
Modeling, Identification and Control, Vol. 40, No. 2, 2019, pp. 125–132, ISSN 1890–1328

Challenges in application of hybrid switched
control to digital hydraulic motors

I. Manganas 1 T.O. Andersen 2 P. Johansen 2 L. Schmidt 2

1E-mail: manganas.ioannis@gmail.com

2Fluid Power and Mechatronic Systems, Department of Energy Technology, Aalborg University, Pontoppidanstraede
111, 9220 Aalborg, Denmark. E-mail: {pjo, lsc, toa}@et.aau.dk

Abstract

In this paper, the challenges regarding the application of a switched control approach to a digital dis-
placement machine (DDM®) are discussed. The system under consideration is initially presented. Sub-
sequently, the reasons for considering the design and application of the specific, switched controller are
discussed. Finally, the challenges are presented, which could function as future research.
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1 Introduction

Energy efficiency and reliability are the main drivers for
the development of novel hydraulic actuators. To this
end, applications where the actuation of fluid power
components is based on on/off valves have emerged.
One example is power take-off systems, used in wave
energy converters, studied in ? and ?. Another exam-
ple is the digital displacement machine (DDM®) from
?. In the following, when the term DDM is used, it
refers to DDM®. A similar approach, whose main dif-
ference lies in the technology of the valves, is by ?. It is
an axial piston pump where instead of a swash plate,
the displacement is controlled via independent pres-
surization or de-pressurization of each piston chamber.
To this end, each cylinder is equipped with two on-
off valves; one connecting the control volume in the
chamber to high pressure and the other to low pres-
sure. This technology has the potential for increased
efficiency, since for low displacement values not every
cylinder is exposed to a high pressure difference ?.

Control of this machine can become rather compli-
cated and application dependent. One reason is the bi-
nary inputs to the on-off valves. Another reason arises
from the mode of operation, namely full or partial

stroke. The former leads to increased efficiency, how-
ever for low displacement the output can become dis-
continuous and unacceptable time delay is introduced
?. It has been shown in ? that for high operation
speed, the dynamics of the DDM can be neglected, and
a duty ratio approximation yields controllers resulting
in very satisfactory results, designed using well known
techniques.

In the case the speed and displacement are high for
the majority of the operation region, full stroke oper-
ation is preferable. In ? the discrete time dynamics
of the DDM were taken into consideration alongside
those of the plant, and LQR controllers were designed.
Since the sampling time is dependent on the speed of
the shaft, the system is brought in the position, or
shaft angle, domain. Operation at zero speed cannot
occur this way. This fact renders applications requir-
ing change of rotation direction as well as operation at
standstill infeasible.

For low speed-high torque applications, a different
strategy is needed. Furthermore, reversal of direc-
tion and position set point regulation require the shaft
speed being zero, even during a very small time in-
terval. A potential application scenario is a hydraulic
winch on an offshore platform ?,?,?. Since the number
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of cylinders is predetermined and the control inputs
are binary, it is not difficult to think of different com-
binations as different discrete states with distinct equi-
librium points. As a result a hybrid type of controller
could be an alternative to a discrete, maybe predictive,
controller.

In the field of switched electronics, especially when
the number of the different switching states is low, con-
trollers designed using a hybrid framework have been
designed. The majority of controllers in industry are
designed upon a duty ratio approximation as (S)PWM
controllers. However, the design of hybrid controllers
approaches the problem in a way that can be used for
the topic of this article. Different hybrid and opti-
mal control schemes are compared in ? and ? for the
buck and boost converter respectively. In these works,
the hybrid methodology refers to taking into considera-
tion the discontinuous switching, designing controllers
based on the complete dynamics of the converter in-
stead of a low frequency approximation. In ? and ?,
the DC-DC boost converter is considered. The hybrid
framework as presented in ? is used. The hybrid con-
troller is based on the current switching state, as well as
measurements of the continuous states in order to cal-
culate the next switching state. In ?, the same hybrid
control design framework is adapted to a single phase
DC/AC converter. The resulting controller is found in
simulations to produce lower harmonic distortion than
the PWM controller. The switched systems approach
to designing hybrid controllers for DC-DC converters
is examined in ?. The cases of the buck, boost and
buck-boost converters are illustrated as examples. All
the aforementioned works are based on systems with a
low number of switching states, or modes, which is the
consequence of the low number of switching elements.
Owing to its intuitive procedure, the last approach is
selected to be followed in the present article.

