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Abstract

This paper considers the on-line implementation of the modulating function method, for parameter and
state estimation, for the model of an air-handling unit, central element of HVAC systems. After recalling
the few elements of the method, more attention is paid on issues related to its on-line implementation, issues
for which we use two different techniques. Experimental results are obtained after implementation of the
algorithms on a heat flow experiment, and they are compared with conventional techniques (conventional
tools from Matlab for parameter estimation, and a simple Luenberger observer for state estimation) for
their validation.
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1 Introduction

The challenges of the clear evidence of climate change
(Edenhofer and Seyboth, 2013) bring in the front-line
new regulations which aim to reduce the green-house
gas emissions in all sectors. A notable amount of emis-
sions as well as energy consumption is accounted by
buildings, both in the industrial and residential sector.
According to Rey-Hernandez et al. (2018), the need for
heating is going to decrease while the cooling demand
in buildings is going to increase in the coming decades
due to the climate change. In this respect, heating
ventilation and air conditioning (HVAC) systems with
higher energy efficiency and better building designs are
continuously researched and developed.

To facilitate the transition towards reducing the en-

ergy consumption and the green-house gas emissions,
mathematical models of buildings have been intensively
used. The simulation tools available today (Crawley
et al., 2008) and the ongoing research offer a high
variety of possibilities when it comes to design opti-
mization (Kheiri, 2018), renewable integration (Zhou,
2018), retrofitting (Fan and Xia, 2018), on-line fault
detection diagnosis (Bonvini et al., 2014) and even op-
timized real-time control.

The HVAC system is one very important part of the
building, which in Europe is estimated to share 76% of
the total energy use (Gruber et al., 2014). The duty of
this system is to ensure a comfortable indoor environ-
ment by regulating the temperature and the air qual-
ity. The well-functioning of the HVAC system will also
contribute to an optimal energy consumption. Several
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subsystems are considered when modeling an HVAC
system, as explained in Satyavada and Baldi (2016).
Among them, the air handling unit (AHU) is the sub-
system whose role is to condition the air circulated
through the building. Different models have been pro-
posed in the literature for modeling an AHU: physi-
cal models described by partial differential equations
used by most of the simulation tools available (Craw-
ley et al., 2008), transfer functions (Afroz et al., 2017),
data-driven models (Afram and Janabi-Sharifi, 2014),
and hybrid models or reduced-order models (ROM)
(Afram and Janabi-Sharifi, 2015).

The latter lead to many possibilities as they easily
link to estimation and control scenarios where real-
time capabilities are important. In this paper, we
investigate the use of the so-called modulating func-
tion method to perform both state and parameter esti-
mation on a continuous-time ROM- based on a sim-
ple thermal-electrical analogy (Fraisse et al., 2002).
In comparison with more conventional approaches us-
ing discrete-time such as Kalman filtering, performing
both state and parameter estimation in continuous-
time relates better to the formalism in which the sys-
tem is originally modeled and ensures the convergence
of the estimates to the real values when sampling time
approaches zero (Unbehauen and Rao, 1997). Com-
pared to their discrete-time counterparts estimating
either parameters or state components is the neces-
sity of considering time derivatives. The modulating
function technique, originally introduced by Shinbrot
(Shinbrot, 1957), allows to circumvent this issue ele-
gantly, with the use of fixed-length time integrals of
the measured signals, akin to continuous-time finite
impulse response (FIR) filtering. This offers the ad-
ditional advantages of giving estimates after a fixed
and predetermined amount of time, contrary to usual
Kalman-based or observer-based methods. Originally
proposed towards parameter estimation, the modulat-
ing function method was more recently extended to in-
clude state estimation (Liu et al., 2014) (Jouffroy and
Reger, 2015).

Many studies considering the modulating function
approach showed satisfactory performance, but mostly
in simulations using artificial data (Jouffroy and Reger,
2015) or sources generated from real profiles (Asiri
et al., 2017). In contrast to that and to the best of
our knowledge, not many applications can be found
in the literature dealing with experiments done on ac-
tual measurements, to the notable exception of Daniel-
Berhe and Unbehauen (1998), where Hartley modulat-
ing functions are used to estimate the parameters of a
thyristor driven DC-motor.

This paper addresses the question of real-time de-
terministic parameter and state estimation of an air

handling unit using the modulating function method.
The corresponding algorithms are implemented in Mat-
lab/Simulink on an actual heat flow model and ex-
perimental results based on noisy measurements are
presented. While the model itself is easy to develop
and implement, performing estimation of its param-
eters and states is still a challenge given the actual
distributed nature of these parameters, which are also
subject to possible changes over time. We also look at
practical aspects related to implementation issues for
using the modulating function method in an on-line sit-
uation, and which we believe has been less considered
in the literature. The main contributions of this paper
are: 1) the proposal of a technique within the modulat-
ing function framework whereby a modulating function
is defined based on online measurements as opposed to
a priori; 2) another technique where a modulating func-
tion is defined as a solution of a state-space represen-
tation, thus allowing for rapid implementation in Mat-
lab/Simulink; and 3) the actual implementation and
testing of these algorithms on an experimental plat-
form consisting of a heat flow model. In doing so and
contrary to what can be usually seen in the literature,
we focus more on application aspects than performance
and statistical properties of the estimates, which have
been done elsewhere (see for example the interesting
work in Liu and Laleg-Kirati (2015)). Preliminary re-
sults were reported in Ionesi and Jouffroy (2018), where
only parameter estimation using the first technique is
addressed.

