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Abstract

An extended Kalman filter (EKF) for systems with configuration given by matrix Lie groups is presented. The error
dynamics are given by the logarithm of the Lie group and are based on the kinematic differential equation of the
logarithm, which is given in terms of the Jacobian of the Lie group. The probability distribution is also described
in terms of the logarithm as a concentrated Gaussian distribution that is a tightly focused distribution around the
identity of the Lie group. The filter is applied to estimation on SO(3) a case where a stereo camera setup tracks
a crane wire with a payload. The wire, which is under tension and forms a line is monitored by two 2D-cameras,
and a line detector is used to obtain a description of how the wire is projected onto each image plane. A model of a
spherical pendulum is applied and the estimator is validated by applying it on simulated data, as well as experimental
data.
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1 Introduction

Attitude estimation with Kalman filters is a well-established
topic that has received extensive attention. An important
contribution was the multiplicative extended Kalman filter
(EKF) based on unit quaternions (Lefferts et al., 1982). In
this filter, the error dynamics were described by the unit
quaternion using the kinematic differential equations of the
error quaternion. The update in the filter was done multi-
plicative so that the result was a unit quaternion. An al-
ternative solution was presented in (Pittelkau, 2003) where
the error dynamics were formulated in terms of the rotation
vector. A solution with an unscented Kalman filter was pre-
sented in Crassidis and Markley (2003). A survey of non-
linear attitude estimation methods that developed from this
idea is found in (Crassidis et al., 2007). These methods have
been extended to the estimation of position and orientation
where dual quaternions have been used in multiplicative fil-
ters (Filipe et al., 2015).

A recent development is that extended Kalman filters
have been formulated on matrix Lie groups, where the es-
timation error has been described in terms of the logarithm

of the Lie group. This is based on a description where a
concentrated Gaussian probability distribution was formu-
lated in terms of the logarithm (Chirikjian, 2012). This was
initially introduced and formulated in terms of Euclidean
groups (Wang and Chirikjian, 2006), and later also formu-
lated for Bayesian distributions on Lie groups in Wolfe et al.
(2011), such that the Gaussian distribution was a function
depending on the Lie group states. This description of the
probability distribution was further developed for SE(3) by
Barfoot and Furgale (2014), who suggested to define the
Gaussian distribution based on the Lie algebraic error el-
ement instead of the logarithm of the state directly, which
can lead to simplification of computation. This was used
in (Loianno et al., 2016) for an unscented Kalman filter on
SE(3), and in (Brossard et al., 2017) for unscented Kalman
filtering of matrix Lie groups. Bourmaud et al. (2013) pro-
posed an extended Kalman filter formulation called D-EKF-
LG for matrix Lie groups based on the assumption of a con-
centrated Gaussian distribution. The error dynamics, which
are needed in the EKF for covariance computations, were
formulated in terms of the error logarithm. The deriva-
tion of the error dynamics relied on the Baker-Campbell-
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Hausdorff (BCH) formula, and involved time differentia-
tion of the Lie group elements, and was quite involved.
This was also investigated in (Cesic et al., 2017), where
details of the development of the error dynamics of the D-
EKF-LG filter were further investigated. The matrix Lie
groups that were used in Bourmaud et al. (2013, 2015) and
Cesic et al. (2017) included both configuration and velocity
components. In the case of SO(3) the resulting matrix Lie
group was SO(3)×R3, where also the angular velocity was
included in the group.

Tracking of the pendulum motion of a crane load has
been addressed by a number of authors (Rauscher et al.,
2018; Inukai and Yoshida, 2012; Kim et al., 2004). In this
paper, a stereo camera arrangement is used to track the an-
gle of the load wire. This is done to validate the proposed
EKF solution, and also as a potentially viable industrial so-
lution for crane control. Inukai and Yoshida (2012) tracked
a single point on the payload using servo-aided stereo vi-
sion. Bisgaard et al. (2007) used a single camera to track
the position of a payload relative to the body frame. The
camera was mounted on an aerial vehicle with a slung load
attached. The system configuration was a top-down view to
detect a circular white disk for position tracking.

The main contribution of this paper is the formulation
of an EKF for matrix Lie groups where the error dynam-
ics is simplified compared to Bourmaud et al. (2013, 2015)
and Cesic et al. (2017). We do this by using the kinematic
differential equation of the logarithm directly in the error
dynamics. Moreover, the derivation is based on the differ-
entiation of the exponential mapping instead of a first-order
approximation of the BCH formula, which was used in pre-
vious works. The proposed EKF for matrix Lie groups is
applied to a problem in SO(3) in simulation and experi-
ments to validate the performance. This includes a compar-
ison of the proposed EKF with the D-EKF-LG method in
simulations and for experimental data.

The paper is organized as follows: Section II covers Lie
groups and Lie algebras, as well as the structure of proba-
bility distribution which is assumed. Section III describes
the Extended Kalman filter, while Section IV formulates the
EKF for estimation of rotation matrices. Section V and VI
describe the geometrical framework and how it is used in
the vision part. Section VII provides the spherical pen-
dulum dynamics and how to estimated rotation matrix is
utilized in this model. Section VIII presents the findings
from simulations, while Section IX presents the experimen-
tal results. Section X discusses the findings from the exper-
iments, and Section XI concludes the paper.

2 Lie Groups and Lie Algebras

This section presents the required background for matrix
Lie groups based on (Hall, 2003; Faraut, 2008; Chirikjian,
2012). Matrix Lie groups are important in several applica-

tions and include the groups SO(3), SE(2), SE(3), and
the unit quaternions described by the unit sphere S(3).