In this paper, the challenges for designing a hybrid
switched controller for a DDM operating as a motor,
are discussed. In Section 2, the DDM operating as mo-
tor is described and the nonlinear differential equations
that describe its components are presented. In Section
3, the attempted control approach is presented. In Sec-
tion 4, the challenges that hinder the direct applicabil-
ity of the selected control approach to the given system
are discussed.

2 Description of the system

2.1 Description and operation principle

The objective is either shaft angle regulation or speed
control. However, both directions of rotation might be
required. In order to keep the complexity of the design

low, the number of cylinders is N = 3. A DDM like
this is illustrated in Figure 1.
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Figure 1: A DDM consisting of 3 cylinders.

The principle of operation for the so-called creep
mode, as described in ?, is the following:

� Decide of a direction of rotation.

� Depending on the direction, a cylinder that con-
tributes positive torque towards that direction, is
pressurized.

� Block all ports of all cylinders.

� When the system is in equilibrium, a cylinder that
contributes negative torque is depressurized.

� At the next equilibrium point, the procedure is
repeated.

Modifications to this algorithm can be simultaneous
pressurization or de-pressurization of multiple cylin-
ders and not waiting to reach an equilibrium point for
the next step in the algorithm. In this document, the
case where only one cylinder can be active at a time is
investigated. Denoting for each cylinder the cases:

� 1: High pressure valve is open. The control volume
of the cylinder is pressurized.

� -1: Low pressure valve is open. The control vol-
ume of the cylinder is de-pressurized.

� 0: Both valves are closed. No flow comes in or
goes out of the chamber of the cylinder.

The allowed combinations, which constitute the dis-
crete states, for the three cylinders are shown in Table
1.

It is of interest to design a switching signal that com-
mands the change of states Sj , j = 0, 1, 2, ..., 6, so that
the resulting equilibrium point is as close as possible
to the reference. To this end, the equilibrium points of
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Table 1: Table of allowed states for the three cylinders

State C3 C2 C1

S0 0 0 0
S1 0 0 1
S2 0 1 0
S3 1 0 0
S4 0 0 -1
S5 0 -1 0
S6 -1 0 0

the system in these states must be identified, prefer-
ably in closed form. If more combinations were al-
lowed, it is expected that more equilibrium points will
be available, increasing the output resolution of the
motor. The possible combinations are mN − 2, where
m = 3, the number of possible values for the state of
each valve of a cylinder 0,−1 or 1. The 2 combina-
tions that are discarded are 111 and −1 − 1 − 1 since
the former does not produce torque and the latter cor-
responds to the idle state. It is noted here that the idle
state is an important feature of the DDM technology
for increased efficiency, but for the scope of this article
where the DDM operates as a motor, it is not used.

2.2 Model of the system

Modelling of the system follows the work in ?. The
nonlinear model of the system is consisted of:

� Piston displacement:

xp = R [1− cos (θi)] (1)

θi = θ +
2π

N
(i− 1) i = 1, 2, .., N = 3

where R is the eccentric radius and θ is the shaft
angle.

� Torque contribution of each cylinder:

τi = PiDi (2)

Di = Vdsin (θi) (3)

where Pi is the pressure of the control volume in-
side cylinder’s i chamber and Vd = A ∗ R with A
the piston area. The total torque contribution is:

τ =

N∑
i=1

τi =

= Vd [P1sin (θ1) + P2sin (θ2) + P3sin (θ3)] (4)

� Chamber pressure:

Ṗi =
βeff

V0 + Vd [1− cos(θi)]

[
−Vdθ̇sin(θi) + qH − qL

]
(5)

The temperature and pressure dependent effec-
tive oil bulk modulus is considered to be constant.
However, this is not very realistic, since the cham-
ber pressure becomes low. The terms qH and
qL correspond to the flow through the high and
low pressure valves’ orifices respectively and when
they are active:

qH = Kv

√
PH − Pi (6)

qL = Kv

√
Pi − PL (7)

As stated in ?, there exists a system that protects
against cavitation and furthermore, the valves can
open passively. This fact adds to the complexity
and difficulty finding equilibrium points.

