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Abstract

This paper is devoted to robust master-slave controller design for generalized chaotic systems synchro-
nization. The closed-loop system is asymptotically stable when the robust stability conditions hold and
while the H∞ norm of the closed-loop transfer function with respect to defined output and input is strictly
less than γ > 0. In this paper a modified L2 gain approach is used and an original design procedure is
proposed to decrease the conservativeness of the former method. The effectiveness of the proposed method
is shown in numerical examples.
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1 Introduction

The chaotic synchronization gets much more attention
due to the powerful applications in biological systems,
chemical reactions, information processing, power con-
verters, secure communications and others. The men-
tioned topic has attracted many researchers since the
original paper by Pecora and Carroll (1990) dedicated
to chaotic synchronization and it still belongs to the in-
teresting problems in nonlinear oscillator control. The
main idea of synchronization is to design the controller
for a slave chaotic system, that the slave output can
follow the master system output while the defined er-
ror is asymptotically stable, (Wang et al., 2012). Chaos
synchronization opens up huge perspective to optimize
nonlinear oscillated systems. Electrical power system
belongs to this type of nonlinear dynamic systems.
Study of the chaos and its control (Shahverdiev et al.,
2008) could avoid undesirable power system dynamic
and behaviour, which should lead to the power system
blackout. One of the essences of the proposed method

mentioned also in the paper Song and Yu (2003) is
that the tracking error of master-slave system is pushed
and forced to the pre-selected invariant manifold. The
necessary chaos synchronization condition is that the
conditional Lyapunov exponents are negative. Robust
H∞ controller design for synchronization of master-
slave dynamic chaotic systems using LMI and feed-
back linearization has been previously made in Wang
and Balakrishnan (2002) and further results to syn-
chronization of Lure systems with time delay in Zeng
et al. (2015). The slave control algorithm has been
given for the case of fourth order chaotic system with
rather complicated control algorithm. Chaos synchro-
nization of Rossler systems, that has origins in chemical
kinetics is described in Farghaly (2013). The controller
used to synchronize two identical Rossler dynamic sys-
tems has been determined by the Lyapunov function.
The sufficient global stability criterion for synchroniz-
ing Liu chaotic system has been obtained based on a
linear feedback control method and Lyapunov function
in Chen (2009). Disturbance observer based controller
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could be found in Mobayen and Javadi (2015). Chaotic
system control with Lipschitz nonlinearities and state
feedback is described in Mobayen and Tchier (2017).
New chaotic regimes in the Lorenz and Chen systems
are described in the paper Sprott (2015). The paper
describes new regimes and show that Lorenz and Chen
chaotic systems admits chaotic solution. The review
of chaotic systems and synchronization control should
also be consulted in Boccaletti et al. (2002) and ex-
cellent book of L Fradkov (2007). On the basis of the
above small observation the following problem is stud-
ied in this paper: Develop a new design procedure for
the given dynamics of chaotic system (8) to design the
robust H∞ controller based on the LMI, feedback lin-
earization and bounded real lemma with less conser-
vativeness than known methods from references using
bilinear matrix inequalities (BMIs).

The contribution of this paper is to provide robust
performance conditions by minimization of H∞ gain
with respect to the calculated output and disturbance
input for the feedback interconnection of a chaos slave
system and designed controller which ensures the syn-
chronization in master-slave systems.

The remainder of the paper is organized as follows.
In Section 2 we present preliminaries and recall design
procedure for H∞ gain. In Section 3 we address the
state error tracking feedback to obtain the new less
conservative robust H∞ controller design procedure.
Finally, in Section 4, the proposed design procedure is
verified by the examples.

Our notation used in the paper is standard, P ∈
Rm×n denotes the set of real m × n matrices, P � 0
(P � 0) ∈ Rn×n is a real symmetric, positive definite
(semidefinite) matrix. Furthermore, ”*” in matrices
denotes the respective transposed (conjugate) term to
make matrix symmetric. Finally, Im is an m×m iden-
tity matrix, and 0m is an m×m zero matrix.

