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Abstract

The bearingless permanent magnet synchronous motor (BPMSM) is a compact motor structure that
combines the motoring and bearing functions based on well-designed integrated windings for generating
both torque and magnetic suspension force. In order to achieve a successful high-performance control
design for the BPMSM, an adequate model of the rotor dynamics is essential. This paper proposes
simplified multiple-input and multiple-output (MIMO) control approaches, namely the pole placement and
the linear-quadratic regulator (LQR), that allow to carry out identification experiments in full levitation.
Additionally, the stability of the MIMO levitation controller is verified with the rotation tests. Compared
with other recently published works, the novelty of this paper is to experimentally demonstrate that a
stable fully levitated five-degrees-of-freedom (5-DOF) operation of a bearingless machine can be achieved
by the proposed approach, and thereby, options for commissioning of such a system are obtained.
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1 Introduction

Operation in the high-speed region is very beneficial
especially in the field of compressor applications. The
compressor pressure ratio and mass flow rate can be
raised by increasing the rotational speed Yoon et al.
(2013). In the speed range of 20 000 r/min and
over, the electrical motor efficiency can be increased
by achieving the minimum weight-power ratio. It is
clear that operating in the high-speed region increases
both the motor and compressor efficiency. Nowadays
there is a growing interest in high-speed technology,
where the traditional bearing solution is replaced by a
more advanced solution, namely active magnetic bear-
ings (AMBs) Gerhard Schweitzer (2009). The well-
known benefits of AMBs are contact-free operation,
active control of the rotor, and self diagnostic prop-
erties. As AMBs do not need oil lubrication because of
the magnetic levitation of the rotor, they are the most

suitable solution for oil-free compressor applications in
the fields of pharmacy and food industry. However,
one drawback of the AMBs is that they extend the
total length of the rotor as the radial and axial mag-
netic bearings need a certain amount of space, which
results in an increased axial length of the rotor shaft
along with a larger and more complicated motor struc-
ture. Depending on the operational speed and rotor
mechanical dimensions, this extra length can lower the
flexible mode frequencies to the operating region. This
is an unwanted feature as the operation close to the
flexible mode is difficult. From the viewpoint of the
overall system behavior, and especially with respect to
controllability, it is advantageous that the rotor does
not need to pass flexible modes.

Reducing the rotor length, simultaneously keeping
the benefits of the traditional AMBs, a self-levitating
or bearingless motor technology can be applied Chiba
et al. (2009). In a bearingless motor, one stator pro-
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duces both the levitation force to support the rotor and
the torque for rotation. This can be achieved by the use
of separate windings or by different common winding
configurations in one stator unit Chiba et al. (2013).
Because the windings are of a three-phase type for both
generating torque and levitation force, commercial mo-
tor drives can be used, and thus, the amount of power
electronics is decreased compared with the traditional
AMB configuration.

Bearingless operation is possible also with single-
stator disc-shape motors Mitterhofer and Amrhein
(2012). Other applications that exploit the benefits of
bearingless operation are artificial hearts Hoshi et al.
(2006) and canned pump Warberger et al. (2010) ap-
plications, where a long air gap length is needed. How-
ever, in this paper, a standard horizontal-type machine
equipped with two bearings is considered. The machine
type with two or more supporting bearings can handle
a higher loading force caused by the weight and mass
flow of the impeller wheel.

In general, when dealing with high-speed machines,
it is important to analyze the rotor behavior Swanson
et al. (2008). As a result of the dynamic properties
of the rotor structure, bending occurs when the rota-
tion speed is increased. Without qualitative analysis of
the rotor dynamics, the rotor operating point in nom-
inal operation can be close to the rotor flexible mode.
Thus, it is of great importance that in the machine
commissioning phase, the rotor dynamics are identified
in order to verify the flexible modes of the rotor Noh
et al. (2017). A common method is to use an impulse
hammer with vibration sensors to conduct the mode
analysis. Naturally, as the AMB system is equipped
with a displacement sensor and power electronics, the
rotor identification can be made in the system without
removing the rotor.