After this introduction, we start this paper by briefly
explaining the principle of an HVAC system and that
of an AHU, and give a simple ROM of the latter (sec-
tion 2). Then, the basics of the modulating function
method are recalled for both parameter and the state
estimation in a state-space context (section 3). A fol-
lowing section is more specifically addressed to issues
that are more prone to arise in an on-line scenario,
i.e. possible singularities coming from the choice of
the modulating function, and ease of implementation
of the moving-horizon version in a block diagram envi-
ronment such as Simulink. For this, we use two differ-
ent techniques, each one dedicated to these two specific
issues (section 4). We validate the proposed techniques
on a heat flow model and discuss our experimental re-
sults (section 5). Brief concluding remarks end this
paper (section 6).

2 Heat Flow Model of an AHU

2.1 System description

The HVAC system within a building can be configured
in many different ways with regards to the buildings’
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layout and purpose, application or users’ needs. It usu-
ally contains a variety of components such as chillers,
cooling towers, condensing boilers, AHUs, heat pumps,
heat recovery units, fans, control valves, pipes, etc. as
described, for example, in Satyavada and Baldi (2016).
The air flow in a typical compact HVAC system can
be represented by the schematic diagram shown in Fig.
1. The heating and cooling coils are part of separate
networks with complex units that deliver cold or heat
based on requirements. Similar representations can
be seen in Dey and Dong (2016) or Chen and Treado
(2014).

An important component of the HVAC system is the
AHU (marked with green dashed box in Fig. 1). The
role of this component is to condition the air that is
used for the ventilation of the rooms in order to main-
tain a comfortable indoor environment in terms of tem-
perature and air quality. In this unit, the fresh air
is mixed with air coming from the rooms in a mix-
ing chamber, then is circulated by a constant air vol-
ume flow fan over a cooling/heating coil. Based on
the needs, the air is heated or cooled accordingly, so
that the temperature at the exit of the unit achieves
prescribed values.

Figure 1: Air flow diagram through a typical fan coil
compact HVAC

2.2 Mathematical modeling

Many models have been developed to represent the dy-
namic heat flow behavior of an AHU. In the existing
literature, the models that have been developed range
from the use of basic physics (Setayesh et al., 2015)
to advanced data mining algorithms such as artificial
neural networks and other machine learning techniques
(Afram et al., 2018). An overview of the variety of
these models can be found in Afroz et al. (2017).

The heat flow which is considered here is schemati-

Figure 2: Internal heat flow profile

cally represented in Fig. 2. It simply consists of a fan,
a heating coil, and a duct where temperature sensors
can be placed. As expected from basic considerations,
the temperature profile of the flowing medium, as well
as the heat transfer coefficients typically varies with
the length L of the duct (see for example Bergman
and Incropera (2011)). However, in the present appli-
cation, only the temperature at the exit of the unit is
of interest as it is typically the one which one wants to
regulate. Hence we will, in the following, consider the
measured temperature Tm,L, hereafter simply short-
ened as Tm. In order to model this heat flow, we resort
to second-order linear ROM. A similar albeit first-order
model is described in Afram and Janabi-Sharifi (2015).

Figure 3: RC network analogy of the heat flow

The proposed 2nd order linear model uses the resis-
tance capacitor (RC) network analogy depicted in Fig.
3. In order to develop the model, we first write a flow
balance equation for each node. Hence, we get

Cm
dTm
dt

=
1

Rme
(Te − Tm) +Qh (1)

for node 1, representing the air inside the unit, where
Tm is the measured temperature in the AHU and Te
is the envelope/surface temperature of the AHU, while
Qh is the heating/cooling load added in the AHU. The
constant parameters of this flow balance equation are
Cm, the summed heat capacity of the sensor and of
the air inside the unit and Rme, the thermal resistance
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between the temperature sensor and the envelope of
the unit.
For node 2, the surface/envelope of the unit, we have
the differential relation

Ce
dTe
dt

=
1

Rme
(Tm − Te) +

1

Rer
(Tr − Te) (2)

where Tr is the temperature of the room surrounding
the unit. In equation (2), constant parameters are Ce,
the heat capacity of the envelope of the AHU, and Rer,
the total thermal resistance between the envelope of the
unit and the room.

From eqs. (1)-(2), it is simple to obtain the state-
space representation

ẋ = Ax + Bu (3)

y = Cx (4)

where, defining the state vector and the input vector
as

x = [Tm, Te]
T
, (5)

and
u = [Qh, Tr]

T
(6)

while assuming we only measure the temperature at
the end of the unit, i.e. y = Tm, we have the matrices

A =

[
− 1
CmRme

1
CmRme

1
CeRme

−( 1
CeRme

+ 1
CeRer

)

]
, (7)

B =

[ 1
Cm

0

0 1
CeRer

]
, (8)

C =
[
1 0

]
. (9)

3 The Modulating Function
Method: parameter and state
estimation

In this section, we briefly recall the basics of the mod-
ulating function method. For the sake of clarity, we
do so on single-input single-output systems, with the
multiple-input case as a direct extension.