2 Preliminaries and problem
formulation

Consider the following chaotic system (Wang et al.,
2012) in the form

q̇i = qi+1, i = 1, 2, . . . , n− 1

q̇n = f(q, w, v),
(1)

where q ∈ Rn is the state vector, v ∈ Rm is the control
input vector, and w ∈ Rk ∈ L2[t0,∞) is an exogenous
input vector. The system (1) one can split to slave
system

q̇si = qsi+1 , i = 1, 2, . . . , n− 1

q̇sn = f1(qs) + w + u,
(2)

and to master closed-loop system

q̇mi
= qmi+1

, i = 1, 2, . . . , n− 1

q̇mn
= f2(qm),

(3)

where fi(.), i = 1, 2 are nonlinear function variables,
wherein qs ∈ Rn and qm ∈ Rn are the state vectors of
slave and master chaotic systems, and u ∈ Rm is the
control input vector of the slave system. The slave (2)
and master (3) systems can be transformed to matrix
form as

q̇s = Asqs +Bu+B1w +Asn(qs), (4)

q̇m = Amqm +Amn(qm), (5)

where

As = Am =


0, 1, 0 · · · 0
0, 0, 1 · · · 0
...

...
...

. . .
...

0, 0, 0 · · · 0

 , B = B1 =


0
0
...
1

 ,

Asn =


0
0
...

f1(qs)

 , Amn =


0
0
...

f2(qm)

 .
Such models can represent many types of chaotic sys-
tems. The above mentioned idea of two chaotic systems
synchronization is to design the controller for slave sys-
tem such that the defined output (states) of the slave
system can follow the corresponding output (states) of
master systems. That implies that the tracking error
for both systems will be asymptotically stable

lim
t→∞

||qs − qm|| → 0. (6)

The tracking error is defined as

e = qs − qm. (7)

Subtracting equations (4) and (5) one obtains

ė = Ae+B1w +Bu+BF (qs, qm),

z = C1e+D11w +D12u+D12F (qs, qm),

y = Ce+D21w,

(8)

where z ∈ Rlz is the performance output vector,
y ∈ Rl is the measurable output vector, A = As, and
F (qs, qm) = f1(qs) − f2(qm). The matrices C ∈ Rl×n,
C1 ∈ Rlz×n, D11 ∈ Rlz×k, D12 ∈ Rlz×m, and D21 ∈
Rl×k are known constant matrices.

Let us recall some standard terminology.

Definition 2.1. (L2 norm, Boyd et al. (1994))
The L2 norm of h ∈ Rn is defined as:

‖h‖22 =

∫ ∞
0

hTh dt. (9)
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Definition 2.2. (L2 gain, Boyd et al. (1994)) The
L2 gain of system (8) (which also equals to the H∞
norm of the system’s transfer matrix) is defined as the
quantity

sup
‖ω‖6=0

‖z‖2
‖w‖2

, (10)

where the supremum is taken over all nonzero trajec-
tories of system (8), starting from e(0) = 0.

Based on the foregoing, the following problem is
studied in this paper.

Problem 2.3. For system (8) design an output-
feedback controller, with gain matrix K ∈ Rm×n, de-
fined as

u = Ky − F (qs, qm), (11)

such that the closed-loop system is asymptotically sta-
ble, and the H∞ norm of the system’s transfer matrix
is strictly less than γ, where γ ≥ 0 is a known constant
defined by the designer.

Substituting the control law (11) to the system (8)
one can obtain

ė = Ae+B1w +Bu1,

z = C1e+D11w +D12u1,

y = Ce+D21w,

(12)

where
u1 = Ky = KCe+KD12w. (13)

Remark 2.4. Control law (13) is defined in a static
output-feedback (SOF) form. Let’s remark that many
controller structures can be transformed to the form
(13) (like PI, PID, PD, even full/reduced order dy-
namic output-feedback controllers), by augmenting the
system with additional state variables. For more info,
see Ilka (2018) or Veselý and Rosinová (2013).