2.1 Exponentials and logarithms
Consider a matrix Lie group G ⊂ GL(n,R), where
GL(n,R) is the group of all invertible n×nmatrices. Then
if X,Y ∈ G it follows that XY ∈ G, and there is an in-
verse X−1 ∈ G so that XX−1 = I ∈ G, where I is the
identity matrix of the appropriate dimension. Let u be an
element of the associated Lie algebra g ⊂ M(n,R), where
M(n,R) is the algebra of n×nmatrices with real elements.
The Lie algebra g is the tangent space of G at the identity
element. Let u ∈ g be the logarithm of X , which means
that

X = exp u (1)

where the exponential map is defined by

exp u =̇

∞∑
k=0

uk

k!
(2)

The logarithmic map is the inverse map of the exponential
map, and gives

u = logX (3)

The matrix logarithm is given by the series

logX = log
(
I + (X − I)

)
=̇

∞∑
k=1

(−1)k+1 (X − I)k

k

Let the set {Ei}, i = 1 . . . n form an orthonormal basis
for the n dimensional Lie algebra g. An element u of a
matrix Lie algebra can then be written

u = u1E1 + . . .+ unEn ∈ g (4)

where ui are the local coordinates of the Lie algebra. This
means that the element u can be represented by the vector

u = [u1, . . . , un]T ∈ Rn (5)

The conversion between u ∈ g and u ∈ Rn is done follow-
ing the notation of (Bourmaud et al., 2015) with the opera-
tors

[u]∧G = u, [u]∨G = u (6)

It follows that [[u]∧G]∨G = u and [[u]∨G]∧G = u.

2.2 Adjoint representations
Let b ∈ g be an element of the Lie algebra g, and let
b = [b]∨G be the vector representation. Then the adjoint
map AdG(X) and its matrix representation AdG(X) are
defined by

[AdG(X)b]∧G = AdG(X)b = XbX−1 (7)
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Let X(t) = exp (ta) where t ∈ R and a ∈ g is constant.
Then the directional derivative of XbX−1 along a, where
b is constant, will be

d

dt
exp(ta)b exp(−ta)

∣∣∣∣
t=0

= ab− ba=̇[a, b] (8)

where [a, b] is the Lie bracket. The adjoint map adG(a) and
its matrix form adG(a) are defined by

[adG(a)b]∧G = adG(a)b = [a, b] (9)

where a = [a]∨G and b = [b]∨G. It follows that (Klarsfeld
and Oteo, 1989)

[adG(a)nb]∧G = adG(a)nb = [a, [. . . [a︸ ︷︷ ︸
n

, b] . . .]] (10)

Let A,X ∈ M(n,R). The left translation LA and the
right translation is defined by LAX = AX and RAX =
XA. It is noted that

[a, b] = (La −Ra)b (11)

which gives Rab = Lab− [a, b] and

R2
ab = Ra(Rab) = L2

ab− 2La[a, b] + [a, [a, b]] (12)

where it is used that [a, Lab] = La[a, b]. This in combina-
tion with (10) leads to

Rnua =

n∑
i=0

(−1)i
(
n

i

)
Ln−iu [adG(u)ia]∧G (13)

Moreover, it is noted that

∞∑
j=0

1

j!
Ljab =

∞∑
j=0

1

j!
ajb = exp(a)b (14)

2.3 Right and left Jacobians
The right and left Jacobians of a Lie group are important to
formulate the kinematic differential equations of the loga-
rithm, which will be used in the filter design in this paper.
The expressions for the right and left Jacobians will be de-
rived in the following. The derivation is a matrix version of
the derivation presented in (Faraut, 2008), and is included
here for completeness.

First, it is noted that the body velocity, or right velocity
(Chirikjian, 2012), in the Lie group G is given by [vr]

∧
G =

X−1Ẋ , which gives the kinematic differential equation of
the Lie Group element in the form

Ẋ = X[vr]
∧
G (15)

Next, let u be the logarithm of X , so that X = exp(u),
and let u = [u]∨G be the vector form of the logarithm. The

time derivative of the exponential function is found from the
series expansion of the exponential, which gives

Ẋ =
d

dt
exp(u + at)

∣∣∣∣
t=0

=

∞∑
k=0

1

k!

d

dt
(u + ta)k

∣∣∣∣
t=0

To proceed, it is noted that

d

dt
(u + ta)k

∣∣∣∣
t=0

=

k−1∑
j=0

uk−j−1auj =

k−1∑
j=0

Lk−j−1u Rjua

Insertion of (13) and

k−1∑
j=0

(
j

i

)
=

(
k

i+ 1

)
(16)

which is derived in (Faraut, 2008), gives

Ẋ =

∞∑
k=1

1

k!

k−1∑
i=0

(−1)i
(

k

i+ 1

)
Lj−iu [adG(u)ia]∧G (17)

=

∞∑
j=0

1

j!
Lju

∞∑
i=0

(−1)i

(i+ 1)!
[adG(u)ia]∧G (18)

It follows from (14) that

Ẋ = X[Ψr(ad(u))u̇]∧G (19)

where Ψr(ad(u)) is the right Jacobian defined by

Ψr(ad(u)) =

∞∑
n=0

(−ad(u))i

(i+ 1)!
(20)

The inverse of the right Jacobian is given by

Ψ−1r (ad(u)) =

∞∑
i=0

Bi(−ad(u))i

i!
(21)

where Bn are the Bernoulli numbers given by B0 = 1,
B1 = − 1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 , B5 = 0,. . . .
Closed-form solutions for the right Jacobian and its inverse
are given in (Park, 1995) for SO(3),

From (15) and (19) it is seen that vr = Ψr(ad(u))u̇,
and it follows that the kinematic differential equation for
logarithm is

u̇ = Ψ−1r (ad(u))vr (22)

It is noted that there is also a left Jacobian

Ψl(ad(u)) = Ψr(−ad(u)) (23)

which appears in

Ẋ = [Ψl(ad(u))u̇]∧GX (24)
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The left Jacobian is found with a derivation that follows the
same steps as the derivation of the right Jacobian, with the
difference that

Lnua =

n∑
i=0

(
n

i

)
Rn−iu [adG(u)ia]∧G (25)

is used in place of (13) and

∞∑
j=0

1

j!
Rjab =

∞∑
j=0

b
1

j!
aj = b exp(a) (26)

is used in place of (14). The use of the left Jacobian gives
the alternative kinematic differential equation

u̇ = Ψ−1l (ad(u))vl (27)

of the logarithm in terms of the spatial, or left, velocity
[vl]
∧
G = vl = ẊX−1.

Closed-form solutions for the left and right Jacobians and
their inverses were presented for SO(3) in (Park, 1995),
while a closed-form solution for the left Jacobian of SE(3)
was presented in (Barfoot and Furgale, 2014).

2.4 Baker-Campbell-Hausdorff Formula

Let a = [a]∧G, b = [b]∧G and c = [c]∧G be elements of the Lie
algebra g, and suppose that

exp(c) = exp(a) exp(b) (28)

Then the Baker-Campbell-Hausdorff (BHC) formula gives
(Hall, 2003)

c = a + b +
1

2
[a, b] +

1

12

(
[a, [a, b]] + [b, [b, a]) + ...

