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Abstract

Estimation of unmeasured states plays an essential role in the design of control systems as well as for
monitoring of hydropower plants. The standard Kalman filter gives the optimum state estimates for linear
systems. However, this optimality is not relevant for nonlinear models and a choice between stochastic
and deterministic approaches is not so obvious in this case. Thus the application of a nonlinear observer
in a hydropower system is of interest here as an alternative to the widely used extended Kalman filter.

This paper provides a study and design of a reduced order nonlinear observer to estimate the states
of a hydropower system. Implementation of the nonlinear observer is done in OpenModelica and added to
our in-house hydropower Modelica library — OpenHPL, where different models for hydropower systems
are assembled. Simulations and analysis of the designed observer are done in Python using a Python API
for operating OpenModelica simulations.
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1 Introduction

1.1 Background

A transition towards more renewable energy sources is
currently happening in Europe and all over the world.
This situation leads to increased use of flexible hy-
dropower plants to compensate for the highly chang-
ing production from intermittent energy sources such
as wind and solar irradiation. For this reason, devel-
opment of advanced control structures or optimization
of existing controllers for hydropower plants become a
key task.

Full state information of the model of a hydropower
system is needed to design an advanced controller such
as model predictive control (MPC) or other model
based controllers. However, some of the states can
not be directly measured. Instead, a combination
of a mathematical model and available measurements
can be used to estimate the unmeasured states in hy-
dropower plants.

Popular state estimation methods include the
Kalman filter (KF) with a wide range of extensions that

apply depending on model structure, computational ef-
fort, etc. The Kalman filter is based on a stochastic
approach. Alternatively, an observer based on a de-
terministic approach can be used for state estimation.
This alternative is of particular interest for nonlinear
systems such as the hydropower one, because the stan-
dard Kalman filter provides an optimum solution only
for linear system, Anderson and Moore (1979). In ad-
dition, a nonlinear observer can lead to significant re-
duction of computational effort compared to a Kalman
filter. Such observers can quickly find an estimate of
the states and provide these as an input to fast nonlin-
ear control algorithms. On the other hand, the proof
of convergence is non-trivial for nonlinear observers.

1.2 Previous Work

A basic introduction to a variety of state estimation
techniques based on the stochastic approach for gen-
eral linear and nonlinear systems is provided in Simon
(2006). As an alternative, an observer based on a deter-
ministic approach can be used for the state estimation
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and was first proposed by Luenberger (1964) for lin-
ear systems. Extension of the linear observer design
for nonlinear systems has been presented in Krener
and Isidori (1983). Although a huge variety of tech-
niques for designing nonlinear observer exist, Kravaris
et al. (2007); El-Farra et al. (2005); Andrieu and Praly
(2006), the design of nonlinear observers is still a chal-
lenging task.

Some work on modeling the waterway for a high
head hydropower system together with a generator, the
Francis turbine, and a governor, using OpenModelica1,
is given in Vytvytskyi and Lie (2017, 2018b). Unit
models have been assembled in our in-house Modelica2

library OpenHPL.
A Python API3 for OpenModelica already exists and

provides the possibilities for performing simulations of
OpenModelica models via Python4, Lie et al. (2016).
Python in turn gives much wider possibilities for plot-
ting, analysis, and optimization than what is possible
in OpenModelica Vytvytskyi and Lie (2018a).

1.3 Overview of Paper

In this paper, the main contribution is the develop-
ment and simulation study of a reduced order nonlinear
observer for state estimation in a hydropower system.
Implementation of the observer is done in OpenMod-
elica using OpenHPL. Simulation and analysis of the
designed observer is done in Python using the Python
API for OpenModelica.

The paper is structured as follows: Section 2 gives
a system description of a high head hydropower plant.
Section 3 gives an overview of the hydropower model.
Design and proof of convergence for the nonlinear re-
duced order observer for the hydropower system is pro-
vided in Section 4. Simulation results from a number
of case studies are presented in Sections 5 and 6. Fi-
nally, discussion and conclusions are given in Section
7.

2 System description

High head plants typically collect and store water in
reservoirs in mountains, with tunnels leading the rela-
tively small flow of water down a considerable height
difference to the aggregated turbine and generator.
The electricity produced by the generator is then trans-
ferred through power lines to consumers. A typical
structure for a high head hydropower plant is depicted
in Fig. 1, Vytvytskyi and Lie (2017).