In order to keep the order of the system low, a
rough approximation has been made regarding the
dynamics of the on-off valves. It has been assumed

that they are infinitely fast, ie. xv(t)
xv,max

≈ uv(t)
uv,max

for a wide range of input voltage frequencies. xv(t)
refers to the instantaneous position of the on-off
valve, while uv(t) refers to its input voltage. This
is not necessarily true, since the settling times
range in the order of ms, however compared to
the time constant of the shaft, they are neglected.

� The shaft dynamics, using Newton’s second law
and Equation (4), can be written as:

θ̈ = − b
J
θ̇ − τload

J
+

+
Vd
J

[P1sin (θ1) + P2sin (θ2) + P3sin (θ3)] (8)

It is assumed that τload is known and always pos-
itive for this application scenario.

� For the state vector x = [x1 x2 P1 P2 P3]
T

,
the dynamic equations describing the system are
shown in Equations (9)-(11) (see top of page 4).

2.2.1 Equilibrium when all valves are closed

An initial investigation suggests finding the equilibrium
points of the system under constant, known load. This
amounts to finding tuples (x1, P1, P2, P3) satisfying:

P1sin (x1) +P2sin

(
x1 +

2π

3

)
+

+ P3sin

(
x1 + 2

2π

3

)
=
τload
Vd

(12)

where PL ≤ Pi ≤ PH . There can be a case where
Pi > PH for the valves, see ?, but this situation is not
considered because if the high pressure valve opens,
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ẋ1 = x2 (9)

ẋ2 = − b
J
x2 +

Vd
J

[
P1sin (x1) + P2sin

(
x1 +

2π

3

)
+ P3sin

(
x1 + 2

2π

3

)]
− τload

J
(10)

Ṗi =
βeff

V0 + Vd
[
1− cos

(
x1 + (i− 1) 2π

3

)] [−x2Vdsin

(
x1 + (i− 1)

2π

3

)
+ qH,i − qL,i

]
, i = 1, 2, 3 (11)

the torque contribution will be decreased since Pi will
eventually become equal to PH .

Finding the chamber pressures and shaft angle as a
function of the load torque can be a difficult task. One
way to find a closed form solution can be the following
procedure:

� Assume that the load is not attached, the high
pressure valves are closed and the low pressure
valves are open for all cylinders.

� At an initial shaft angle x1,0, all valves are closed,
without attaching the load.

� With the shaft angle equal to x1,0, the load is at-
tached.

For each chamber, the pressure dynamics are described
by the flow continuity equation:

Ṗi = −βeff
Vi

V̇i (13)

Under the assumption that βeff is constant, using the
separation of variables to solve the differential Equa-
tion (13) for each cylinder:

Pf,i = P0,i + βeff ln

(
V0,i

Vf,i

)
(14)

where Pf,i and P0,i stand for the final and initial value
of the chamber pressure of cylinder i = 1, 2, 3, respec-
tively. The same is valid for the volumes Vf,i and V0,i.
Substituting, using the assumptions above:

P0,i = PL

V0,i = V0 + Vd

[
1− cos

(
x1,0 +

2π

N
(i− 1)

)]
Vf,i = V0 + Vd

[
1− cos

(
x1,f +

2π

N
(i− 1)

)]
Substituting Pi in Equation (12) with Equation (14)
for each cylinder, a condition that needs to be satisfied
for x1,f , x1,0 and τload is produced. The value of x1,f

at equilibrium is required to be found. It is not easy to
find a closed form for the equilibrium shaft angle, given
an initial value and a load torque. As a result, this is

implemented numerically. A loop where angle values
in the interval [0, 2π], as well as chamber pressures for
each cylinder Pi ∈ [PL, PH ] is written in Matlab. All
possible values for the angle are tested to check whether
they satisfy the condition given by Equation (12), with
Equation (14) substituted. This procedure is in other
words solving both sides of Equation (12) for all angles
and finding the points where they are equal, for a given
load and initial conditions.

For the case where 3 different initial shaft angles are
considered, the following plots of Equation (12) are
shown in Figures 2, 4 and 5. The displacement volume
for the simulation was selected as Vd = 6.3662 · 10−4

[m
3

rev ] and the load torque τload = 8.75·103 [N·m]. In the
figures, the shaft angle is iterated between 0-2π [rad]
and the equilibrium points lie on the intersection of the
total actuation torque line (blue colour) and the load
torque line (red colour).
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Figure 2: Equilibrium points when initial angle is 0
[rad].