If only linear terms in b are included, then the BCH formula
can be approximated by (Klarsfeld and Oteo, 1989)

c ≈ a+ Ψ−1r [ad(a)]b (29)

where Ψr is the right Jacobian defined in (20).

2.5 Discrete-time kinematic differential
equation

The time propagation of X(t) from time tk to time tk+1 =
tk+T can be found by applying Euler’s method to the kine-
matic differential equation (15), which gives

X(tk+1) = X(tk) exp(Tvb(tk)) (30)

In terms of the logarithm u = log(X), this is written

exp[u(tk+1)] = exp[u(tk)] exp[Tvb(tk)] (31)

Alternatively, Euler’s method can be applied to the kine-
matic differential equation (27) of the logarithm (Iserles
et al., 2005), which gives

u(tk+1) = u(tk) + TΨ−1r [ad(u(tk))]vr(tk) (32)

where vr = [vb]
∨
G. Note that this result can also be found

by applying the approximation of the BCH formula (29) to
(31).

The Crouch-Grossman method for time integration of dy-
namics on Lie groups was developed for the kinematic dif-
ferential equation (19) or (24) of the Lie group element
X using the exponential functions (Crouch and Grossman,
1993; Owren and Marthinsen, 1999). A more recent de-
velopment is the RK-MK method where the kinematic dif-
ferential equation for the logarithm (22) or (27) is used to
design Runge-Kutta methods for Lie groups (Munthe-Kaas,
1995; Iserles et al., 2005).

2.6 Concentrated Gaussian Distribution
Estimation of elements describing the state of the system re-
quires a description of the uncertainties of the system, and
filters based on the Kalman filter assumes that the proba-
bility distributions associated with the states are Gaussian.
In the case where the system state resides on a matrix Lie
group G, the Gaussian distribution in Euclidean space may
not be sufficient as the inherent properties may be different.

In Wang and Chirikjian (2006) the distribution

p(X) ∼ α expG

(
−1

2
εTP−1ε

)
(33)

was introduced as a Gaussian distribution where X =
exp([ε]∧G) resides on the Lie group G, [ε]∧G is the logarithm
of X , and P is the covariance matrix of the system. The
scalar α normalizes the distribution such that the integral of
the Gaussian distribution p evaluates to 1.

If the Gaussian distribution p is tightly focused around
the identity of the Lie group, we call it a concentrated Gaus-
sian distribution (CGD). Assuming a CGD makes it pos-
sible to utilize Gaussian distributions defined in the Eu-
clidean space as local approximations of Gaussians resid-
ing on manifolds of Lie groups. The requirement is that the
Lie group of interest to be a unimodular connected (Hall,
2003) matrix Lie group (Wolfe et al., 2011). A unimod-
ular Lie group is a set of elements which possesses a bi-
invariant Haar measure, which is the case for the Lie groups
SO(3) and SE(3) (Chirikjian, 2012). Connectedness in a
Lie groupG is achieved if for any two matrices,A,B ∈ G,
there is a continuous path A(t) ∈ G parameterized by a
scalar t ∈ [a, b], with A(a) = A and A(b) = B. The ma-
trix Lie group SO(3) is an example of a unimodular con-
nected matrix Lie group. Under the assumption that the
uncertainties are CGD, we can use the distribution

ε = [logGX]∨G ∼ NR6(06×1,P6×6) (34)
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as a valid approximation of the Gaussian distribution on the
manifold in the identity. The corresponding distribution on
the Lie group is

expG (ε) ∼ NG(I,P6×6) (35)

which is illustrated in Figure (1). Furthermore, if the as-
sumption of CGD holds, any distribution ofX on G can be
approximated as

X = µ expG (ε) ∼ NG(µ,P6×6) (36)

which means that distribution on G in the identity can be
transported from the distribution at the identity to the mean
value µ ∈ G by using the left action on the Lie group. This
is illustrated in Figure (2).

Figure 1: The logarithm of X at the origin of the Lie alge-
bra (blue surface) approximates the Gaussian dis-
tribution at the group identity (red surface) if the
distribution is tightly focused near the identity.

Figure 2: The Gaussian distribution of X on the mean el-
ement µ is obtained by transporting the approx-
imated Gaussian distribution at the identity of G
to the mean state µ.

3 Extended Kalman Filter

3.1 State Representation

Let the state be given by

x = {X,vr} ∈ G× Rn (37)

where X ∈ G and [vr]
∧
G = X−1Ẋ ∈ Rn×n is the body

velocity in G. The dynamics of the state are given by

Ẋ = X[vr]
∧
G (38)

v̇r = fv(x) (39)

The design of the EKF is based on the estimation error
δX = X̄−1X whereX is the actual variable and X̄ is the
estimated variable. Let [ε]∧G = log(δX) be the logarithm
of the estimation error, so that

δX = exp([ε]∧G) (40)

which gives

X = X̄δX = X̄ exp([ε]∧G) (41)

Define the error velocity by [δvr]
∧
G = δX−1δẊ ∈ Rn×n.

Then

δẊ = δX[δvr]
∧
G (42)

δv̇r = fve(x) (43)

Then it follows from (22) that the kinematic differential
equation of the logarithm is

ε̇ = Ψ−1R (ad(ε))δvr (44)

where Ψr(ad(ε)) is the right Jacobian defined in (20).