The modulating function method being primarily
based on an input-output description of a dynamical
system, we start, as a preliminary by transforming our
state-space presentation (3)-(4). Hence, considering
the n-dimensional case where x ∈ Rn, u ∈ R and y ∈ R,
we differentiate the output equation (4) n−1 times and
get the well-known expression

ȳ = Ox + Tū (10)

where ȳ = [y, ẏ, ..., y(n−1)]T and ū = [u, u̇, ..., u(n−1)]T .
Matrix O is the well-known observability matrix of the

Kalman criterion and matrix T is the system specific
Toeplitz matrix given by

T =


0 0 . . . 0

CB 0
. . .

...
...

...
. . . 0

CAn−2B CAn−3B . . . 0

 . (11)

Then, differentiating equation (4) one more time and
isolating x in expression (10), we get

y(n) = CAnO−1(ȳ −Tū) + CCRū (12)

where the reversed controllability matrix CR is given
by

CR = [A(n−1)B,A(n−2)B, ...,AB,B]. (13)

Note that an obvious condition for expression (12) to
be defined is the observability of state-space represen-
tation (3)-(4). We thus have the input-output form

y(n) = −aT ȳ + bT ū (14)

where aT = CAnO−1 = [a0, a1, ..., an−1] and bT =
CCR − CAnO−1T = [b0, b1, ..., bn−1]. Defining then
the vector Y as Y = [ȳT , ūT ]T , the following para-
metric form is obtained

y(n) = YTθ, (15)

where the unknown parameter vector θ ∈ R2n is given
by θ = [−aT ,bT ]T . In case a constant and unknown
disturbance d is impacting the system’s behavior at
the same level as the input, expression (15) can be
simply modified such that Yd = [1,YT ]T replaces Y
and θd = [d,θT ]T replaces θ.

Before proceeding, let us first recall the definition of
a modulating function (see Liu et al. (2014), Jouffroy
and Reger (2015)).

Definition 1 The sufficiently smooth function ϕ :
[0, T ] → R is called a modulating function (of order
k) if at least one of its boundaries and its derivatives
up to order k equals zero, i.e. if

ϕ(i)(0) · ϕ(i)(T ) = 0, i = 0, k − 1. (16)

A modulating function where ϕ(i)(0) = 0 and ϕ(i)(T ) 6=
0 (for i = 0, k − 1) is called a left modulating func-
tion, while a modulating function with ϕ(i)(0) 6= 0
and ϕ(i)(T ) = 0 is called a right modulating func-
tion. If a modulating function is such that we have
ϕ(i)(0) = ϕ(i)(T ) = 0, then it is called a total modulat-
ing function.
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Note that a more general definition of a modulat-
ing function (see Jouffroy and Reger (2015)) allows to
include expanding horizons, allowing thus to include
alternative integral approaches (Mathew and Fairman,
1972) (Saha and Rao, 1980).

In this paper, we are interested in on-line estima-
tion. Regarding parameter estimation, we hereby use
the following receding-horizon integral operator on the
signal y(t), using a total modulating function given by
(Noack et al., 2018)

Li[y] :=

∫ t

t−T
(−1)iϕ(i)(τ − t+ T )y(τ)dτ. (17)

where i = 0, k − 1 and T > 0. Due to the fact that ϕ(t)
is a total modulating function and by simple integra-
tion by parts, operator (17) has the important property
that

L0[y(i)] = Li[y]. (18)

Then, applying operator L0[·] on each time-varying sig-
nal of equality (15), and using property (18), we are
able to avoid both explicit time-derivatives of measured
signals and unknown initial conditions to get

z = wTθ, (19)

where
z = Ln[y] (20)

and

w = [L0[y], L1[y], ..., Ln−1[y], L0[u], L1[u], ..., Ln−1[u]]T .
(21)

Finally, we can obtain an estimate of parameter vec-
tor θ by either proceeding to a conventional receding-
horizon Gramian-based estimator (Reger and Jouf-
froy, 2009), (Reger and Jouffroy, 2008) over a horizon
T ′ > 0, or aggregate a sufficient number of expressions
(19), each one obtained with a different total modulat-
ing function, so that with mt ≥ 2n total modulating
functions, we get the set of linear equations

z = WTθ (22)

where z = [z1, z2, ..., zmt ]
T and W = [w1,w2, ...,wmt ].

In this case, we can in principle directly get the param-
eter vector estimate by computing

θ̂ =
(
WWT

)−1
Wz (23)

or, alternatively, proceed by adding another receding-
horizon stage similar to the Gramian-based estimator
alluded to above in order to remove noise further, and
define the estimate as

θ̂ =

(∫ t

t−T ′
W(τ)WT (τ)dτ

)−1 ∫ t

t−T ′
W(τ)z(τ)dτ.

(24)

Turning now to state estimation, we resort to an
integral operator based, this time, on a left modulating
function, and given by

Lil[y] :=

∫ t

t−T
(−1)iϕ

(i)
l (τ − t+ T )y(τ)dτ, (25)

where ϕl(t) ∈ [0, T ] is a left modulating function. Us-
ing again integration by parts, and because of the fact
that ϕl(T ) 6= 0, we have

L0
l [y

(i)] =

i−1∑
k=0

(−1)kϕ
(k)
l (T )y(i−1−k)(t) + Lil[y]. (26)

Proceeding then by applying operator L0
l [.] on each

signal of equation (14), we get the expression

ϕlȳ+aTΓlȳ−bTΓlū = bTLl[u]−aTLl[y]−Lnl [y] (27)

where

ϕl =
[
(−1)n−1ϕ

(n−1)
l (T ), (−1)n−2ϕ

(n−2)
l (T ), . . .