It can be seen that depending on the initial value
of the shaft angle, different, and in some case, multi-
ple equilibrium points are present. Despite this fact, if
the followed approach is correct, the equilibrium points
could be investigated in regard to their stability prop-
erty using Lyapunov’s indirect method. However, sim-
ulation results on the nonlinear system using the same
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Figure 3: Equilibrium point when initial angle is 0
[rad], from the simulation model.
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Figure 4: Equilibrium points when initial angle is π
6

[rad].

parameters do not agree in the value of the equilibrium
point for the shaft angle. For example, in Figure 3 a
simulation is used to calculate the equilibrium point
when the initial angle equals to 0 [rad]. The same
parameters have been used for the DDM, when the
equilibrium points are analytically calculated, as de-
scribed. This result is to be compared with Figure 2,
see also discussion in section 4.1. The parameters used
are shown in Table 2.

3 Switched control

A system that switches between dynamic behaviors in
different parts of the state space is called a switched
system. Switched systems are a class of hybrid systems
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Figure 5: Equilibrium points when initial angle is π
3

[rad].

Table 2: Parameters used in simulations.

Parameter Value Unit

V0 0.250 l
Vd 0.63662 l
R 25 mm
PH 310 bar
PL 10 bar
b 200 Nm s/rad
J 534 kg m2

Kv 10−6 m2Pa−1s−1

N 3
βeff 7000 bar
τload 8.75 kNm

where no jumps in the continuous states occur when
switching between discrete states. A family of systems,
suitable for modeling the DDM operating as a motor
linearized about a point of operation, are of the form:

ẋ = Aix + bi (15)

It is important to know whether switching can result
in an unstable system and furthermore, which combi-
nation of the subsystems leads to the desired perfor-
mance.

The fact that the valves in practice have dynamics
would impose a minimum dwell time criterion, so that
the valve spool position has finished its transition from
fully open to fully closed, or vice versa. This means
that a switching between discrete states cannot occur
until the system has stayed in the current discrete state
for time at least equal to the dwell time. However,
the dynamics of the valves are considered significantly
faster and are neglected.
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Stability of switched systems can be proven by a
common Lyapunov function ?, Theorem 2.1, with time
derivative negative definite along the trajectories of all
subsystems, independently of the switching signal. It
is difficult to satisfy all the conditions for the com-
mon Lyapunov function, especially in the case that the
number of subsystems is 7.

However, if there can be a Lyapunov function for a
convex combination of the subsystems, then the switch-
ing system is uniformly stable ?, Corollary 2.3. Using
this result, it will be assumed that a convex combi-
nation exists and a Lyapunov function will be used
to investigate the conditions under which the switched
system is uniformly asymptotically stable. This will
help with the design of the switching signal.

Since the system in question is nonlinear, selecting
a Lyapunov function candidate can be a non trivial
task. However, for linear systems, there exists a way
to design Lyapunov functions, which can be a good
start for the investigation. As a result, the system is
linearized about points of operation, which should cor-
respond to the equilibrium points at each discrete state
Sj , j = 0, 1, ..., 6. As a result, the system is treated as
if it was linear and the controller is designed based on
this model. Hopefully, all initial conditions lie in the
vicinity of the region of attraction of the equilibrium
point of the plant-controller system.

It is known that for linear systems of the form:

ẋ = Ax (16)

where A is strictly Hurwitz, a suitable selection for a
Lyapunov function is:

V (x) = xTPx (17)

where P is a symmetrical and positive definite ma-
trix. The derivative of V (x) along the trajectories of
the system with dynamics described in Equation (16)
becomes:

V̇ (x) =< ∇V (x),x >= xT
(
ATP + PA

)
≤ −Q (18)

where Q is a positive definite matrix, usually selected
to be the identity matrix I.

The family of systems in this case does not need to
have strictly Hurwitz matrices, however, there should
be a convex combination that achieves this property.
Assuming that this combination exists, denoted as Aλ,
a Lyapunov function candidate is, according to Lemma
1, ?:

V (x) = xTPx (19)

V̇ (x) = xT
(
AT
λP + PAλ

)
x =

= min
i∈K

xT
(
AT
i P + PAi

)
x

≤ min
λ∈Λ

xT
(
AT
λP + PAλ

)
x < 0 (20)

where K is the set {0, 1, 2, ..., 6}. An element in K
denotes the active subsystem. Aλ denotes the convex
combination of the subsystem dynamics matrices A:

Aλ =

6∑
i=0

λiAi, λi ≤ 1,

7∑
i=0

λi = 1 (21)