3.2 Time propagation of EKF

The time propagation of the estimate x̄ = {X̄, v̄r} is done
by time integration of the system dynamics (38, 39). The
predicted states are computed from

Xk+1|k = Xk|k exp
(
T v̂r,k|k +

1

2
T 2[fv(xk|k)]∧G

)
(45)

vr,k+1|k = vr,k|k + Tfv(xk|k) (46)

The propagation of the covariance matrix is based on the
linearization of the error dynamics about the estimate,
hence the covariance propagation is computed from

Pk+1|k = FkPk|kF
T
k +Rn (47)

where Rn is the covariance matrix describing the process
noise. The state propagation matrix Fk is derived from the
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error dynamics ẋe = f(xe). Let xe = [εT, δvT
b ]T be the

error states defined in the Lie algebra, and let

xe,k+1|k =

[
εk|k + Tδvb,k|k + 1

2T
2fve(xe,k|k)

δvb,k|k + Tfve(xe,k|k)

]
(48)

be the discretized solution based on the dynamics of Equa-
tion (44, 43). Since the expected mean of ε is given as
E{ε} = 0, this yields Ψ−1r (ε) = I . If the process is mod-
eled as only driven by noise with fve = 0, then

F =
∂f(xe)

∂xe

∣∣∣∣∣
xe=0

=

[
I TI
0 I

]
(49)

3.3 Update

Suppose that the measurements are given in the form of Lie
group elements Zk ∈ G. The measurement model is

Z = X exp ([w]∧G) (50)

where w ∼ N (0,Qw) is white Gaussian noise describing
the measurement noise, with covariance matrix Qw. We
express the difference between the measured and predicted
matrix Lie group elements, e. g. a rotation matrix, in terms
of the logarithm of the error as

yk+1 = [log (X̄k+1|k)−1Zk+1)]∨G ∈ R3 (51)

The measurement matrix is found as the Jacobian

H = [I3×3 03×3] (52)

The Kalman gain is computed as

Kk+1 = Pk+1|kH
T(HPk+1|kH

T +Qw)−1 (53)

As the error between the measurementZk and the expected
measurement h(xk+1|k) is represented in the Lie algebra,
we obtain the correction term

mk+1 = Kk+1yk+1 =

[
mX,k+1

mv,k+1

]
∈ R6 (54)

The elements in the state posterior xk+1|k+1 are then com-
puted as

X̄k+1|k+1 = X̄k+1|k exp ([mX,k+1]∧G) (55)
vk+1|k+1 = vk+1|k +mv,k+1 (56)

Finally, the posterior covariance is found as

Pk|k = (I −KkH)Pk|k−1 (57)

To summarize the EKF, we provide the structure of the es-
timator in Algorithm (1).

EKF Algorithm:

Inputs: xk|k,Pk|k,Zk+1

Outputs: xk+1|k+1,Pk+1|k+1

Initialization: x0|0 = {I,0},P0|0 = I

Propagation:

Xk+1|k = Xk|k exp

(
T v̂k|k +

1

2
T 2[fv(xk|k)]∧G

)
vk+1|k = vk|k + Tfv(xk|k)

Pk+1|k = FkPk|kF
T
k +Rn

Update:

Kk+1 = Pk+1|kH
T(HPk+1|kH

T +Qw)−1

mk+1 = Kk+1 log (X−1k+1|kZk+1)

= [mR,k+1,mω,k+1]T

Xk+1|k+1 = Xk+1|k exp ([mR,k+1]∧G)

vk+1|k+1 = vk+1|k +mω,k+1

Pk+1|k+1 = (I −Kk+1H)Pk+1|k

Algorithm 1: The structure of the EKF.

4 Extended Kalman Filter on
SO(3)

A rotation matrix R is an element of the matrix Lie group
SO(3) defined by

SO(3)=̇
{
R ∈ R3×3|RRT = I3×3,detR = 1

}
(58)

where the inverse is R−1 = RT. The corresponding Lie
algebra is so(3), with elements

u = [u]∧SO(3) =

 0 −uz uy
uz 0 −ux
−uy ux 0

 ∈ so(3) (59)

which is the skew-symmetric form of the vector u =
[ux, uy, uz]

T ∈ R3. The notation û = [u]∧SO(3) will also
be used. It is noted that ûw = u × w for u,w ∈ R3. It
is well-known that the skew-symmetric form û of a vector
u transforms in SO(3) according to [Ru]∧SO(3) = RûRT.
Comparison with (7) shows that

AdSO(3)(R) = R (60)

From linear algebra it is known that the skew-symmetric
form of the vector (ûw) is (ûw)∧ = ûŵ− ŵû, and com-
parison with (9) gives

adSO(3)(u) = û (61)
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The time derivative of the rotation matrix is given by Ṙ =
Rω̂, where ω̂ is the skew-symmetric form of the angular
velocity vectorω. The time derivative atR = I is therefore
Ṙ|R=I = ω̂. The matrix exponential and the logarithm are
given by

R = expSO(3) u, u = log (R) (62)

As pointed out in (Bullo and Murray, 1995), the Lie algebra
element u ∈ so(3) is a local parameterization of the rota-
tion matrix R, while the Lie algebra element ω̂ ∈ so(3) is
related to the time derivative of the Lie Group elementR.

Consider the case where the logarithm is given by u = θk̂
where k ∈ R3 is a unit vector. Then R is a rotation by an
angle of θ about k, and is given by the Rodrigues equation

R = I + sin θk̂ + (1− cos θ)k̂k̂ (63)

The logarithm is log (R) = θk̂, which can be computed
from (Iserles et al., 2005)

log (R) =
arcsin(‖w‖)
‖w‖

ŵ, ŵ =
1

2
(R−RT) (64)

The right Jacobian and its inverse as given by equations
(20) and (21), have the following closed-form solutions in
SO(3) (Bullo and Murray, 1995; Chirikjian, 2012)

Ψr(û) = I − 1− cos ‖u‖
‖u‖2

û+
‖u‖ − sin ‖u‖
‖u‖3

û2 (65)

Ψ−1r (û) = I +
1

2
û+

(
1− ‖u‖2 cot ‖u‖2

‖u‖2

)
û2 (66)

The Taylor series expansion of the last term is found from
cotx = x−1 − 1

3x+ 1
45x

3 − 2
945x

5 − . . . to be

1− θ
2 cot θ2

4
(
θ
2

)2 =
1

12
+

1

180

(
θ

2

)2

+
1

1890

(
θ

2

)4

+. . . (67)

The kinematic differential equation for the logarithm is
then

˙̂u = Ψ−1r (û)ω̂ (68)

The equation was also used in (Bortz, 1970) and in (Pit-
telkau, 2003), where the approximation

Ψ−1r (û) ≈ I +
1

2
û+

1

12
û2 (69)

was recommended for the kinematic differential equation
(68), which means that the first term in the Taylor series
expansion (67) is used.