1https://openmodelica.org
2https://www.modelica.org
3https://goo.gl/Qyjqq2
4https://www.python.org

Figure 1: Overview of the structure of the high head
hydropower plant.

For simulations in this paper, data from the Sunds-
barm hydropower plant in Telemark, Norway is used
with data provided in Vytvytskyi and Lie (2017).

3 Model

3.1 Model overview

For modeling the hydropower system, Modelica library
OpenHPL is used. This is an in-house hydropower
library, where different parts of the waterway com-
ponents such as reservoir, conduit, surge tank, and
turbine, have been assembled. In this library, differ-
ent waterway components of the hydropower system
are described by both mass and momentum balance,
and include compressible/incompressible water or elas-
tic/inelastic pipe walls. An overview of the mathemat-
ical models and methods used in this library is given
in Vytvytskyi and Lie (2017); Splavska et al. (2017).

In this study, a simple hydropower model for the
waterway is considered with the following assumptions
for simplification:

• constant water level in reservoirs,

• power generation simplifications (constant speed
of turbine),

• incompressible water and inelastic pipe.

All these simplifications lead to a simple hydropower
model that consists of only three states Vytvytskyi and
Lie (2018a).

3.2 Model presentation

In Modelica, models are described as differential al-
gebraic equations (DAEs), with differential and alge-
braic variables. OpenModelica by default transforms
the DAEs into state space form with auxiliary vari-
ables: states are typically a subset of the differential
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variables, while the auxiliary variables are the remain-
ing variables. For the design of nonlinear observers,
the model of the hydropower plant is represented by
ordinary differential equations (ODE). The states of
the model are given in vector x as follows:

x =

 V̇p
V̇s
hs

 =

 x1
x2
x3

 (1)

Here, V̇p is the volumetric flow rate through the pen-

stock (equal to the flow rate in the discharge), V̇s is
the volumetric flow rate in the surge tank, and hs is
the level in the surge tank, see Fig. 1. The sum of the
flow rates in the penstock and the surge tank defines
the flow rate in the intake: V̇i = x1 + x2. The states
are described by differential equations as follows:

dx1
dt

=
Zp

ρ
(pn − ptr1) +Apg

Hp

Lp

− 1

8
πfDBpx1 |x1| (2)

dx2
dt

=
Zs

ρ

(
pn − patm

)
−Asg

Hs

Ls

− 1

8
πfDBsx2 |x2| (3)

dx3
dt

=
x2Hs

AsLs
(4)

Here, pn is the manifold node pressure, ptr1 is the tur-
bine inlet pressure, patm is the atmospheric pressure.
Ap and As are the cross section areas of the penstock
and surge tank, respectively. Hp, Hs, and Lp, Ls are
the height differences and the lengths of the penstock
and surge tank, respectively. g is the gravitational ac-
celeration and ρ is the water density. fD is the Darcy
friction factor and is assumed to be constant for sim-
plicity. Bp, Bs, Zp are geometrical parameters of the
penstock and surge tank, and are presented in Eq. 5
and 6.

Zs =
AsHs

x3Ls
, Zi =

Ai

Li
, Zp =

Ap

Lp
, Zd =

Ad

Ld
(5)

Bs =
Ds

A2
s

, Bi =
Di

A2
i

, Bp =
Dp

A2
p

, Bd =
Dd

A2
d

(6)

Here, Zp, Zs, Zd, Zi are ratios of the cross section
area to the length of the penstock, surge tank, dis-
charge, and intake, respectively. Bp, Bs, Bd, Bi are

also ratios of the diameter to the squared cross section
area of the penstock, surge tank, discharge, and intake,
respectively.