For the case where there exists Aλ Hurwitz, then ac-
cording to ?, Lemma 1, a switching signal that stabi-
lizes the origin as equilibrium point can be designed
as:

σ(x) = arg min
i∈K

xTPAx (22)

3.1 The system under consideration

For the family of systems described by Equation (15),
an appropriate Lyapunov function can be:

V (e) = eTPe (23)

where e = x − xe with xe an attainable equilibrium
point. What is left is to find assumptions that will ren-
der the selected equilibrium point Uniformly Asymp-
totically Stable, preferably Globally ((G)UAS). To this
end, a switching logic and some assumptions have to
be made. The derivative of the Lyapunov function will
help with both these requirements. Along the trajec-
tories of the system in Equation (15):

V̇ (e) = 2eTPė

= 2eTP (Aσx + bσ)

= 2eTP (Aσx + bσ) + eTQσe− eTQσe

= min
i∈K

eT [2P (Aix + bi) +Qie]− eTQσe

= min
λ∈Λ

eT [2P (Aλx + bλ) +Qλe]− eTQσe

= min
λ∈Λ

eT

2PAλe + 2PAλxe + 2Pbλ︸ ︷︷ ︸
0

+Qλe

−
− eTQσe

≤ −eTQσe (24)

In order to get to the negative definite conclusion for
V̇ (e):

� The second equality comes from the fact that xe
is a static equilibrium point, belonging in the set
of attainable equilibrium points.

� Assume that there exists Qσ > 0.

� Assume that there exists a convex combination Aλ

which is Hurwitz.
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� Assume that there exists P : PT = P > 0.
The last three assumptions take the last equal-
ity to the inequality, and the conclusion that xe
is (G)UAS. The global characterization cannot be
guaranteed, since the system is nonlinear in na-
ture and this is a linearization about these equi-
librium points. There can be other equilibrium
points outside the small neighborhood where the
linearization is valid.

� In the last equality, the 0 result comes from the
fact that xe satisfies the condition of being an
equilibrium point of the linearized system, and as
a result, ẋe = 0.

The switching signal can be selected as:

σ(x,xe) = min
i∈K

eT [2P (Aix + bi) +Qie] (25)

since only one system i can be active for a given time
period and region of the state space. The selection is
based on the Lyapunov function derivative, using the
fourth equality.

Using this design, one finds the system dynamics ma-
trices, Ai, a convex combination of them Aλ which is
Hurwitz, the attainable set of equilibrium points, then
the matrices Q and P. In ?, Q is found by utilizing
the output matrix, since output feedback was used.

A somewhat different approach is made in ?. In that
approach, the switching frequency can be lowered using
a positive parameter, smaller than 1. However, every
dynamics matrix Ai must be strictly Hurwitz and an
LMI problem needs to be solved to find the matrix P.

4 Challenges

Trying to apply the approach in Section 3 to the given
system is straightforward. The very nature of the sys-
tem poses difficulties. The system in question, de-
scribed by Equations (9)-(11) is nonlinear. In order to
apply the readily available results presented in Section
3, the system is linearized. The points of lineariza-
tion should be the equilibrium points at each different
discrete state i. These states correspond to different
positions for the valves of each cylinder, as shown in
Table 1. An initial approach is to find the equilibrium
points for these states. The following step is to find
the eigenvalues of the dynamics matrices, Ai and find
a convex combination that is Hurwitz.

4.1 Equilibrium points

As noted in Section 2.2.1, it is already difficult to find
the equilibrium points when all valves are closed, or

the state S0 = 000, corresponding to a dynamics ma-
trix Ai. Obtaining the equilibrium points for the dif-
ferent states in closed form is difficult, more so when
a chamber is pressurized, since the movement of the
shaft affects the pressure in the chambers of the other
cylinders. Simulation could be a solution, however,
the effective bulk modulus should also be modeled as a
nonlinearity. This is not effective for application, since
a very high number of simulations should be realized,
to cover the majority of initial conditions and loads.
Another important prerequisite is that the equilibrium
point should be stable. This can be checked using Lya-
punov’s indirect method.

4.1.1 Linearization

Assuming one has managed to find the equilibrium
points in closed form, denoted as xe,i, i = 0, 1, ..., 6,
the next step would be to linearize the nonlinear sys-
tem to bring it to the form in Equation (16).