4.1 State Representation
Let the element

x = {R,ω} ∈ SO(3)× R3 (70)

represent the system state, whereR ∈ SO(3) describes the
attitude and ω ∈ R3 describes the angular velocity. The
state dynamics, in continuous form, is

ẋ = {Ṙ, ω̇} (71)

where the dynamics are explicitly given as the following
kinematic differential equations

Ṙ = Rω̂ (72)
ω̇ = fω(x) (73)

and ωb is the angular velocity defined in the body frame.
Let s be the spatial frame, e be the estimated body frame,

and let b be the body frame. Then the actual rotation
R = Rs

b is the rotation matrix from s to b, the estimated
rotation R̂ = Rs

e is the rotation matrix from s to e, and the
estimation error

δR = R̂TR = Re
b (74)

is the rotation matrix from e to b. The kinematic differential
equations are then Ṙs

b = Rs
bω̂

b
sb,

˙̂
Rs
e = R̂s

eω̂
e
se and

Ṙe
b = Re

bω̂
b
eb (75)

where ωbeb = ωbib − ωbie.
Let [ε]∧SO(3) = log(δR) be the logarithm of the error

rotation. Then the kinematic differential equation for the
vector form ε of the logarithm is found from (22) to be

ε̇ = Ψ−1R (ad(ε))ωbeb (76)

4.2 Time propagation of EKF
The predicted states are computed from

Rk+1|k = Rk|k exp

(
T ω̂k|k +

1

2
T 2[fω(xk)]∧SO(3)

)
(77)

ωk+1|k = ωk|k + Tfω(xk) (78)

The covariance propagation is given by

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Rn (79)

where Rn is the covariance matrix describing the process
noise, and F is found by linearization of the error model

ε̇ = Ψ−1R (ad(ε))ωbeb (80)

ω̇beb = fωe(ε) (81)
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The state propagation matrix Fk is derived from the er-
ror dynamics. Given the error state vector xe = [ε,ωbeb]

T

where E{ε} = 0 and Ψ−1r (ε) = I , which yield the discrete
error dynamics

xe,k+1|k =

[
εk|k + Tωbeb,k|k + 1

2T
2fωe(xk|k)

ωbeb,k|k + Tfωe(xk|k)

]
(82)

then the linearized error equations are found as

F =
∂f(xe)

∂xe

∣∣∣∣∣
xe=0

=

[
I TI
0 I

]
(83)

if fωe = 0, that is when the system is driven by Gaussian
noise only.

5 Points, Lines and Planes

5.1 Homogeneous Points
Consider the homogeneous point

x̃ = x0e0 + x1e1 + x2e2 + x3e3 (84)

in the 3 dimensional projective space P3. The basis of the
projective space P3 is Bv = {e0, e1, e2, e3}, where the
basis elements are orthogonal and satisfies ei · ej = δij ,
where δij is unity when i = j, and zero otherwise. The
homogeneous point x̃ represents a point

p = xe1 + ye2 + ze3 (85)

in the Euclidean space R3 where x = x1/x0, y = x2/x0
and z = x3/x0 (Semple and Kneebone, 1952; Pottmann
and Wallner, 2001). It is seen that x̃ represents the Eu-
clidean point p = x/x0, where x = x1e1 + x2e2 + x3e3.
It follows that the homogeneous point αx̃, α 6= 0 will rep-
resent the same Euclidean point as x̃. The homogeneous
points x̃ and αx̃ are therefore said to be equivalent for
nonzero α.

Concerning notation, the homogeneous point x̃ will also
be written in terms of the scalar x0 and the vector x in the
form x̃ = (x0,x), which is used in (Pottmann and Wall-
ner, 2001). In addition, the homogeneous point x̃ will be
written as the column vector x̃ = [x1, x2, x3, x0]T, which
is the notation that is used in robotics and vision literature
(Hartley and Zisserman, 2004; Siciliano et al., 2008).

5.2 The Exterior Product
The exterior product and the concept of duality is used in
(Pottmann and Wallner, 2001) to define lines and planes in
terms of Plücker coordinates. The exterior product on P is
defined in terms of the basis vectors by

ei ∧ ej = −ej ∧ ei = eij (86)

where eij is called a blade of grade 2, while a vector ei
is a blade of grade 1. It is seen that ei ∧ ei = eii = 0.
The exterior product of two vectors x̃ =

∑3
i=0 xiei and

ỹ =
∑3
i=0 yiei in P3 is given by

x̃ ∧ ỹ =
( 3∑
i=0

xiei

)
∧
( 3∑
i=0

yiei

)
(87)

Here there are 16 different combinations of i and j in the eij
blades. From eii = 0 and eij = −eji, it follows that only
6 of these are independent, and it is found that the exterior
product can be written in terms of the 6 basis elements in

B2 = {e01, e02, e03, e23, e31, e12} (88)

It follows that

x̃ ∧ ỹ =
∑

eij∈B2

lijeij (89)

where
lij = xiyj − xjyi (90)

The exterior product is extended to 3 factors by the asso-
ciative law (ei∧ej)∧ek = ei∧(ej∧ek) = ei∧ej∧ek =
eijk, where eijk is a blade of grade 3. It follows that eijk is
unchanged under cyclic permutations of the indices, while it
changes sign under noncyclic permutations. It is noted that
eijk is zero if it has a repeated index. It follows that the ex-
terior product of 3 homogeneous vectors can be expressed
in terms of the 4 basis vectors of

B3 = {e123, e023, e031, e012} (91)

Therefore the exterior product of the three points x̃, ỹ and
z̃ will be

x̃ ∧ ỹ ∧ z̃ =
∑

eijk∈B3

mijkeijk (92)

where z̃ =
∑3
i=0 ziei. Expressions for mijk will be pre-

sented in the following. First, it is useful to note that the
exterior product of 4 vectors will be expressed in terms of
the basis B4 = e0123 = e3210.