The manifold and turbine inlet pressures are defined
as follows:

ptr1 = Kz

[
Zppn + ρg

(
Ap

Hp

Lp
−Ad

Hd

Ld

)
+ Zd

(
x21p

atm

C2
vu

2
v

+ pt

)
+

1

8
πρx1 |x1| (fD,dBd − fD,pBp)

]
(7)

pn = Kp

[
Zipr + Zsp

atm +Kpdz

(
x21p

atm

C2
vu

2
v

+ pt

)
+ ρg

(
Ap

Hp

Lp
(Kpd − 1)−KpdAd

Hd

Ld
+As

Hs

Ls

+Ai
Hi

Li

)
+

1

8
πρ
(
fD,sBsx2 |x2|

− fD,iBi (x2 + x1) |x2 + x1|

+ (fD,dBdKpd + fD,pBp (1−Kpd))x1 |x1|
)]

(8)

Here, Cv is the turbine valve capacity and uv is the
turbine valve signal. pr and pt are the inlet penstock
and the outlet discharge pressures, respectively. These
pressures are defined from the atmospheric pressure
and depths of the reservoir — Hr, and tail water — Ht

as follows:

pr = patm + ρgHr

pt = patm + ρgHt
(9)

Coefficients Kz, Kpd, Kpdz, and Kp are defined from
the geometric ratios Z as follows:

Kz = 1
Zd+Zp

, Kpdz = ZpZdKz

Kpd = ZpKz, Kp = 1
Zi+Zs+Kpdz

(10)

This simple hydropower model is next used to design
the reduced order nonlinear observer.

4 Observer design

Consider a general nonlinear system with state x, con-
trol signal u, output y and nonlinear functions f() and
g() for the state and output, respectively:

dx
dt = f(x, u)
y = g(x, u)

(11)
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A standard presentation of any full order observer is
given by Eq. 12,

dx̂
dt = f(x̂, u) + L(y − ŷ)

ŷ = g(x̂, u)
(12)

Here, x̂ and ŷ are the estimates of state x and output
y, respectively. L is the observer gain and could be a
nonlinear function, L = L(x, u). The observation error
dynamic, x̃, is described as:

dx̃

dt
=
dx

dt
− dx̂

dt
= f(x, u)− f(x̂, u)− L(y − ŷ) (13)

The observer gain should be chosen or designed such
that dx̃

dt is an asymptotically stable system. This design
can be done using Lyapunov based nonlinear system
stability analysis, Smith (1995), and is, in general, a
challenging task.

In real hydropower plants, the states x1 and x3 are
usually available as measurements. Thus, in this study
these two states are assumed to be known. The un-
known state is x2. A reduced order observer for es-
timating the unmeasured state x2 is designed for the
hydropower system. The following variable transfor-
mation is chosen for observing x2:

ζ2 = x2 + L1x1 + L3x3 (14)

Here, L1 and L3 are the observer gains, also known
as injection gains. Injection from both measured states
x1 and x3 are used to design the nonlinear observer.
However, the discussion on the estimation of x2 by in-
jecting only one of the measured states is provided in
Section 5. From Eq. 14, the dynamics for ζ2 is,

dζ2
dt

=
dx2
dt

+ L1
dx1
dt

+ L3
dx3
dt

(15)

The dynamics of the measured states x1 and x3 from
Eq. 2 and 4 are inserted into Eq. 15.

dζ2
dt

=
Zs

ρ

(
pn − patm

)
−Asg

Hs

Ls

− 1

8
πfD,sBsx2 |x2|+ L3

(
x2Hs

AsLs

)
+ L1

(
Zp

ρ
(pn − ptr1)

+Apg
Hp

Lp
− 1

8
πfD,pBpx1 |x1|

)
(16)

Now, the observer for x2 is,

dζ̂2
dt

=
Zs

ρ

(
pn − patm

)
−Asg

Hs

Ls

− 1

8
πfD,sBsx̂2 |x̂2|+ L3

(
x̂2Hs

AsLs

)
+ L1

(
Zp

ρ
(pn − ptr1)

+Apg
Hp

Lp
− 1

8
πfD,pBpx1 |x1|

)
(17)

The estimation error dynamic is defined as:

dζ̃2
dt
≡ dζ2

dt
− dζ̂2

dt
(18)

After inserting dζ2
dt and dζ̂2

dt from Eq. 16 and 17 into
Eq. 18, the estimation error dynamic is,

dζ̃2
dt

=
1

8
πfD,sBs [(Zs + L1Kpdz)Kp − 1]