. . . , (−1)0ϕ
(0)
l (T )

]
, (28)

Γl=


0 0 · · · 0

(−1)0ϕ
(0)
l (T ) 0

. . .
...

...
. . .

. . . 0

(−1)n−2ϕ
(0)
l (T ) . . . (−1)0ϕ

(0)
l (T ) 0

 (29)

and
Ll[y] =

[
L0
l [y], L1

l [y], ..., Ln−1l [y]
]T

(30)

(and similarly for Ll[u]).
Noticing then that(

ϕl + aTΓl
)
T = bTΓl, (31)

expression (27) can be put into a form similar to linear
paramtric form (19), i.e. we have

zl = wT
l (ȳ −Tū) , (32)

where
zl = bTLl[u]− aTLl[y]− Lnl [y] (33)

and
wl =

(
ϕl + aTΓl

)T
. (34)

Combining then ml ≥ n left modulating functions, we
obtain, similarly to parametric form (22), the expres-
sion

zl = WT
l (ȳ −Tū) , (35)

which, defining the state corresponding to an observ-
ability canonical form as

x̄ = ȳ −Tū, (36)
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leads to its estimate ˆ̄x with an expression similar to
estimate (23). Alternatively, we can also estimate the
original state of the system (3)-(4) by using expression
(10), thus leading to the simple transformation

x̂ = O−1 ˆ̄x. (37)

4 Implementing the modulating
function method for on-line
applications

4.1 Using time-varying modulating
functions
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Figure 4: Parameter estimate â0 (top) and operator
L0[y] (bottom) for the oscillator example
(38).

Early works on the use of the modulating function
method for offline identification of unknown parame-
ters (see for example Pearson and Lee (1985)) start
with the definition of a set of specific and predefined
modulating functions, which can take different forms
(ie Hartly, splines, trigonometric functions, etc). Once
a sufficient number of modulating functions are used,
one can get a parameter estimate directly by simple
inversion, as in (22). However, when considering an
on-line and receding-horizon situation, this can gener-
ally lead, especially with the presence of noise on the
measurements, to singularity issues. For example, con-
sidering the trivial system

ÿ + a0y = 0, (38)

applying the modulating function method would sim-
ply lead to

â0 = −L
2[y]

L0[y]
, (39)

where the denominator of (39) could create difficulties.
As an illustration, we have simulated the sinusoidal sig-
nal y(t) = 15 sin 2t, corrupted with a uniform noise. As
can be seen in Fig. 4, the estimate of a0, obtained with
the fixed total modulating function ϕ(t) = t2(t − T )2,
shows singularities around the time when the signal
L0[y](t) has its zero-crossings (see also similar spiking
behaviors in Figure 3 of Co and Ungarala (1997)). See-
ing L0[y](t) =< ϕ, y > as a dot product between two
functions, one has therefore an orthogonality issue be-
tween these functions.

While one way to go around this issue typically con-
sists of using a gradient or recursive least-squares algo-
rithm (or even using more modulating functions), an-
other possibility is to continuously redefine the modu-
lating functions based on the current batch of the mea-
sured signals y(t) and u(t).
Indeed, setting the number of total modulating func-
tions to mt = 2n, we impose a normalizing constraint
represented as

W = Imt . (40)

In this way, we are simply bypassing the matrix inver-
sion of (22) or (24). Realizing this constraint hence
consists of finding the set of mt modulating functions
that will fulfil (40). Since W is composed of mt vectors
(21), where Li[y] is given by (17), we have a set of mt

integro-differential equations, where the unknowns are
the mt total modulating functions ϕk’s, which are also
constrained at both their boundaries due to their total
modulating function nature.

Let us then transform this set of integro-differential
equations into integral equations by considering the n-
th order derivative of ϕ(t) arising in expression (20),
and define the new function α : [0, T ]→ R as

α(t) := ϕ(n)(t). (41)

Then, using the anti-derivative notation

f (−i)(τ) :=

∫ τ

0

∫ τi

0

...

∫ τ2

0

f(τ1)dτ1 dτ2 . . . dτi, (42)

the right boundaries of the derivatives of a total mod-
ulating function ϕ(t) can simply be re-written as

α(−i)(T ) = 0 , i = 1, n. (43)

while the zero left boundary conditions are simply ful-
filled thanks to the successive integration of α. Thus,
integral operator can now be re-written as

Li[y] :=

∫ t

t−T
(−1)iα(i−n)(τ − t+ T )y(τ)dτ, (44)

so that w in (21) only consists of integrals of α. Hence,
expression (40) is now a set of integral equations.
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Grouping the right boundary conditions (43) similarly,
we also get

Γ = 0n×mt , (45)

where Γ = [α1,α2, ...,αmt ], with each vector
αj composed by all boundary conditions (43) for
this specific modulating function, i.e. αj =

[α
(−n)
j , α

(−n+1)
j , ..., α

(−1)
j ]T .