The following lemma (Isidori, 2011, 2017) plays an
important role in the next development.

Lemma 2.5. Let γ ≥ 0 be a known constant scalar. If
there exists a controller gain matrix K and a positive
definite matrix X satisfyingATfX +XAf , XBf , C

T
f

BfTX, −γI, Df

Cf , Df , −γI

 ≺ 0, (14)

Af = A−BKC, (15)

Bf = B1 −BKD21, (16)

Cf = C1 −D12KC, (17)

Df = D11 −D12KD21, (18)

then the closed-loop system formed by system (12) and
control law (13) is asymptotically stable and the H∞
norm of its closed-loop transfer function is strictly less
than γ.

Proof. For proof see (Isidori, 2011, 2017).

The Inequality (14) in Lemma 2.5 is known as the
bounded real lemma (Isidori, 2011, 2017; Krokavec and
Filasova, 2016). The problem with the application of
the above inequality to design the robustH∞ controller
is that it gives rather conservative results. In this paper
we propose a new robust H∞ controller design proce-
dure, using modified bounded real lemma and feedback
linearization, to control the chaotic system (1) with less
conservativeness.

3 Robust H∞ontroller Design

This section formulates the theoretical approach to ro-
bust controller design with less conservative results.

Theorem 3.1. Chaotic system (8) with any initial
conditions can be stabilized by control algorithm (11)
with H∞ norm of the system’s transfer matrix strictly
less than γ, if there exists a symmetric positive definite
matrix P , matrices Ni, i = 1, 2, 3 and controller gain
matrix K such that the following inequality holds

W =

W11, W12, W13

WT
12, W22, W23

WT
13, W

T
23, W33

 ≺ 0, (19)

where

W11 = N1 +NT
1 ,

W12 = −NT
1 Af +N2 + P,

W13 = −NT
1 Bf +N3,

W22 = −NT
2 Af −ATfN2 + CTf ∗ Cf ,

W23 = −NT
2 Bf −ATfN3 + CTf ∗Df ,

W33 = −NT
3 Bf −BTf N3 − γ2Iw +DT

f ∗Df ,

wherein Af , Bf , Cf and Df are defined in (15), (16),
(17), and (18).

Proof. Suppose that there exists a quadratic function
V (e) = eTPe, P � 0, and some γ ≥ 0 such that:

V̇ (e) + zT z − γwTw < 0, (20)

Integrating (20) from 0 to T , with initial condition
e(0) = 0, we can get:

V (e(T )) +

∫ T

0

(zT z − γ2wTw)dt < 0. (21)

Since P is positive definite then V (e(T )) > 0, which
implies

‖z‖2
‖w‖2

≤ γ. (22)

Furthermore, the inequality (22) and the Definition 2.2
implies that the L2 gain of the system (12) (which also

43



Modeling, Identification and Control

equals to the H∞ norm of the system’s transfer matrix
(Boyd et al., 1994)), is strictly less than γ.

By using the auxiliary matrices N1, N2 ∈ Rn×n and
N3 ∈ Rn×k, and by substituting the control law (13)
to the system (12), we can get:

H = 2(ėTNT
1 + eTNT

2 + ωTNT
3 )

(ė−Afe−Bfw) = 0 (23)

where Af and Bf are defined in (15) and (16). Since
H = 0, we can write

V̇ (e) +H + zT z − γωTω = dTWd < 0, (24)

where for dT = [ėT , eT , wT ],

V̇ (e) = ėTPe+ eTP ė = dT

 0, P, 0
P, 0, 0
0, 0, 0

 d, (25)

zT z = dT

 0, 0, 0
0, CTf Cf , C

T
f Df

0, DT
f Cf , D

T
f Df

 d, (26)

γ2ωTω = dT

 0, 0, 0
0, 0, 0
0, 0, γ2Inω

 d, (27)

H = dT

N1 +NT
1 , −NT

1 Af +N2,
∗, −NT

2 Af −ATfN2,

∗, ∗,
−NT

1 Bf +N3

−NT
2 Bf −ATfN3

−NT
3 Bf −BTf N3

 d, (28)

wherein, Cf and Df are defined in (17) and (18). Fi-
nally, from (24) we can get (19), which completes the
proof.