The geometric product of two basis vectors is written as a
juxtaposition of the vectors, and is defined by (Dorst et al.,
2007)

eiej = ei · ej + ei ∧ ej =

{
1, i = j

eij , i 6= j
(93)

It follows that eiej = −ejei whenever i 6= j. The inner
product of two exterior products ei1...in and ej1...jm where
m > n can then be expressed in terms of the geometric
product as

ei1...in · ej1...jm = 〈ei1 . . . einej1 . . . ejm〉m−n (94)
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where 〈·〉k denotes the terms of grade k. Then this can be
evaluated by rearranging the terms to simplify the expres-
sion using eiei = 1. This is done until there are no repeated
indices. It follows that the inner product of the elements of
B3 with e3210 are found to be

e123 · e3210 = e1e2e3e3e2e1e0 = e0 (95)
e023 · e3210 = −e0e2e3e3e2e0e1 = −e1 (96)
e031 · e3210 = −e0e3e1e1e3e0e2 = −e2 (97)
e012 · e3210 = −e0e1e2e2e1e0e3 = −e3 (98)

The resulting vectors are the elements of the dual basis

B∗3 = {e0,−e1,−e2,−e3} (99)

In the same way it is found that the dual basis of B2 is

B∗2 = {e23, e31, e12, e01, e02, e03} (100)

5.3 Lines in Plücker Coordinates
Consider a line L through the two Euclidean points q and
p with homogeneous representations x̃ = (x0,x) and ỹ =
(y0,y) where q = x/x0 and p = y/y0. Then the line can
be represented by the exterior product

L = x̃ ∧ ỹ =
∑

eij∈B2

lijeij (101)

where lij are the Plücker coordinates of the line (Pottmann
and Wallner, 2001). This can be rewritten as L = (l, l′),
where L is given by the pair of vectors l = [l01, l02, l03]T

and l′ = [l23, l31, l12]T. From (90) it is found that

L = (l, l′) = (x0y − y0x,x× y) (102)

and it follows that l · l′ = 0.
The geometric interpretation of L is found by considering

the direction vector a = p − q and the moment q × a of
the line. It is seen that

a =
y

y0
− x

x0
=
x0y − y0x
x0y0

(103)

q × a =
x

x0
× x0y − y0x

x0y0
=
x× y
x0y0

(104)

which gives L = (1/x0y0) (a, q × a). As the representa-
tion is homogeneous, an equivalent expression is

L = (l, l′) = (a, q × a) (105)

where the line is given by its direction vector a and its mo-
ment q× a. Usually the direction vector a is scaled to be a
unit vector. The point on the line that is closest to the origin
is found from q⊥ = l× l′.

It is noted that two lines (l′, l) and (m,m′) will intersect
if and only if (m,m′) · (l′, l) = (m · l′ +m′ · l) = 0.

5.4 Planes in Plücker coordinates
A plane can be defined as the exterior product of three
points x̃ = (x0,x), ỹ = (y0,y) and z̃ = (z0, z) as

U = z̃ ∧ x̃ ∧ ỹ = z̃ ∧ L (106)

where L = x̃ ∧ ỹ is the line through x̃ and ỹ. This can be
evaluated as

U =
( 3∑
i=0

ziei

)
∧
( ∑

eij∈B2

lijeij

)
= u0e123 − (u1e023 + u2e031 + u3e012) (107)

where the coordinates are found by direct computation, or
as in (Pottmann and Wallner, 2001), to be given by

u0 = z · l′, u = −z0l′ + z × l (108)

where u = [u1, u2, u3]T. The dual representation of the
plane is

ũ = U · e3210 =

3∑
i=0

uiei = (u0,u) (109)

A point w̃ = (w0,w) will be in the plane if w̃ ∧ U = 0,
which is equivalent to the well-known condition (Hartley
and Zisserman, 2004)

w̃ · ũ = 0. (110)

A geometric interpretation of ũ is found by defining the
Euclidean point r = z/z0, and the vector b = r−q, which
is in the plane. Then from (105) and (108) it is straightfor-
ward to verify that u = z0b × a, which is normal to the
plane. Moreover, it is found that u0 = −q · u, which is
proportional to the distance δ = q · u/|u| from the origin
to the plane in the direction of u.

5.5 Lines as the intersection of planes
Consider the two planesU = z̃∧L and V = w̃∧L defined
by the common line L and the points z̃ and w̃ where z̃ 6= w̃.
The corresponding dual representations are ũ = U ·e3210 =
(u0,u) and ṽ = V · e3210 = (v0,v). The line L is in both
planes, and it follows that the planes intersect at L.

The exterior product of the dual planes ũ and ṽ can be
found by a lengthy direct calculation to be

ũ ∧ ṽ = αL∗ (111)

where α is a scalar and L∗ = L · e0123 = (l′, l) is the dual
form of the line L = (l, l′). The dual line is homogeneous,
and the scaling can be selected so that

L∗ = ũ ∧ ṽ = (u0v − v0u,u× v) (112)
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The line is then found from the dual line to be

L = (u× v, u0v − v0u) (113)

The scalar in equation (112) is given by α = −(z̃ ∧ w̃) ·
L∗. Let (m,m′) = z̃ ∧ w̃ be the line through the points z̃
and w̃. Then α = −(m,m′) · (l′, l) = −(m · l′ +m′ · l),
which is nonzero whenever (m,m′) and (l′, l) does not
intersect.

6 Vision

6.1 Camera model
The camera model is given by (Ma et al., 2003; Hartley and
Zisserman, 2004)

λs = [Rc | tc] r̃ (114)
p = Ks (115)

where s = [sx, sy, 1]T is the homogeneous vector of nor-
malized image coordinates, p = [px, py, 1]T is the homo-
geneous vector of pixel coordinates, P = [Rc | tc] is the
uncalibrated camera model, whereRc and tc define the ho-
mogeneous transformation matrix

Tc =

[
Rc tc
0T 1

]
(116)

from the camera frame to the object frame. The homoge-
neous vector r̃ = [rT, 1]T gives the position of a world point
in the coordinates of the object frame, λ > 0 is the depth
parameter and

K =

fx 0 cx
0 fy cy
0 0 1

 (117)

is the intrinsic camera calibration matrix.