Combining finally (40) with (45), we have a system of
linear integral equations, which is simple to solve nu-
merically (details of this numerical method are given in
Appendix 6). Once a function α(·) is obtained for each
instant t, constraint (40) is fulfilled, and Gramian-like
expression (24) is simply replaced with

θ̂(t) =
1

T ′

∫ t

t−T ′
z(τ)dτ. (46)

As for state estimation, it is also possible to normalize
Wl similarly so that we have the state estimate

x̂ = O−1zl. (47)

The most notable difference with parameter estima-
tion, is that, since Wl in (35) does not depend directly
on the measured signals, the ml = n left modulating
functions ϕl,j(·) can be chosen once and for all t. Note
that a similar kind of normalization was also mentioned
in the context of least-squares observers (see Medvedev
(1996)).

4.2 Direct continuous-time
implementation

When needing to choose a particular estimation
method, one can obviously focus on performance in
terms of the best possible match between the output
of the considered plant and its corresponding predicted
output using the parameter estimates. However, other
factors can also be under consideration, such as ease of
implementation, portability of the code, etc. Regard-
ing the on-line use of modulating functions, the latter
are usually first discretized (as they would be in the
previous subsection or as in Co and Ungarala (1997)
and Noack et al. (2018)). However, modern tools for
simulation and control such as Matlab/Simulink al-
lows one to program systems and algorithms directly in
a continuous-time setting, thus allowing for the addi-
tional advantage of being able to consider non-regular
samplings. In this section, we present one way to do
that, with in mind direct continuous-time implementa-
tion, as opposed to looking primarly at performance.
To do so, we first begin by introducing a function
ψ : [0, T ]→ R, which we will refer to as reversed mod-
ulating function, and where ψ(·) is such that

ψ(t) := ϕ(T − t) (48)

where ϕ(·) is our usual modulating function of the very
basic following definition 1. In this case, note that, be-
cause of reversal (48), a left reversed modulating func-
tion corresponds to a right modulating function, and
vice-versa. Then, replace operator (17) with

M i[y] :=

∫ t

t−T
ψ(i)(t− τ)y(τ)dτ. (49)

The advantage of (49), is that, besides its slightly sim-
pler expression than (17), it is directly put under a
usual convolution form. Note, also similarly to (18),
we have the property that M0[y(i)] = M i[y].
Next, we notice that many modulating functions de-
fined in the literature can be expressed by the solution
of a differential equation. For example, the total mod-
ulating function ϕ(t) = t2(t − T )2 used for the triv-
ial system (38) is the solution of differential equation
ϕ(5)(t) = 0. Hence, we introduce the following state-
space representation

χ̇ = Λχ, χ(0) = ` (50)

ψ = Σχ (51)

where the state vector χ ∈ Rnψ . Thus, integral opera-
tor (49) can easily be rewritten using some advantages
of state-space representations. For example, M0[y] can
be rewritten as

M0[y] =

∫ t

t−T
ΣeΛ(t−τ)` y(τ)dτ. (52)

and similarly for the other M i[y]’s. Defining now the
new vector ξy ∈ Rnψ as

ξy :=

∫ t

0

eΛ(t−τ)` y(τ)dτ, (53)

then it can be shown that

M0[y] = Σ
[
ξy(t)− eΛT ξy(t− T )

]
(54)

where vector ξy(t) is obtained as the solution of differ-
ential equation

ξ̇y = Λξy + `y. (55)

Interestingly, imposing now the additional constraint
of stability on system (50)1 means that filter (54)-(55)
can be used to implement M0[y] in software tools such
as Matlab/Simulink without having to proceed to a
preliminary discretization (the same is of course valid
for M0[u], with a state vector ξu). Note that comput-
ing M i[y] is not more difficult, and we would simply
have

M i[y] = ΣΛi
[
ξy(t)− eΛT ξy(t− T )

]
. (56)

1Note that this is not the case with the polynomial modulating
functions typically used in the literature, such as ϕ(t) = t2(t−
T )2 previously mentioned and used in example (38).
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Gathering now the M i[y] terms similarly to (30), we
have

M[y] = OMF

[
ξy(t)− eΛT ξy(t− T )

]
, (57)

where

M[y] =
[
M0[y],M1[y], ...,Mn−1[y]

]T
(58)

and

OMF =
[
ΣT , (ΣΛ)T , ..., (ΣΛn−1)T

]T
. (59)

From there, we end up with regression (19) again,
where

w =
[
MT [y],MT [u]

]T
(60)

while z is given by

z = Mn[y]. (61)

In case one wants to favor speed over precision, it is
possible to use a single total (reversed) modulating
function and use a Gramian-based expression in or-
der to get the parameter estimate. Another advantage
of using expressions such as (52) or (54), where the
modulating function is generated by a stable system, is
that similar expressions can also be used to obtain the
parameter estimates themselves. Indeed, as in Reger
and Jouffroy (2009), we can use a generalized Gramian
expression where the kernel is generated thanks to a
reversed modulating function. Indeed, multiply each
term of (19) by ψ(t− τ)w(τ) and integrate to get∫ t

t−T
ψ(t−τ)w(τ)z(τ)dτ =

∫ t

t−T
ψ(t−τ)w(τ)wT (τ)dτ θ

(62)
which can be rewritten as

M0[h] = M0[G]θ (63)

where we have vector h = wz and matrix G = wwT .
Proceeding in the same manner as we did from expres-
sions (49) to (57), we can define, for M0[h], the filter
equations

ξ̇h = Λξh + `h (64)