Theorem 3.1 is formulated as a feasibility problem,
for given known γ. The next Corollary completes it
with minimization of γ to obtain minimal H∞ norm.

Corollary 3.2. If the following optimization problem
has a solution, then the closed-loop system formed by
system (8) and controller (11) will be stable with min-
imal H∞ norm

min
F,P,N1,N2,N3,γ

(γ) (29)

s.t.:
W ≺ 0, (30)

P � 0, (31)

γ ≥ 0. (32)

4 Examples

Example 4.1. In order to evaluate the conservative-
ness of the previous proposed method (Corollary 3.2)
the COMPleib library (Leibfritz, 2004) has been used
(Table 1). In order to better highlight the advantages
of the proposed method beside approaches from (Hoi
et al., 2003, Problem 2) and from (Isidori, 2017, The-
orem 3.1), which are also based on bilinear matrix
inequalities, we have decided to include results from
other approaches like the HIFOO toolbox (Burke et al.,
2006) and the BMISolver toolbox (Dinh et al., 2011a)
as well. The HIFOO toolbox is based on a hybrid algo-
rithm for nonsmooth, nonconvex optimization, which
uses several techniques, namely quasi-Newton updat-
ing, bundling and gradient sampling. The BMISolver
toolbox is combining convex-concave decompositions
and linearization approaches for solving BMIs.

Numerical solutions for the proposed method (Corol-
lary 3.2) have been carried out by PENBMI 2.1 solver
(Henrion et al., 2005) under Matlab R2018a (The
Mathworks, Inc., 2018) using YALMIP (Löfberg, 2004)
on NEOS Server Version 5.0 (Czyzyk et al., 1998). Nu-
merical solutions for HIFOO and BMISolver Toolboxes
as well as for the BMI formulation based on (Hoi et al.,
2003, Problem 2) have been taken over from (Dinh
et al., 2011b, Table 2). Finally, numerical solutions for
the BMI formulation based on (Isidori, 2017, Theorem
3.1) have been carried out by PENLAB solver (Fiala
et al., 2013) under Matlab R2017a using YALMIP on
HP EliteBook 820 notebook. Table 1 indicates that
the proposed approach (Corollary 3.2) is less conserva-
tive compared to other approaches using BMIs ((Hoi
et al., 2003, Problem 2) and (Isidori, 2017, Theorem
3.1)) since it can handle much more examples from the
COMPleib library. Table 1 also proves that the pro-
posed approach with the used relaxation (slack variable
approach) combined with PENBMI global solver out-
performs the majority of the algorithms in most cases.
In addition, thanks to the reduced conservativeness, it
can handle much more examples from the COMPleib li-
brary compared to other BMI-based approaches, which
indicates that the proposed approach could be an ef-
ficient and reliable computer-aided control system de-
sign tool for small and medium sized problems, with a
potential for realistic industrial applications as well.

Example 4.2. Numerical simulation of the well known
Van der Pol oscillator model has been used to verify
the results of the Theorem 3.1 in the second example
of this article. The master Van der Pol chaotic system
can be described as

q̇m1
= qm2

(33)

q̇m2 = −qm1 + (1− εmq2m1
)qm2 , (34)
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Table 1: H∞ benchmarks on COMPleib plants

Problem description γ - Other methods Proposed method

Name nx ny nu nz nω
Burke et al. (2006)
(HIFOO toolbox)

Dinh et al. (2011a)
(BMISolver toolbox)

Hoi et al. (2003)*
(BMI)

Isidori (2017)*
(BMI)

γ iter. time (s)