6.2 Determination of a line from stereo
images

Consider two cameras used in a stereo arrangement with
uncalibrated camera models P1 = [I | 0] and P2 = [R | t].
This means that the problem is described in the coordinates
of camera frame 1, and that the displacement from camera
frame 2 to camera frame 1 is given by the rotation matrix
R and the translation vector t. A homogeneous world point
r̃ = [rT, 1]T is then mapped to the homogeneous normal-
ized coordinate vectors

λ1s1 = P1r̃ = r, λ2s2 = P2r̃ = Rr + t (118)

Suppose that the world point r̃ is an arbitrary point on the
line L in 3 dimensional Euclidean space. Then the point r̃

is mapped to a point s1 = λ−11 P1r̃ on a line `1 in image
plane 1, which means that `T

1s1 = `T
1P1r̃ = 0. This is true

for any point r̃ on the plane ũ through the origin of camera
1 and the line L. This means that this plane is given by

ũ = P T
1 `1 =

[
I
0T

]
`1 =

[
`1
0

]
, (119)

In the same way, it follows from `T
2s2 = `T

2P2r̃ = 0 that
the plane ṽ trough the origin of camera 2 and the line L must
be given by

ṽ = P T
2 `2 =

[
RT

tT

]
`2 =

[
RT`2
tT`2

]
. (120)

In Plücker coordinate form this is written

ũ = (0, `1), ṽ = (tT`2,R
T`2) (121)

This means that if R and t are known, and the lines `1
and `2 can be determined, the planes ũ and ṽ can be com-
puted, and the dual of the line L can be computed from

L∗ = ũ ∧ ṽ (122)

Then the line is found from (113) to be

L =
(
`1 × (RT`2),−(tT`2)`1

)
. (123)

The measured element, denoted asZ in the filter and which
is an element of SO(3), is found by computing the angle be-
tween the reference line and the measured line, and finding
the orthogonal unit vector on these lines. The measured ro-
tation matrix is then generated by using Rodrigues formula
as given in Equation (63). For the special case when the
measured line is equal to the reference line, the measured
matrix is defined as the identity matrix.

6.3 Line detection in the image plane
The applied line detector is a pipeline-implementation
based on the Canny edge detector and the Hough transfor-
mation for lines, and it is used to obtain the representation
of the line projected onto each image plane in the multi-
view configuration. The Canny edge detector is a multi-
stage algorithm which extracts structural information from
provided camera readings, such as edges and corners, and
returns a binary image containing elements representing
edges or corners. The binary image is provided as input
for the Hough transformation, which is applied to find a set
of lines which are most likely to be actual lines in an image.
A line can be written as the function

ρ = x cos θ + y sin θ (124)

which are the line coordinates given by ρ, which is the
shortest distance between the origin and the line, and θ,
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Figure 3: Two planes, π1 and π2, are generated though the
origin of each camera coordinate system and the
detected line on each image plane, and the inter-
section generates the line, L, representing the de-
tected wire in 3D space.

which is the angle between the x axis and the normal vec-
tor of the line. A voting routine is applied, and the lines
which are most likely to exist in the image are stored in the
memory. This is done by using the Hough transformation
for lines (Duda and Hart, 1972).

The line detecting pipeline returns a set of lines (θi, ρi)
in the pixel plane, which corresponds to the line λ =
[cos θ, sin θ,−ρ]T in pixel coordinates. The line is con-
verted to normalized image coordinates by the transforma-
tion

` = KTλ (125)

which results from homography s = K−1p, which is the
inverse of (115).

7 Spherical Pendulum Dynamics

The inertial frame i is defined with the z axis vertically up-
wards, parallel with the line when the wire is at rest. The
body-fixed frame is denoted b with the z axis parallel with
the line describing the wire at time instance tk. The rotation
matrix from the inertial frame to the body frame is written
R = Ry(θ)Rx(φ) where φ is the roll angle and θ is the
pitch angle.

The model describing the dynamics of the pendulum can
be described by the Euler equations of motion in the body
frame b as

Jω̇b + ωb × Jωb = ρb × gb (126)

where J is the inertia matrix describing the mass properties
of the payload, ρb = −Lzb describes the center of mass of
the payload relative to the pivot point as a vector of length
L in the opposite direction of zb. The vector gb = mgRb

iz
i

Figure 4: Let the third principal axis of the body frame, eb3,
be co-linear with the direction of the observed
line. The stable attitude is defined as the line
with direction vector that is co-linear with the
third principal axis of the inertial frame, ei3. The
composite rotation can be expressed as a rotation
about a single axis, k, asRi

b = exp(θk×).

describes the force of gravity, where m denotes the mass of
the payload, and g is the gravitational acceleration. Hence,
the product ρb × gb describes the torque generated by the
gravitational force. Note that the yaw parameter (rotation
about the third principal axis) is not observable in the given
case since the payload is considered to be a point mass, and
a rotation about this axis is not observable in the given case.

We assume that the mass of the payload is constant, and
that the b frame is fixed to the body b, which implies that
the inertia matrix is constant. Furthermore, we assume that
the origin of b is located in the pivot point. The center of
mass of the payload, given in the b frame, is denoted

ρ = L · [0, 0, −1]T (127)

as illustrated in Figure 4. We assume an inertia matrix on
the form

J =

Jt 0 0
0 Jt 0
0 0 Ja

 (128)

where, due to the parallel axis theorem, Jt = mL2, and Ja
is assumed to be small.

By neglecting, Ja, we find the dynamics to be

ω̇b =

−ωyωzωxωz
0

+
g

L
zb ×Ri

bz
b (129)
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which is the same as the model presented in Shen et al.
(2004). We find that, for a point mass, the acceleration
about the wire axis is small, and the velocity is therefore
approximately constant. We assume it to be zero since this
component is not observable in the given setup.

Therefore, given the vector xe = [εT,ωT]T, the lin-
earized motion model is found as

F =
∂f(xe)

∂xe

∣∣∣∣∣
xe=0

(130)

=
∂

∂xe

[
ε+ Ψ−1r (ε)(Tω − 1

2T
2 g
Lε)

ω − T g
Lε

]
=

[
I − 1

2T
2 g
LI TI

−T g
LI I

]
since the inverted right Jacobian evaluates to identity as
E{ε} = 0.

8 Simulations

The EKF on SO(3) was tested in a simulation study of a
3-dimensional spherical pendulum based on the model in
Equation (126). The EKF was used to estimate the rota-
tion matrix and the angular velocity. The process covari-
ance matrix was set to Rn = σ2

rI6×6 where σ2
r = 0.01

was the variance of the model. The measurement covari-
ance matrix was set to Qw = σ2

qI3×3 where σ2
q = 0.1 was

the variance of the measurements.
The plotted data will show the Euler angles roll and pitch,

which are found as

φ = atan2 (r32, r33) (131)

θ = atan2
(
−r31,

√
r232 + r233

)
(132)

given a rotation matrixR = {rij}.
The simulated case had an initial condition for the ro-

tation matrix that was given by φ(0) = 57.3◦ (roll) and
θ(0) = 28.6◦ (pitch). The initial angular velocity was given
as ωb = [−1, 1, 0]T rad

s . White Gaussian noise with covari-
ance 0.025I was multiplied into the simulated signal, and
as seen in Figure 6, the estimated values converged within
2.5 seconds in this particular case. Figure 5 shows the esti-
mated values and the corresponding measurements.