M0[h] = Σ
[
ξh(t)− eΛT ξh(t− T )

]
(65)

where ξh ∈ R2nnψ , and where Λ = Λ⊗I2n, ` = `⊗I2n
and Σ = Σ ⊗ I2n (with ⊗ for the Kronecker symbol).
For M0[G], we have same kind of filter, this time with
a matrix differential equation

Ξ̇G = ΛΞG + `G (66)

M0[G] = Σ
[
ΞG(t)− eΛTΞG(t− T )

]
(67)

where ΞG ∈ R2nnψ×2n. Finally, an estimate of param-
eter vector θ is obtained by simple inversion as

θ̂ =
(
M0[G]

)−1
M0[h]. (68)

Interestingly, and moving now to state estimation,
the method simply consists in repeating the steps (32)
to (37) by taking into account that left modulating
integral operators Lil[y] and Lil[u] are replaced by the
right reversed modulating integral operators M i

r[y] and
M i
r[u], where we have the property

M0
r [y(i)] =

i−1∑
k=0

ψ(k)
r (0)y(i−1−k)(t) +M i

r[y] (69)

(note, therefore, that steps (60) through (68) are obvi-
ously not necessary).

5 Case study

As a case study, a heat flow experimental chamber
produced by Quanser company is considered. This
plant reproduces the thermodynamics of an Air Han-
dling Unit of an HVAC system. A few technical de-
tails related to the experimental set-up will be first in-
troduced, while results of on-line parameter and state
estimation and their validation will be presented after-
wards.

5.1 Quanser heat flow chamber

The heat flow experiment (Fig. 5) consists of a fiber-
glass chamber equipped with a fan blowing over an elec-
tric heating coil. Both the fan and the heater can be
controlled externally with a 0 − 5V input signal. The
air temperature inside the box is measured by three
temperature sensors positioned equidistantly. Addi-
tionally, we make use of the Quanser Q8-USB Data Ac-
quisition Board in order to enable the communication
between the computer and the experimental chamber.

5.2 Initial set-up and simulation
environment

In the literature, the considered system model for con-
trol applications is usually of first order model (with
or without time delay) (Malek et al., 2013), (Yamada,
2005). However, in practice, a second-order model can
have its importance, as the surface does not only repre-
sent the envelope/box storing heat but also other com-
ponents (fans, dampers, filters). In a faulty situation
where the box /components inside get overheated and
can be damaged, estimating the box temperature can
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Figure 5: Quanser Heat Flow Experimental setup

generate important information, and help in fault de-
tection. The set-up will be used both for parameter es-
timation and state estimation scenarios where the lat-
ter uses the results of the former. Because the chamber
is located in a closed indoor environment and the ex-
periment is conducted on short time interval, we will
assume that the room temperature (Tr) is unknown
but constant during the experiment. In order to stay
close to an actual operation of a constant flow AHU,
the fan is operating with a constant speed during the
whole experiment.

5.3 On-line parameter estimation

Using steps (10) to (15) on state-space representation
(3)-(9), we obtain the ordinary differential equation

y(2) = −a1y(1) − a0y + b1u
(1) + b0u+ d (70)

where y(t) = Tm(t) is the measured output,
u(t) = 1/kh Qh(t) is the heater input (with kh =
400/120 W/V beeing the heater gain), and a1, a0, b1,
b0 and d are the unknown coefficients of the equation,
the last one, d, representing the impact of the unknown
input Tr mentioned above, and considered here as a
constant disturbance. These coefficients are related to
the parameters of system (1)-(2) as follows:

a0 =
1

CmRmeCeRer
(71)

a1 =
1

CeRme
+

1

CeRer
+

1

CmRme
(72)

b0 =
1

CmCeRme
+

1

CmCeRer
(73)

b1 =
1

Cm
(74)

d =
1

CmRmeCeRer
Tr. (75)

To perform the parameter estimation with the time-
varying modulating function technique, we have used
the integration period T = 2000 sec with a sampling
time Ts = 2 sec, thus giving a total of 1000 samples.
The additional receding horizon interval for obtain-
ing the estimates is T ′ = 2000 sec. For the direct
continuous-time implementation technique, the matri-
ces Λ, Σ are simply

Λ =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−λ5 −5λ4 −10λ3 −10λ2 −5λ

 (76)

and
Σ =

[
1 0 · · · 0

]
, (77)

while the initial conditions of (50), representing the
boundary conditions of the modulating function, are
set as

` = χ(0) =


0
0

2T 2

−12T − 6λT 2

24 + 48λT + 12λ2T 2

 . (78)

To implement filter (54)-(55), we have set λ = 0.02
(in matrix Λ, see (76), and ` = χ(0), see (78)) and
T = 3000 sec, while for filters (64)-(65) and (66)-(67),
we chose λ = 0.001 and T = 3000 sec.