In recent years, a variety of different bearingless ma-
chine setups have been introduced in the literature,
and their control has become a topic of significant in-
terest. The five-degrees-of-freedom (5-DOF) control of
a bearingless machine has been reported in Takemoto
et al. (2009); Yamamoto et al. (2011); Severson et al.
(2017), and other studies have considered the combina-
tion of a bearingless motor and a magnetic bearing in
Cao et al. (2017); Schneider and Binder (2007). Here,
the 5-DOF operation refers to two radial xy-planes and
one axial z-plane of the control axes. Note, however,
that many of the reported prototypes are laboratory
versions, where all degrees of freedom (DOF) have not
been evaluated. It is also worth emphasizing that in
these examples the most common structure is a bear-
ingless motor with a ball bearing supporting the other
end of the rotor Chiba et al. (2013); Sun et al. (2016a);
Ooshima et al. (2015); Yang et al. (2010); Huang et al.

(2014). Although there are a few publications where
the system has one bearingless motor, it is not shown
or reported how the conical movement of the rotor is
stabilized Qiu et al. (2015); Sun et al. (2016b); Xue
et al. (2015); Yang and Chen (2009); Chen and Hof-
mann (2011); Cao et al. (2016); Zhang et al. (2016);
Zhao and Zhu (2017). In addition, a common factor
in all these publications is that they apply PID-based
position controllers. To the authors’ knowledge, only
the model-based controller has been addressed in Mes-
sager and Binder (2016) for machines of the horizontal
dual bearingless motor type. Another approach based
on a linear-quadratic regulator (LQR) controller for a
bearingless motor has been introduced in Kauss et al.
(2008). However, the presented prototype is 2-DOF
and the other end is supported by a ball bearing.

In order to conduct rotor identification, the rotor
must be fully levitated. The aim of this paper is to
study MIMO control approaches that provide a stable
fully levitated operation of a bearingless machine. The
novelty of this paper compared with the previously re-
ported studies is that it provides experimental results
that show the actual 5-DOF operation of a bearingless
machine, and more importantly, introduces results of
the full levitation. For this purpose, a 4-DOF MIMO
controller is used for the radial position control. The
axial position is controlled with an axial AMB, and
it is separated from the radial controller. Rigid body
is used as an initial rotor model. Pole placement and
LQR radial position controllers are used, and the suit-
ability of the controllers is discussed. The designed
4-DOF radial controllers are simulated and tested in
a 10 kW dual motor interior permanent magnet bear-
ingless machine. Additionally, the stability of the levi-
tation control is verified with low-speed rotation tests.
Finally, system identification experiments are carried
out with the pole placement and the LQR controller
by superposing a stepped sine excitation signal to the
system.

2 Problem statement

To operate in a high-speed region, the dynamic prop-
erties of the rotor must be known. An initial analysis
of the rotor dynamics is normally done with analytical
tools, by which the natural frequencies of the rotor are
found. However, experimental tests are mandatory to
verify the model and detect possible defects of the ro-
tor. One common method to carry out experimental
modal analysis is to use an impulse hammer, which in-
cludes for example an integral piezoelectric accelerom-
eter sensor to produce the excitation to the rotor and
measure the applied force Kolondzovski et al. (2010).
When the rotor system is equipped with AMBs, the
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same modal analysis can be done in the system. Simi-
larly as in the impulse hammer test, the AMBs produce
the excitation signal and displacement sensors are used
to measure the vibration of the rotor. Based on the re-
sults, the natural frequencies of the rotor can be found.
The obtained results can be used to improve the ana-
lytical model by updating the rigid and flexible modes,
thereby resulting in a more accurate system model.

To simplify this procedure in a bearingless machine,
the rotor can be levitated without a rotating field as
the rotor identification is made at a standstill. In this
case, the decoupling of the torque and levitation wind-
ings can be ignored. When knowing the rotor angle and
transforming the three-phase windings into a 2-phase
system, the control principles of traditional AMB sys-
tems can be adopted.