A =



∂f1(x)
∂x1

∂f1(x)
∂x2

∂f1(x)
∂P1

∂f1(x)
∂P2

∂f1(x)
∂P3

∂f2(x)
∂x1

∂f2(x)
∂x2

∂f2(x)
∂P1

∂f2(x)
∂P2

∂f2(x)
∂P3

∂f3(x)
∂x1

∂f3(x)
∂x2

∂f3(x)
∂P1

∂f3(x)
∂P2

∂f3(x)
∂P3

∂f4(x)
∂x1

∂f4(x)
∂x2

∂f4(x)
∂P1

∂f4(x)
∂P2

∂f4(x)
∂P3

∂f5(x)
∂x1

∂f5(x)
∂x2

∂f5(x)
∂P1

∂f5(x)
∂P2

∂f5(x)
∂P3


∣∣∣
xe,i,u•=1

(26)

b =
[
∂f1(x)
∂u•

∂f2(x)
∂u•

∂f3(x)
∂u•

∂f4(x)
∂u•

∂f5(x)
∂u•

]T ∣∣∣
xe,i,u•=1

(27)

where • denotes which valve is open, the high or low
line pressure.

The A matrices differ between discrete states when
the valves are not open for a cylinder, since then, in the
flow continuity equation, qH = qL = 0. The elements
of the dynamics matrices Ai are rather complicated
due to the volume in the denominator in the flow con-
tinuity equation. This fact is however an advantage of
the hybrid modeling and control, despite its complex-
ity. If a linear controller with constraints was to be
used, designed based on one linearized model, the flow
through the orifice of each on-off valve for a cylinder
would be linearized about a point. When the valve is
off, there is no flow and as a result, the pressure depen-
dence term in the dynamics matrix should be absent.
In the case there was damping due to leakage, only
this damping would be affected. However, when there
is no damping, when the flow is equal to 0, the pres-
sure dynamics system is not dependent on its previous
values.

131



Modeling, Identification and Control

4.2 Convex combination

According to the assumptions for (G)UAS of Section
3, a convex combination needs to be found for the dy-
namics matrices of the linearized system. For this case,
where only one valve can be on at a time, there exist 7
discrete states. This means that one should try to find
λi, i = 0, .., 6 so that:

Aλ =

6∑
i=0

λiAi (28)

has eigenvalues with real part negative. However, if
all matrices Ai are Hurwitz, this should not pose an
obstacle.

4.3 Passive opening of the valves

The passive opening of the valves must be taken into
consideration, since the equilibrium points will differ.

5 Preliminary conclusions

The main reasons why it is deemed difficult to apply a
switching signal based on an optimization criterion for
a DDM in motor mode, for creep operation are:

� The large number of discrete states, even for low
number of cylinders. This makes it difficult to find
a convex combination of the dynamics matrices.

� The difficulty in obtaining the set of attainable
equilibrium points.

Different approaches are not ruled out, especially
for speed control. A model predictive control (MPC)
approach that takes into consideration the different
combinations of the cylinders’ states is presented in
?. However, the switched control method is based on
proving Lyapunov stability, albeit on the linearized sys-
tem, when specific assumptions hold.

Another issue might be the scope of the problem.
For applications requiring Low Speed High Torque, or
during creep mode operation, the requirement might
not be strictly to have regulation around an equilib-
rium point. Alternatively, it might be to have only
velocity control with reference provided by a human
operator. The operator can act as the position regu-
lator, closing the position loop. Thus, if only speed
control is the requirement, around standstill, different
techniques could be used involving lower complexity.
The fact that the torque contribution of each cylinder
is a function of the shaft angle, which can be measured,
can be utilized for algorithms that are not dependent
on state combinations and crisp data, but rather on
the relationship between measured signals and possible
outputs. Proving closed loop stability can be however
as challenging.

Future research on hybrid control system design for
DDM could focus on approximations that decrease the
complexity stemming from the number of cylinders.
Since operation at standstill and low speeds is essential
for 4 quadrant operation, stability based closed loop
control design remains relevant. This mode of opera-
tion cannot be captured by the closed loop techniques
designed in ?, since either the sampling time Ts = 2π

Nω

or the angle domain transformation ∂f
∂θ = 1

ω
df
dt fails

since ω = 0 at standstill or at direction reversal. On the
other hand, if a stability based controller is designed,
the hybrid framework can be used to prove stability for
all operating conditions.
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