Input profile and persistence of excitation

A key point in parameter estimation is the persistence
of excitation of the input signal. Reliable estimates
will be obtained if the input signal is sufficiently rich
so that the observed response contains the required in-
formation to perform the estimation process. As spec-
ified in Ljung (1999), if a specific matrix characteristic
of the input signal is non-singular, the input is con-
sidered to be persistent. It is well-known that, when
estimating the parameters of a system with an input
signal having enough persistence of excitation, the esti-
mated parameters approach their true values (Khalil,
1996). However, it is worth mentioning that, unfor-
tunately, not enough attention has been given to the
consideration of persistent inputs in building models
and thus not many studies can be found on this topic
(Li and Wen, 2014).
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Figure 6: Input profile for parameter estimation

The considered input signal for parameter estima-
tion is a pulse function shown in Fig. 6. This signal
is informative enough to capture the dynamics of
the heating chamber and obtain the estimates. The
amplitude of signal is selected to 1.5V to change the
temperature of chamber up to around 30◦C. The
period of the signal is 2000 sec, with the pulse width
of 60%, which is long enough for the plant to reach at
least 80% of its final value.

Estimates obtained using the modulating function
method

The results of parameter estimation using the mod-
ulating function method described in section 3 are
presented in Fig. 7. The results are given for both
methods: the time-vayring modulating function tech-
nique (continuous lines) and the direct continuous-
time technique (dashed lines). As expected, the di-
rect continuous-time technique, using only one modu-
lating function, does not perform as well as the time-
varying technique (although it is computationally more
efficient). The latter shows quite good results and con-
verges to an almost constant value after the additional
receding horizon interval T ′.

Relating to the time-varying modulating function
method presented in section 4.1, Fig. 8 shows how
one of the total modulating functions (corresponding
in this case to a1) evolves over time. The modulat-
ing function is a signal of length T = 2000 sec, and
the figure shows its evolution from t = 8000 sec to
t = 10000 sec (the curve highlighted in red is the MF
at time obtained t = 8000 sec). As it can be seen, the
amplitude of the MF is constantly adapting to new in-
coming data/measurements that are fed on-line to the
estimator.

5.4 Validation

Since there is no upfront knowledge about the real
values of the parameters, we will compare the results
of the modulating function method with the results

of two well-known estimation methods available in
the System Identification Toolbox for Matlab (Ljung,
2007). These two methods, applicable to continuous-
time systems, are the Transfer Function method
and the Grey-box estimation method. Moreover, for
further inspection of the results, the system output
is reconstructed using the estimated parameters
compared with the real measurements.

5.4.1 Continuous Transfer Function Estimation

The first method used for comparison is the “tfest”
function of Matlab, which estimates a continuous
transfer function for the given data. In this method,
the input and output of the model are filtered using a
pre-filter L(s), and the differential equation of the sys-
tem is written in a regression form with respect to the
filtered signals. The parameters are then estimated to
minimize the prediction error.

Matlab uses different numerical search methods to
estimate the parameters iteratively. Whenever the
default setting is selected, a combination of four
line search algorithms ’Subspace Gauss-Newton least
squares search’, ’Levenberg-Marquardt least squares
search’, ’Adaptive subspace Gauss-Newton search’,
and ’Steepest descent least squares search’ methods
will be applied and the first descent direction leading
to a reduction in estimation cost is used.

In order to initialize the parameters, different algo-
rithms are available in Matlab. The algorithm used in
this study is the instrumental variable approach (Gar-
nier et al., 2003), (Ljung, 2009).

5.4.2 Grey-Box Model Estimation

The second method used for comparison is the grey-box
model estimation using the “idgrey” function of Mat-
lab. This method directly uses the parametric state-
space representation of the system given in (3)-(4) and
minimizes the prediction error.
Matlab uses the same numerical search methods as
explained in section 5.4.1. However, contrary to the
transfer function estimation technique, the initial value
for the parameters should be given by the user.

Table 1 shows the parameters estimated using the
MF method together with those obtained by the trans-
fer function and grey-box approaches. As it can be
seen, the results of the MF method are very close to
the results of the grey-box method, while there is a dis-
crepancy in some parameters with when compared to
the transfer function method. The comparison is more
clear in Fig. 9 where the output of the estimated mod-
els are plotted together and compared with the mea-
sured data. The goodness of the fit is 97.57%, 97.33%
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Figure 7: Estimated parameters

Figure 8: Evolution of the modulation function

and 97.65%, for the modulating function, transfer func-
tion and grey-box methods, respectively, which con-
firms the validity of the proposed MF method.

The main reason for achieving a slightly different
(better) result by grey-box estimation method is that
the reported goodness of fit was based on non-filtered
measured data which matches the structure of grey-box
method. The grey-box method works on the original
input-output signals whereas the other two methods,
i.e. modulating function and transfer function meth-
ods, use a pre-filter for the input-output signals (L(s)

in transfer function method and the modulating inte-
gral operators in the MF method). Therefore the op-
timization algorithm in the MF and transfer function
methods minimizes the filtered error while the reported
goodness of fit was based on the original error. In case
we would define the goodness of fit based on filtered
signals, a higher fit would be achieved for the MF and
transfer function methods.

Another important point that should be mentioned
is that our implementation of the MF method is on-
line while the other two methods are iterative and off-
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Table 1: Summary of estimated parameters

Grey-box Transfer
Function

Modulating
Function

a0 6.2415e-05 2.028e-05 7.868e-5
a1 0.028655 0.02539 0.02896
b0 2.6766e-04 9.98e-05 3.2983-04
b1 0.095424 0.09291 0.09228
d 0.001491 4.72991e-

04
0.001887

line. In particular, the convergence of the grey-box
method highly depends on the initial guess for the pa-
rameters (in this study, the estimated parameters from
MF method are considered as initial guess for the grey-
box method). Therefore, achieving a result in the order
of off-line methods in finite time further attests the ac-
ceptable performance of our results.