2.1 System description

The prototype machine consists of two identical in-
terior permanent magnet (IPM) bearingless motors
(BMs) together with an axial magnetic bearing. Fig. 1.
depicts the prototype machine. The axial magnetic
bearing is in the middle of the machine, and bearing-
less motors are placed on opposite sides of the machine.
This provides a symmetrical rotor structure when the
load is not considered. A block diagram of the full
control system is shown in Fig. 2. The rotor position
is measured with an eddy-current sensor differentially
from the radial direction and single ended from the
axial direction. A non-contact encoder is placed on
the right side of the machine to sense the rotor angle.
Moreover, five industrial motor drives are used to oper-
ate the machine: one is needed for the axial bearing and
two for the torque and radial force production for each
BM. Each motor drive includes a field programmable
gate array (FPGA), where the inner loop current con-
troller is implemented. A block diagram of the inner
current control loop is illustrated in Fig. 3. The upper-
level control is implemented in a Beckhoff industrial
PC, and the communication between the industrial PC
and the motor passes through an EtherCAT industrial
fieldbus. The sampling time of the control system is
50 µs.

3 Model of the system

In this paper, the rigid rotor model is used to tune
the proposed control approaches. In general, a mathe-
matical model of the system can be presented using a
state-space representation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)
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Figure 1: Photograph of the 10kW dual motor bear-
ingless machine. The axial AMB is in the
middle of the machine and bearingless mo-
tors are located on both ends.
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Figure 2: Block diagram describes the overview of the
system configuration. All controllers are im-
plemented on a Beckhoff industrial PC shown
in far left. In total, five 3-phase motor
drives are used to produce levitation force
and torque. Three drives are allocated for the
5-DOF levitation purposes, and both motors
are driven separately. The rotor position in
5-DOF is measured together with the rotor
angular position.

where A is the system matrix, B is the input matrix,
and C is the output matrix. The vectors x and u are
state and input vectors, respectively. In this paper,
separate models for the axial and radial directions are
used as the coupling is not strong. In the axial direc-
tion, the rotor is modeled as a point mass, whereas in
the radial direction, a rigid body rotor model is used.

29



Modeling, Identification and Control

S

PI controller

DQ

ABC

DQ

ABC

BM

Torque /

Force

S+

+

-

-

id,ref

iq,ref

qr

 

Figure 3: Block diagram of the PI current controller
scheme applied to motor drives that produce
the radial force. ABC: three-phase reference
frame and DQ: rotor reference frame.

3.1 Rotor model

General form of the rotor model is presented in the
following:

Mq̈(t) + (D + ΩG)q̇(t) + Kq(t) = F(t), (2)

where M is the mass matrix, D is the damping matrix,
Ω is the rotational speed, G is the gyroscopic matrix,
K is the stiffness matrix, F is the force applied to the
rotor and q is the displacement vector of the rotor.
This model can be simplified to a rigid rotor model,
which describes the rotor movement with respect to
the center of the rotor mass Smirnov (2012)

Mq̈(t) + ΩGq̇(t) = F(t), (3)

where M is the diagonal matrix including rotor
mass and inertia at the center of mass, q =[
x y αx αy

]T
is the vector that describes the ro-

tor position in the xy-axis and the angle around
the corresponding axis at the center of mass. As
the displacement sensors and the magnetic bearings
are not located at the center of mass, a coordi-
nate transformation is needed for the control de-
sign and simulation purposes. To acquire the ab-
solute location in the xy-axis of the sensors, qs =[
xD,s yD,s xND,s yND,s

]T
and the magnetic bear-

ing locations, qb =
[
xD,b yD,b xND,b yND,b

]T
at

the drive and non-drive end of the machine, the follow-
ing transformation matrices are applied

qb =


1 0 0 −a
0 1 −a 0
1 0 0 b
0 1 b 0


︸ ︷︷ ︸

Tb

q, qs =


1 0 0 −c
0 1 −c 0
1 0 0 d
0 1 d 0


︸ ︷︷ ︸

Ts

q,

(4)

where a, b are the drive-end and non-drive-end bearing
locations from the center of the rotor mass, respectively

and c, d are the drive-end and non-drive-end sensor
locations from the center of mass. Rotor cross-sectional
view is illustrated in Fig. 4.

