

Figures 11(b) and 11(c) show the result of payload
estimation and joint torques, respectively, for subject
carrying the same payload while wearing the exoskele-
ton, in arm configuration similar to the payload carry-
ing task without exoskeleton. In this test, the exoskele-

(a)

(b)

(c)

Figure 11: Exoskeleton control results, (a) estimated
payload without exoskeleton, (b) estimated
payload with exoskeleton and (c) torques
provided by exoskeleton at each joint, first
in transparent mode (3-21 s) and then in
assistive mode (31-52 s).
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ton worked in transparent mode for t=3-21 s and then
in assistive mode for t=31-52 s.

It can be seen that in transparent mode the esti-
mated payload is approximately 2 kg, which is slightly
less than the estimated payload without exoskeleton
that was nearly 2.4 kg. This can be justified as in
transparent mode the exoskeleton provides slight as-
sistance and therefore, effort exerted by upper arm
muscles will decrease. The decrease in muscle effort
results in decrease of MCI force. Since our method of
payload estimation is based on upper arm MCI force,
therefore with the decease in MCI force the algorithm
will estimate reduced payload.

Comparing the results of payload carrying task with-
out exoskeleton and payload carrying task with ex-
oskeleton in assistive mode, it can be seen that the
estimated payload value decreased from 2.4 kg to 1.2
kg, respectively. The decrease in payload value justi-
fies that the exoskeleton is providing assistance in load
carrying task. As explained earlier, the payload esti-
mation algorithm is based on MCI force of upper arm
muscles. With assistance from exoskeleton, the up-
per arm muscles activity will decrease. The decrease
in muscle activity causes the MCI force to decrease.
Therefore, it is seen that in assistive exoskeleton con-
trol the 2.5 kg payload is estimated, or in other words,
felt as 1.2 kg payload carried by the subject.

6 Discussion

In this work, we developed a novel method for the esti-
mation of payload. The developed method shows some
advantages for exoskeleton assistance control.

The new method is advantageous in reducing com-
plexity in upper arm exoskeleton control. Convention-
ally, in order to provide assistance at elbow and shoul-
der joint, activities of muscles that govern the elbow
and shoulder joint movement need to be observed. This
makes the system physically and computationally com-
plex. In this work only biceps muscle readings along
with elbow and shoulder joint encoder are used to es-
timate the payload. The method has significantly re-
duced the complexity not only in real-time operations
but also in training sessions. Additionally, the sensor
band can be readily and conveniently put on human
arms and used when needed. Moreover, unlike EMG
based solutions FSR output is not affected by the skin
condition and slight displacement from optimum posi-
tion does not affect the sensor output.

It is noticed that the developed method has some
limitations. One limitation is that the sensor band
readings can be affected by external interference. Sen-
sor band primarily measures the contact force that
can result from external contact, which can be cuffs

to hold the exoskeleton. Therefore, the design of the
cuffs needs to be in a way to not come in contact with
the FSRs. Possible saturation of FSR sensor output is
another limitation. The amplifier is thus required to be
properly tuned in order to avoid saturation. These lim-
itations need further improvements in future research.

7 Conclusion

The paper presents a novel method of estimating pay-
load using an FSR based sensor band. The sensor
band is able to measure the muscle contraction-induced
forces. Machine learning is used to process and inter-
pret the readings of the sensor, which yields the pay-
load estimated. The method has been tested and val-
idated in a series of testing and then applied to the
assistive control of an upper-body exoskeleton to pro-
vide required assistance.

The main contribution of the presented work lies in
the convenient and accurate estimation of payload us-
ing an FSR based sensor band, which makes it sim-
ple and effective for practical use. In this work, the
accuracy of payload determination is tested through
experiments. This method also makes it possible for
exoskeletons to control physical assistance with a sim-
ple setup such as the FSR based sensor band. The
experimental work on the exoskeleton control for load
carrying assistance justifies this possibility, which is an-
other contribution of this work.

In the presented work sensor band is applied for
upper-body exoskeleton control. The sensor technol-
ogy can also be used in other systems, for example,
soft/rigid hand exoskeleton or lower limb exoskeleton
to detect the load level. The future work will focus on
more comprehensive testing of the payload estimation
and extending the current work to full upper-body ex-
oskeleton control. Moreover, comparative study of dif-
ferent regression algorithms for the estimation of pay-
load will be considered. The developed sensor technol-
ogy with various control strategies will also be consid-
ered.
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