× (x2 |x2| − x̂2 |x̂2|) +
L3Hs

AsLs
ζ̃2

− 1

8
π (Zs + L1Kpdz)KpfD,iBi

× ((x2 + x1) |x2 + x1| − (x̂2 + x1) |x̂2 + x1|) (19)

The estimation error dynamic should be analyzed for
stability so that its state converges to zero in a finite
amount of time. For this reason, Lyapunov stability
analysis is used and a candidate Lyapunov function V
is considered as follows:

V =
1

2
ζ̃22 (20)

For the Lyapunov analysis, it must be shown that
a derivative of the Lyapunov function is less than or
equal to zero: dV

dt ≤ 0. So, the derivative of this Lya-
punov function is,

dV

dt
= ζ̃2

dζ̃2
dt

(21)

Inserting the observation error dynamic from Eq. 19,
the derivative of the Lyapunov function dV

dt becomes as
follows:
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dV

dt
=

1

8
πfD,sBs [(Zs + L1Kpdz)Kp − 1]

× (x2 |x2| − x̂2 |x̂2|) ζ̃2 +
L3Hs

AsLs
ζ̃22

− 1

8
π (Zs + L1Kpdz)KpfD,iBi

× ((x2 + x1) |x2 + x1| − (x̂2 + x1) |x̂2 + x1|)ζ̃2 (22)

Equation 22 has three terms on its right hand side.
Each of these terms will be analyzed separately and it
will be shown that each term fulfills the conditions for
Lyapunov stability. In the process of analyzing Eq. 22,
the conditions for observer gains L1 and L3 will be
calculated. From the first term on the right hand side
of Eq. 22, let us suppose,

f2 = (x2 |x2| − x̂2 |x̂2|) (x2 − x̂2) (23)

Then, the following conditions exist:

{
if x2 − x̂2 = ζ̃2 = 0,

if x2 − x̂2 = ζ̃2 6= 0,

then f2 = 0

then f2 > 0
(24)

Hence, f2 ≥ 0, i.e., f2 is positive semidefinite. This
implies that,

1

8
πfD,sBs [(Zs + L1Kpdz)Kp − 1] ≤ 0 (25)

From Equation 25, a condition for the observer gain
L1 can be defined as follows:

L1 ≥
Zs

Kpdz
− 1

KpdzKp
(26)

Next, the second term on the right hand side of
Eq. 22 can be analyzed. Here, it is obvious that ζ̃22 ≥ 0.
For this second term to be negative semi definite, the
condition given by Eq. 27 should be fulfilled. Thus, the
condition for the observer gain L3 is,

L3Hs

AsLs
≤ 0→ L3 ≤ 0 (27)

Finally, from the third term on the right hand side
of Eq. 22, let us suppose,

f1,2 = ((x2 + x1) |x2 + x1|
− (x̂2 + x1) |x̂2 + x1|)× (x2 − x̂2) (28)

Knowing that x1 ≥ 0 (flow rate in the penstock is
positive), it follows that,

{
if x2 − x̂2 = ζ̃2 = 0,

if x2 − x̂2 = ζ̃2 6= 0,

then f1,2 = 0

then f1,2 > 0
(29)

Hence, f1,2 ≥ 0, i.e., f1,2 is positive semidefinite.
This implies that,

1

8
π (Zs + L1Kpdz)KpfD,iBi ≥ 0 (30)

From here, another condition for the observer gain
L1 is found,

L1 ≤
Zs

Kpdz
(31)

Thus from Eq. 26, 27 and 31, the required condition
for the stable dynamics of the estimation error dynamic
dζ̃2
dt is:

Zs

Kpdz
− 1

KpdzKp
≤ L1 ≤ Zs

Kpdz

L3 ≤ 0
(32)

Hence, the designed reduced order nonlinear ob-
server for estimating the volumetric flow rate in the
surge tank (x2) is written as,

x̂2 = ζ̂2 − L1x1 − L3x3 (33)

Here, ζ̂2 is the estimate of the transformed coordi-
nate for x2 and its dynamics is defined using Eq. 17.
L1 and L3 are the observer gains that are defined us-
ing conditions in Eq. 32. A summary of the developed
reduced order nonlinear observer for the hydropower
system is given in Table 1.