Radial forces produced by the bearingless machine
can be presented by the following equation

F(t) = Kxqb + Kiic, (5)

where F is the total linearized radial force generated
by the bearingless machine, qb is the rotor position at
the bearing location, ic is the control current to the lev-
itation windings, Kx is the diagonal position stiffness
matrix, and Ki is the diagonal current stiffness ma-
trix. The total force depends on the rotor position and
current in the levitation windings. The coefficients Kx

and Ki can be determined experimentally by different
tests and measurements. Parameters of the prototype
machine are listed in Table 1.

In Fig. 5 a) the position stiffness value is determined
by moving the rotor in the air gap, and the force caused
by the unbalance pull of the permanent magnets is
measured. From this measurement, the slope of the
position stiffness can be calculated, Kx = 4fx/4 Px.
The current stiffness is measured by applying current in
the levitation windings and measuring the correspond-
ing radial force. Similarly, from the measured slope,
the current stiffness can be calculated, Ki = 4fx/4iL.
It can be seen that the measured values are closely
matching the FEM simulations presented in Fig. 5.
Measured values are used in the control design. The
force measurement setup is described in more detail in
Jaatinen et al. (2016).

The rigid rotor model presented in (3) can be fur-
ther simplified by neglecting the gyroscopic matrix as
the rotor is not rotating during the identification, that
is, Ω = 0. Furthermore, this simplification is also valid
for the rotating system when axial length of the ro-
tor is much greater than the rotor diameter thus the
gyroscopic effect is then negligible Gerhard Schweitzer
(2009). By substituting (4) and (5) into (3), a simpli-
fied rigid rotor model is achieved

Mbq̈b = Kxqb + Kiic. (6)

where Mb = (T−1
b )TMT−1

b is the mass matrix in the
bearing plane. In the state-space form, the simplified
rotor model is written as

Ar =

[
0 I

(Mb)
−1Kx 0

]
,

Br =

[
0

(Mb)
−1Ki

]
,

Cr =
[
TsT

−1
b 0

]
.

(7)
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Figure 4: Cross-sectional view of the rotor in the pro-
totype system. Locations of the bearingless
motors and the sensor surfaces are measured
respect of the center of mass.

   
a)                                                                           b) 

Figure 5: Simulated and measured current and posi-
tion stiffnesses. The current stiffness can be
calculated from the slope presented in a). In
the same manner, the position stiffness can
be calculated from the slope presented in b).

3.2 Actuator model

The actuator consists of the dynamics of the inner cur-
rent control loop. A straightforward method to model
the actuator dynamics is to use the bandwidth of the
current controller

Ga =
ωbw

s+ ωbw
, (8)

where Ga is the approximate transfer function of the
inner current loop and ωbw is the bandwidth of the
current controller.

In the simulation, the inner control loop consists of
the PI controller, the motor drive model, and the bear-
ingless motor model including the levitation windings.
The motor drive is modeled as two-stage switching with
a pulse width modulator. The bearingless motor is
modeled in the dq reference frame as

ud = Rid +
d

dt
Ldid − ωLqiq,

uq = Riq +
d

dt
Lqiq + ωLdid,

(9)

where u is the voltage over the levitation windings, R
is the resistance of the levitation windings, L is the

inductance of the levitation windings, i is the current
of the levitation windings, and ω is the electrical angle.

3.3 Full model

A full model can be produced by combining the rotor
model with the actuator model.

A =

[
Aa 0

BrCa Ar

]
, B =

[
Ba

0

]
,

C =
[
0 Cr

]
,

(10)

where Ba = −Aa = diag
[
ωbw ωbw ωbw ωbw

]
is

the current controller bandwidth, and the rigid rotor
model matrices are denoted by the subscript r .

3.4 Axial AMB model

The axial direction of the rotor can be controlled sep-
arately as the coupling to the radial direction is negli-
gible in the center of the air gap. As the axial AMB
controls only 1-DOF, the model of the rotor can be
simplified to a point mass model

mq̈ = Kxqa +Kiic, (11)

where m is the rotor mass, qa is the acceleration of
the rotor, Ki is the current stiffness, and Kx is the
position stiffness.