9 Experiments and Results

The EKF formulated on SO(3), as described in Section (4),
was used in two experiments for estimation of the pendulum
motion. The dynamics given in Equation (129) was used for
the state prediction, and the corresponding linearized dy-
namics given in Equation (130) was used to propagate the
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Figure 5: The system was simulated where the covariance
describing the uncertainties in the measurements
was 10 times larger than the covariance describing
the uncertainties in the system model.

covariance matrix. The wire length of the spherical pendu-
lum was measured to beL = 1.3 m, and the resulting period
of the linearized model was T = 2π

√
g/L = 2.28 s. The

system was implemented on a system running on a laptop
with a 2.6 GHz CPU, and the pixel resolution of the sam-
pled pictures were 480 × 640. The sampling rate of the
camera system was measured to be in the range 15–18 Hz.

The first experiment was a case where the pendulum was
oscillating approximately parallel to the image plane, which
will be referred to as roll motion. In this case, the estimates
(see Figure (7)) showed that the roll parameter oscillated
with an amplitude of 0.134 rad and the pitch parameter os-
cillated with an amplitude of 0.018 rad.

The second experiment was a case where the pendulum
was oscillating approximately perpendicular to the image
plane, which will be referred to as pitch motion. In this case,
the estimates (see Figure (9)) showed that the roll oscillated
with an amplitude of 0.037 rad and the pitch oscillated with
an amplitude of 0.15 rad.

The covariance matrix describing the process noise was,
in both cases, set to

Rn =

[
RR 0
0 Rω

]
∈ R6×6 (133)

where Rn = Rω = 10−4I3×3. The covariance matrix
describing measurement noise was given on the form

Qn =

Qφφ 0 0
0 Qθθ 0
0 0 Qψψ

 (134)

and the matrix Qn = diag(0.5, 0.05, 1) was used for the
experiments. The parameterQψψ can be set arbitrarily high
as the measurements of the ψ angle are not observable in
the studied system configuration. The parameter Qφφ is set
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Figure 6: The initial errors were large due to the initial con-
ditions, and the peak of the pitch value is due to a
lower weight on its measurements while also be-
ing prone to a wrong initial estimate of the angu-
lar velocity. The error offsets in the noiseless case
converged to zero.

to a high value as the selected image resolution results in a
low resolution of the parameter describing roll motion. Roll
is in this case equivalent to depth motion, which correspond
to motion perpendicular to the image plane. The motion
parallel to the image plane is called pitch, and the param-
eter describing the uncertainties of the pitch values, Qθθ,
is lower than Qφφ since the camera configuration captures
such displacements better than depth motion.
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Figure 7: The measured and estimated values of the roll
case.
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Figure 8: The error between the measurements and the esti-
mates of the roll case.
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Figure 9: The measured and estimated values of the pitch
case.
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Figure 10: The error between the measurements and the es-
timates of the pitch case.
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10 Discussion

10.1 Comparison with the D-EKF-LG

The proposed EKF on SO(3) was compared to the D-EKF-
LG as presented in Bourmaud et al. (2013). The filters were
compared both with the experimental data sets, and the sim-
ulated data for the spherical pendulum, while using identi-
cal noise descriptions, the same numerical solver, and iden-
tical time steps. The expressions used in the D-EKF-LG
filter are more involved, but since most of the additional
computations evaluate close to identity matrices, the esti-
mates of both filters are close to identical. There was no
significant difference in the computed outputs of the pro-
posed EKF on SO(3) and the D-EKF-LG, as visualized in
Figure (11). However, due to a simpler formulation, the
computational burden of the proposed EKF was lower due
to fewer computations in each iteration, leading to a faster
performance. Tables 1 and 2, contain the computed root
mean square errors (RMSE) on the error signal from each
data set using the EKF on SO(3) and the D-EKF-LG re-
spectively.
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Figure 11: The D-EKF-LG and the proposed EKF on
SO(3) have no distinct differences when inter-
preting the given data sets, which in this particu-
lar case is the error plot from the pitch case from
both of the estimators.

RMSE Roll case Pitch case Simulation

φ 0.0187 0.0211 0.0092
θ 0.0058 0.0024 0.0067

Table 1: RMSE values for the experimental roll and pitch
experiments, and for a simulated dataset using the
EKF on SO(3) formulation

RMSE Roll case Pitch case Simulation

φ 0.0186 0.0211 0.0092
θ 0.0058 0.0024 0.0068

Table 2: RMSE values for the experimental roll and pitch
experiments, and for a simulated dataset with D-
EKF-LG

10.2 Modelling Aspects
An alternative to the model used in this paper is to de-
rive the model using generalized coordinates. The follow-
ing dynamics can be obtained using the Lagrange formula-
tion (Abdel-Rahman et al., 2003)

φ̈ cos θ = 2φ̇θ̇ sin θ − g

L
sinφ (135)

θ̈ = −φ̇2 sin θ cos θ − g

L
cosφ sin θ (136)

For small angles, this formulation can be linearized, and
a simple Kalman filter can be used to estimate the system
states as generalized coordinates. However, the nonlineari-
ties in this formulation are introduced through the kinemat-
ics of the Euler angles, such that they appear in the EKF
model. This type of nonlinearities is, however, not encoun-
tered in the EKF on Lie groups as presented in this paper.

11 Conclusion
A camera sensor configuration based on stereo vision was
used to track a wire under tension using an edge feature
detector in the vision part. The direction of the line was
found by intersecting two planes generated as the plane in-
tersecting three spatial points in each camera frame and the
pendulum angles were measured using the resulting line. A
new formulation for an EKF on Lie groups has been pre-
sented and applied to SO(3) to estimate the angular dis-
placement of the payload. The estimator was supported by
model of the spherical pendulum which was formulated us-
ing the rotation matrix to describe the gravitational torque.
The proposed EKF on SO(3) is based on the kinematic dif-
ferential equation of the logarithm, and the formulation is
less complex and easier to implement than previously pro-
posed estimators like the D-EKF-LG filter. At the same
time the performance of the proposed EKF was shown in
experiments and simulations on SO(3) to be of the same
accuracy as the D-EKF-LG filter.
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