Thus, the observer convergence is proved here, and
this in turn proves observability of the state x2. Then,
the observer simulations are illustrated in the next sec-
tion.

5 Results and discussions

5.1 Simulation setup

The reduced order nonlinear observer is implemented
in OpenModelica, which is an open source Modelica
based modeling and simulation tool designed for indus-
trial and academic usage. Using the Python API for
OpenModelica, simulations of the observer are carried
out in Python.

Three cases are presented in this section for the dy-
namic simulations of the developed reduced order non-
linear observer:
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Table 1: Summary of the reduced order nonlinear ob-
server for the hydropower system.

Plant

dx1

dt =
Zp

ρ (pn − ptr1) + Apg
Hp

Lp
−

1
8πfDBpx1 |x1|
dx2

dt = Zs

ρ (pn − patm) − Asg
Hs

Ls
−

1
8πfDBsx2 |x2|
dx3

dt = x2Hs

AsLs

Observer

x̂2 = ζ̂2 − L1x1 − L3x3
dζ̂2
dt = Zs

ρ (pn − patm) − Asg
Hs

Ls
−

1
8πfD,sBsx̂2 |x̂2| + L3

(
x̂2Hs

AsLs

)
+

L1

(
Zp

ρ (pn − ptr1) + Apg
Hp

Lp
−

1
8πfD,pBpx1 |x1|

)
Design
variables

Zs

Kpdz
− 1

KpdzKp
≤ L1 ≤ Zs

Kpdz

L3 ≤ 0

• Only the penstock volumetric flow rate V̇p ≈ 19.07
(x1) is injected, i.e., L3 = 0.

• Only the surge tank water height hs (x3) is in-
jected, i.e., L1 = 0.

• Both the penstock volumetric flow rate and the
surge tank water height (x1 and x3) are injected.

Measurement data from a real hydropower plant are
not available, instead outputs from hydropower model
simulations are used. Two hydropower models are used
to represent reality: (a) a detailed model, and (b) the
simplified model as described in Section 3. Hence, for
all cases below, the hydropower models are first simu-
lated separately to get the appropriate synthetic mea-
surements.

A set of dynamic simulations for the reduced or-
der nonlinear observer is performed, where the sim-
ulations start from the steady state (V̇p ≈ 19.07 m3/s
and hs ≈ 69.91 m) and last for 60 s with a sample
time of 0.5 s. A disturbance occurs at time 10 s with a
rapid closing of the turbine valve by 3%. First, an ap-
propriate synthetic measurement data for the penstock
flow rate and for the surge tank water height are cre-
ated from the simulation of the simplified hydropower
model. These measurements are shown in Fig. 2.

Moreover, the effect of measurement noise on the
estimated state is also of interest. White measurement

noise, vk, is added to the measurement signals and used
for the observer simulations. For both measurements,
the mean of the measurement noise vk is zero, i.e., v̄k =
0, and the noise covariance Vk are the same for both
measurements for simplicity and equals Vk = 0.0001,
i.e., vk ∼ N (0, 0001). The noisy measurements are also
shown in Fig. 2.

Figure 2: Measurements from the simplified hy-
dropower model with and without noise for
the dynamic simulations.

5.2 Using one measurement

First, the studies of the observer behavior that uses
only one measurement (one state is injected) are per-
formed, i.e., one of the observers’ gains is set to zero.
The results of the dynamic simulations without any
measurement noises for these cases are shown in Fig. 3
for the observer that use only the penstock flow rate
measurement (L3 = 0) and in Fig. 5 for the observer
that use only the surge tank water height measurement
(L1 = 0). In both figures, three values for the nonzero
observer gain are used to study the observer behavior.

Figure 3: Observer behavior when only measurement
x1 is injected. Gain L1 is varied to study its
effect on convergence.
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Figure 4: Observer behavior for longer simulation time
when only measurement x1 is injected.

Figure 5: Observer behavior when only measurement
x3 is injected. Gain L3 is varied to study its
effect on convergence.