AC6 7 4 2 7 7 4.1140 4.1954 - - 4.1140 21 4.72371
AC7 9 2 1 1 4 0.0651 0.0339 0.3810 0.0651 0.0599 235 330.525
AC8 9 5 1 2 10 2.0050 4.5463 - - 2.0050 30 23.4929
AC17 4 2 1 4 4 6.6124 6.6571 - 6.7705 6.6124 56 3.59318
HE3 8 6 4 10 1 0.8545 0.8640 1.6843 1.0016 1.000 25 48.5127
REA3 12 1 3 12 12 74.2513 75.0634 74.4460 - 74.2513 14 84.2832
DIS2 3 2 2 3 3 1.0548 1.1570 - - 1.0231 202 6.70886
BDT1 11 3 3 6 1 0.2664 0.8544 - 0.2667 0.2662 70 719.727
CSE1 20 10 2 12 1 0.0201 0.0219 - - 0.0200 86 215.603
EB1 10 1 1 2 2 3.1225 2.0532 39.9526 3.1225 1.8979 29 51.5588
EB2 10 1 1 2 2 2.0201 0.8150 39.9547 2.0201 0.8142 20 18.6961
EB3 10 1 1 2 2 2.0575 0.8157 3995311.0743 2.0575 0.8143 179 367.619
TF1 7 2 4 4 1 0.3710 - - - 2.0013 60 29.8262
PSM 7 3 2 5 2 0.9202 0.9266 - 0.9202 0.9202 252 118.164
NN2 2 1 1 2 2 2.2216 2.2216 - 2.2216 2.2216 15 0.00839
NN4 4 3 2 4 4 1.3627 1.3884 - - 1.3587 80 9.42532
NN15 3 2 2 4 1 0.1039 0.1201 - 0.0985 0.0981 81 1.28827

and the slave system as

q̇s1 = qs2 , (35)

q̇s2 = −qs1 + (1− εsq2s1)qs2 + u, (36)

wherein εm > 0 and εs > 0. By performing the oper-
ation (7) the model for tracking error can be obtained
as

ė1 = e2, (37)

ė2 = −e1 + e2 − εsq2s1qs2 + εmq
2
m1
qm2

+ u, (38)

which can be transformed to the form (8) with

A =

[
0, 1
−1, 1

]
, B = B1 =

[
0
1

]
, C1 = [1, 1],

C = In, D11 = D12 = D21 = 0,

F (qs, qm) =

[
0

−εsq2s1qs2 + εmq
2
m1
qm2

]
.

Note that matrix A is unstable. The control law (13)
is described by the following equation

u = Ky − F (qs, qm) = Ke− εsq2s1qs2 + εmq
2
m1
qm2

,

where the obtained gain matrixK (using Theorem 3.1),
for different initial parameters are

• for 0 < P < ρI, ρ = 100, and γ = 0.4151

K = [−2.8726, −5.7697]. (39)

The maximal real part of the eigenvalues of the
closed-loop system is λm = −1.0377.

• for ρ = 500 and γ = 0.326

K = [−8.7081, −13.5514]. (40)

The maximal real part of the eigenvalues of the
closed-loop system is λm = −0.8281.

-3 -2 -1 0 1 2 3

q
1

-4

-3

-2

-1

0

1

2

3

4

q
2

Behavior of the chaotic system

Figure 1: Behaviour of the first chaotic system.

Note that minus sign of matrix K provides negative
feedback.

The behaviour of the chaotic system for non-zero ini-
tial conditions is shown in Fig. 1. The time responses
of the tracking error are shown in Fig. 2 (for (39)) and
in Fig. 4 (for (40)). The measurements of γ according
to ω (rad s−1) are shown in Fig. 3 (for (39)) and in
Fig. 5 (for (40)). In both cases the measured value γ
is less than the defined maximum value.