5.5 On-line state estimation

Given the estimated parameters from previous section,
it is straightforward to apply the method described in
section 3 to obtain the state estimates. Here, both
Tm and Ts are estimated on-line using an integration
interval T = 50sec with sampling period Ts = 1sec.

In a normal operation set-up, the requirements for
the temperature at the exit of the AHU might not vary
too much in a short time interval. However, to test the
proposed state estimation algorithm in different work
conditions, a pseudo random input profile shown in
Fig. 10 is applied to the system. This is not a common

operating profile, but it helps to visualize the state es-
timator and evaluate its behavior.

In Fig. 11, it can be observed that the estimated
temperature inside the chamber is very close to the
noisy measured temperature. Also, as expected, the
value for the state representing the envelope temper-
ature of the chamber is lower than the temperature
inside, and follows the same heating profile which is in
perfect concordance with the heater input profile. The
estimated states are comparably good with the ones ob-
tained from a standard observer. In this specific case,
the convergence of the states is faster due to the fixed
integration interval, which ensures convergence after
the first receding horizon window.

6 Conclusion

A 2nd-order model is presented in this paper to rep-
resent the heat flow in the air handling unit present
in compact HVAC systems. To facilitate the real-time
applications of the model, we have proposed the use
of a comparably unconventional method, the modu-
lating function, with two different implementation ap-
proaches.

As a case study, a heat flow experiment by Quanser,
whose thermodynamics are very close to those of
an AHU, is considered. The on-line parameter and
state estimation algorithms were implemented in Mat-
lab/Simulink. The results underline the potential of
this approach, showing a good match between the mea-
sured and estimated parameters and states. A good
convergence of the parameters was observed, having as
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Figure 10: Input profile for state estimation
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Figure 11: Measured vs. estimated temperature inside the heating chamber using the modulating function and
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a baseline the parameters estimated with standard es-
timation methods: the transfer function method and
the grey-box method. Moreover, using several (as op-
posed to only one) modulating functions gives a better
estimation of the parameters compared with an ap-
proach that uses only one, at the cost of speed although
the latter requires less resources to implement and run.
The method can be successfully used for on-line state
estimation as well, the results showing similar perfor-
mances to a standard observer.
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Appendix: Numerical integration

For implementing the proposed estimation method a
simple Riemann sum is used, taking into account that
the signals y(t) and u(t) are in practice sampled at

173



Modeling, Identification and Control

regular intervals. Therefore, for the simple boundary
condition (43), with i = 1, we use the approximation

α(−1)(T ) =

∫ t

t−T
α(τ−t+T ) dτ ≈

N∑
k=1

Tsα(k) = Ts1
Tα

(79)
where N is the number of samples over the interval, Ts
is the sampling period, and α(k) is the sampled value
of function α at iteration k, which gives the vector
α = [α(1),α(2), ...,α(N)]T . Vector 1 is a vector of
dimension N containing only ones. Using a similar
reasoning, α(−1)(τ) can be approximated as

α(−1)(τ) =

∫ τ

t−T
α(σ−t+T )dσ ≈

k∑
l=1

Tsα(l) =: α(−1)(k)

(80)
so that

α(−1) = TsQα (81)

where α(−1) = [α(−1)(1),α(−1)(2), ...,α(−1)(N)]T ,
while the matrix Q is a lower triangular matrix of ones
given by

Q =


1 0 . . . 0
...

. . .
. . .

...
1 . . . 1 0
1 1 . . . 1

 . (82)

Hence, for i = 2, condition (43) gives

α(−2)(T ) =

∫ t

t−T
α(−1)(τ−t+T ) dτ ≈ T 2

s 1TQα. (83)

and for i = 3, n:

α(−i)(T ) =

∫ t

t−T
α(−i+1)(τ − t+ T ) dτ ≈ T is1TQi−1α.

(84)
The operators Li[y] of w in equation (44) can be sim-
ilarly approximated, so that

Li[y] :=

∫ t

t−T
(−1)iα(i−n)(τ − t+ T )y(τ)dτ

≈ (−1)iTn−i+1
s yTQn−iα, i = 0, n− 1

(85)

Likewise are defined the remaining terms of w in
expression (44), where vector y in operator approxi-
mation (85) is replaced by u. Taking now mt = 2n
modulating functions, W in equation (40) can thus be
approximated by

W ≈W = Kα (86)

where α = [α1,α2, ...,αmt ] and the matrix K is given
by

K =



(−1)0Tn+1
s yTQn

...
(−1)n−1T 2

s yTQ
(−1)0Tn+1

s uTQn

...
(−1)n−1T 2

s uTQ


. (87)

Proceeding similarly with the discrete approximation
of Γ in boundary constraint expression (45), it can be
expressed

Γ ≈ Γ = Bα (88)

where

B =


Tns 1TQn−1

...
T 2
s 1TQ
Ts1

T

 . (89)

Then, matrix α is obtained by simple pseudoinversion,
i.e.

α =

[
K
B

]+ [
Imφ

0n×mφ

]
. (90)

The discrete approximation of z is given by

z ≈ z = Tsy
Tα. (91)

The parameter estimate vector is finally obtained af-
ter applying the simple discretized version of receding-
horizon expression (46).
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Gruber, M., Trüschel, A., and Dalenbäck, J.-
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