From Fig. 3, it is seen that the estimates from the
observer that uses only the penstock flow rate mea-
surement as injection converges properly for the gain
value of L1 = 1.0. With the values of observer gain
as L1 = −1.0 and L1 = 2.0, significant overshooting
and undershooting are seen during the transient pe-
riod, respectively. With these values for the gain L1,
the observer requires a relatively longer time for con-
vergence, see Fig. 4 with extended simulation time of
900 s. Thus a proper choice of observer gain L1 seems
to be necessary for obtaining faster convergence.

Figure 5 shows that when only the surge tank wa-
ter height measurement is used as injection, the ob-
server shows some overshooting in the estimates when
the disturbance occurs, and then converges to the cor-
rect value. Here, a lower value of the observer gain L3

leads to faster convergence.

From both these cases, it can be concluded that it is
possible to estimate the unmeasured state x2 by using
only one of the available measurements. However, it
is also of interest to check the observer’s performance
when both measurements are used together.

Figure 6: Observer behavior when both measurement
x1 and x3 are injected. Gain L1 is varied to
study it’s effect on convergence.

5.3 Using both measurements

The next set of simulations show the behavior of the
observer that uses both the penstock flow rate and
the surge tank water height as available measurements.
First, dynamic simulations for the reduced order non-
linear observer without any measurement noises are
presented in Fig. 6. Here, the observer gain L1 is varied
and another gain is set to a fixed value of L3 = −1.0.

As compared to Fig. 3 (where only one measurement
was injected), Fig. 6 shows that by using both the avail-
able measurements, the performance of the observer is
significantly improved. With the same choices of gain
L1 (for both cases), it can be seen that the observer
converges much faster when both measurements are
used in the observer design. It is also noticed but not
shown in Fig. 6 that with lower values for the observer
gain L3, the estimates converges relatively faster to
their correct values.

However, the observer with the fixed gain L1 = 1.0
and varying gain L3 produces very similar results for
different choices of gain L3. This is shown in Fig. 7,
where measurements without noises are used for dy-
namic simulation of the reduced order nonlinear ob-
server. Here, different values are used for the observer
gain L3 and the other gain is set to a fixed value of
L1 = 1.0.

As compared to Fig. 5 (where only one measurement
was used), Fig. 7 shows that the performance of the ob-
server is vastly improved when both measurements are
used. In this case, the overshoots are reduced signifi-
cantly. It can be concluded that when both measure-
ments are used in the observer design, and with proper
choices of gains L1 and L3, the performance of the ob-
server can be vastly improved. However, it is also pos-
sible to estimate the unmeasured state by using only
one measurement. With this, the proof of convergence
of the observer design perhaps will also be simplified.
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Figure 7: Observer behavior when both measurement
x1 and x3 are injected. Gain L3 is varied to
study it’s effect on convergence.

In addition, in some cases it might be considered to
use a simple observer for estimating x2 (the surge tank
flow rate) that is based only on Eq. 4 and use changes
in x3 (the surge tank water height) as measurements
(through model inversion). This simple observer will
be more sensitive to noise, but otherwise it would have
many advantages, such as simplicity (no tuning pa-
rameters) and ease of implementation. However, this
simple observer will work fine as long as the model is
considered to be perfect. In reality, model parameters
might not be exactly known and/or there might be
other unknown input disturbances acting on the sys-
tem. Under such conditions, open-loop observers may
not function well and it might be necessary to introduce
feedback by injecting the measurements. Furthermore
in Fig. 7, it has been shown that by using measurement
x1 in addition to x3 as the measurement, the estima-
tion can be significantly improved.

5.4 Measurement noise influence

The performance of the observer is affected by the mea-
surement noise and the choice of the observer gains. To
illustrate this, the observer gain L3 is varied while the
gain L1 is kept constant. The influence of the measure-
ment noise on the estimate is shown in Fig. 8.

As the gain L3 is lowered, the observer converges
faster, however, this also makes the estimates more
noisy. This justifies the fact that under the presence of
measurement noises, the speed of convergence and the
occurrence of noisy estimates should be balanced prop-
erly by proper choice of observer gains. To increase
the performance of the observer with noisy measure-
ments, the measurement data should probably be pre-
processed and filtered before feeding it to the observer
in practise.

Figure 8: Effect of measurement noise on the state es-
timates with varying gain.