Example 4.3. The third example is borrowed from
Wang et al. (2012), where the third order master
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Figure 2: Time response of the controlled output
variable.
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Figure 3: Measured γ according to ω.
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Figure 4: Time response of the controlled output
variable.
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Figure 5: Measured γ according to ω.
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chaotic system is defined as

q̇m1
= qm2

, (41)

q̇m2
= qm3

, (42)

q̇m3 = 5.5qm1 − 3.5qm2 − qm3 + q3m1
, (43)

and the slave system as

q̇s1 = qs2 , (44)

q̇s2 = qs3 , (45)

q̇s3 = −1.2qs1 − qs2 − 0.6qs3 + q2s1 + w + u, (46)

By performing the operation (7) the model for tracking
error can be obtained in the form (8) with

A =

 0, 1, 0
0, 0, 1
−1.2, −1, −0.6

 , B =

 0
0
1

 ,
C1 = [1.1, 0.6, 0.7], C = In, D11 = D12 = D21 = 0,

F (qs, qm) =

 0
0

f(qs, qm)

 ,
f(qs, qm) = −6.7qm1

+ 2.5qm2
+ 0.4qm3

+ q2s1 − q
3
m1
.

The obtained gain matrix K using Theorem 3.1 for
γ = 0.2908, and ρ = 50 is

K = [−4.9405, −5.5067, −5.383]. (47)

The maximal real part of the eigenvalues of the closed-
loop system is λm = −0.535. Dynamic behaviour of the
tracking error is shown in Fig. 6, and the measurement
of γ according to ω is shown in Fig. 7.

Example 4.4. The fourth example has been borrowed
from Wang et al. (2012), where the second order master
chaotic system is defined as

q̇m1
= qm2

, (48)

q̇m2
= −0.4qm2

+ 1.1qm1
− q3m1

− 2.1cos(1.8t), (49)

and the slave system as

q̇s1 = qs2 , (50)

q̇s2 = qs1 − 0.5qs2 − 0.8q3s1 − 2cos(1.5t) + w + u,
(51)

By performing the operation (7) the model for tracking
error can be obtained in the form (8) with

A =

[
0 1
0 −0.5

]
, B =

[
0
1

]
,

0 2 4 6 8 10

t [s]

0

0.05

0.1

0.15
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Time response of controlled system

Figure 6: Time response of the controlled output
variable.
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Figure 7: Measured γ according to ω.
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Figure 8: Time response of the controlled output
variable.

C1 = [0.8, 0.5], C = In, D11 = D12 = D21 = 0,

F (qs, qm) =

[
0

f(qs, qm, t)

]
,

f(qs, qm, t) =− 0.1qm2 + qs1 − 0.8q3s1 − 2cos(1.5t)

− 1.1qm1
+ q3m1

+ 2.1cos(1.8t).

The obtained control algorithm (using Theorem 3.1) is

u =Kx+ 0.1qm2
− qs1 + 0.8q3s1 + 2cos(1.5t)

+ 1.1qm1 − q3m1
− 2.1cos(1.8t),

(52)

where the gain matrix

K = [−3.5389, −3.5174], (53)

for γ = 0.3497 and ρ = 50. The maximal real
part of the eigenvalues of the closed-loop system is
λm = −1.3044. Dynamic behaviour of the tracking er-
ror is shown in Fig. 8, and the measurement of γ ac-
cording to ω in Fig. 9.

In all cases the tracking error converged to zero (Fig.
2, Fig. 4, Fig. 6, and Fig. 8) which means that the con-
trolled slave system tracked the master system. Also
in all cases the measured γ was lower than the numer-
ically computed maximum.

5 Conclusion

In this paper a new bounded real lemma is proposed for
robust master-slave controller design that is used for
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Figure 9: Measured γ according to ω.

synchronization of generalized chaotic systems. The
modified L2 gain approach and the new bounded real
lemma ensures less conservative BMI-based controller
design due to the introduced auxiliary matrices. When
the robust stability conditions hold the closed-loop
system is asymptotically stable and the H∞ norm of
closed-loop transfer function with respect to the de-
fined output and input is strictly less than γ ≥ 0. Nu-
merical examples show the effectiveness of the proposed
method.
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