6 Testing observer with
measurement data from a
detailed model

It is of interest to see how the reduced order nonlinear
observer behave when the synthetic measurements are
based on a more detailed/realistic model while the sim-
ple model is used for the design of the observer. The
detailed model used for the synthetic measurements is
similar to the model presented above, but includes wa-
ter compressibility and pipe elasticity in the penstock,
see Vytvytskyi and Lie (2017) for more information
about this model. Moreover, the Darcy friction fac-
tor varies with the flow rate for all pipe units in this
detailed model.

First, appropriate synthetic measurements for the
penstock flow rate and for the surge tank water height
are created from the simulation of the more detailed
hydropower model. These measurements are shown
in Fig. 9 for the cases without and with measurement
noise. Similarly to the previous case, the same level of
measurement noise vk is used here.

Figure 9: Measurements from the more detailed hy-
dropower model.
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The dynamic simulations for the reduced order non-
linear observer that use these measurements from the
detailed model without considering measurement noise
are shown in Fig. 10. Here, the results of the observer
with re-tuned gains L1 and L3 that provides relatively
good estimation is shown in the figure.

Figure 10: Observer behavior when both measurement
x1 and x3 are injected. Measurements
without noise from the more detailed hy-
dropower model.

Figure 10 shows that fine tuning of the L1 and L3

observer gains reduce the offset between the estimates
from the observer and the results from the detailed
hydropower model.

Simulations with noisy measurements from the de-
tailed hydropower model are performed to see the in-
fluence of the noise on the estimation. The results from
the observer simulation are shown in Fig. 11, where it
can be seen that the measurement noise affects the ob-
server results, and the estimates from the observer be-
come noisier. This behavior is expected and is similar
to the results from the previous case study (Fig. 8). It
is also clearly visible that observer produces relatively
good estimates even under the presence of measure-
ment noises from the detailed hydropower model.

It is worth mentioning that the observer gains had
to be re-tuned when it is applied on a detail model.
In both cases (with/without considering measurement
noises), it can be seen that the observer converge to
the true state values. However, the performance of
the observer is relatively poor compared to the case
where perfect model (no model-observer mismatch) is
considered. Under the presence of measurement noises,
the estimates also become slightly noisy as shown in
Fig 11.

Figure 11: Observer behavior when both measurement
x1 and x3 are injected. Measurements with
noise from the more detailed hydropower
model.

7 Conclusions

The design and proof of convergence for the reduced
order nonlinear observer for the simplified hydropower
system has been presented in this paper. This observer
is designed to estimate the surge tank flow rate us-
ing the measurements from two other states (the pen-
stock flow rate and the surge tank water height). The
observer has been implemented in OpenModelica and
added to our in-house hydropower library (OpenHPL).
Then a number of simulations have been run in Python
using the Python API for OpenModelica in order to
study the designed observer.

The dynamic simulations have been performed to
show the observer behavior under the presence of input
disturbance. These simulations have been carried out
for three cases, where the measured states have been
injected separately first, and then both measured states
have been used. Moreover, the influence of the mea-
surement noise on the observer has also been presented
for the dynamic simulations. The simulations showed
that the performance of the reduced order nonlinear
observer mostly depends on the observer gain L1 for
overshooting/undershooting of the estimates, and the
gain L3 for the convergence speed.

It has also been checked, but not shown in the paper,
how the observer behaves if the designed conditions for
the observer gains are broken, e.g., L3 > 0 or L1 ≤
Zs

Kpdz
− 1

KpdzKp
and L1 ≥ Zs

Kpdz
. In case with L3 > 0,

the system becomes unstable and the observer fails.
For another case, with L1, the simulation runs without
failures. However the results become poorer.

To summarize, it has been shown that a reduced or-
der nonlinear observer can be designed and used for the
state estimation in the hydropower system. The design
of the observer is based on a simplified model with cer-
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tain assumptions. This lowers the complexity in the
design of the observer. When the observer is tested
against the simplified model, the estimates are proper
without any offsets. However, the observer is also
tested against the data from a more detailed/complex
hydropower model where simplifying assumptions are
not considered. Under such condition, the observer
has to be re-tuned. With a properly calibrated/tuned
reduced order observer, the observer can still provide
satisfactory estimates of the unmeasured state.
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27th, 2017, 138. Linköping University Electronic
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