4 MIMO control of a bearingless
machine

In the literature, there are many publications that ad-
dress the issues of the MIMO control of traditional
AMB systems equipped with two radial and one axial
AMBs Yoon et al. (2013); Gerhard Schweitzer (2009).
The same principles can be adopted to the bearingless
machine control. However, there are two major dif-
ferences compared with the traditional AMB system.
Firstly, the rotating magnetic flux that generates the
levitating force is synchronous with the rotor rotation.
Secondly, decoupling of the motor control from the lev-
itation control is required. If the decoupling param-
eters are correctly identified, the motor control does
not affect the performance of the levitation controller
Ooshima et al. (2004). It is emphasized that in this
paper, the decoupling controller is not taken into con-
sideration as the rotor identification is conducted with
a nonrotating rotor. Moreover, a 4-DOF MIMO radial
controller with a PID-type axial controller for commis-
sioning and rotor identification purposes is tuned based
on a rigid rotor model.
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Table 1: Machine parameters

Parameter Symbol Value Unit

Nominal speed Ωnom 30 000 r/min

Nominal power per motor unit Pnom 5 kW

Rotor mass m 11.65 kg

Rotor inertia J 0.232 kgm2

Resistance, levitation winding R 0.27 Ω

Inductance, levitation winding L 3.27 mH

BM location a, b 107.5 mm

Position sensor location c, d 211 mm

Air gap length lδ 0.6 mm

Rotor length lr 480 mm

BM lamination stack length lrl 61 mm

BM lamination diameter drl 68.8 mm

BM stator outer diameter ds 150 mm

Axial disk thickness la 8 mm

Axial disk diameter da 112 mm

Rotor shaft diameter drs 33 mm

Current stiffness, measured Ki 29 N/A

Position stiffness, measured Kx 672 N/mm

Current stiffness, FEM Ki,FEM 29.6 N/A

Position stiffness, FEM Kx,FEM 618 N/mm

Maximum input deviation unmax 2 A

Maximum output deviation mn 25 µm

Furthermore, an additional coordinate transforma-
tion is needed when comparing the bearingless system
with the traditional AMB system. In Fig. 6, the prin-
ciple of the radial force generation both in the x and
y directions is shown. Here, the three-phase winding
is transformed into a two-phase presentation. When
the rotor is in a certain angular position, for instance
0 deg, where the poles are parallel with the station-
ary xy-reference frame, the corresponding two-phase
current produces force in that axis. By changing the
polarity of the current, the force direction can be re-
versed. By taking into account the rotation of the ro-
tor in the coordinate transformation, the force can be
generated at any angle. A radial position control-loop
block diagram is presented in Fig. 7. Note the coor-
dinate transformation between the position controller
and the inner current controller.

4.1 State-feedback control with pole
placement

One common control method for handling state equa-
tions is state feedback with pole placement, in which
the locations of the closed-loop poles are selected to ob-

tain the desired performance. As all states are not mea-
surable, a state estimator is also needed. To remove
the steady-state error, an integral state is augmented
to the state feedback controller. The full discrete-time
state equation can be written Franklin et al. (2010)

[
x(k + 1)
xI(k + 1)

]
=

[
Φ 0
C I

] [
x(k)
xI(k)

]
+

[
Γ
0

]
u(k)−

[
0
I

]
r(k),

(12)

where Φ, Γ are discretized system state and input ma-
trices, C is the output matrix, I is the identity matrix,
x is the system state vector, xI is the integral state
vector, u is the system input vector, and r is the ref-
erence input vector. The feedback law is then written
as

u(k) = −
[
K KI

] [ x(k)
xI(k)

]
, (13)

where K is the state feedback gain and KI is the inte-
grator gain.

The state estimator uses the following presentation

x̂(k + 1) = Φx̂(k) + Γu(k) + L(y(k)−Cx̂(k)),
(14)

where x̂ is the estimated state vector and L is the feed-
back gain of the state estimator. In this paper, the
state feedback controller is designed by using the prin-
ciples presented in Gerhard Schweitzer (2009).

The main drawback of the pole-placement-based
tuning is that it is not very intuitive. Secondly, when
the system degree increases, also the number of poles to
be placed increases, resulting in a more complex tuning
problem. This is an important factor to be acknowl-
edged, especially when including flexible modes to the
control model.

4.2 Linear-quadratic regulator

There are other control methods that facilitate con-
troller tuning by providing more intuitive tools, which
do not need direct manipulation of the poles. One of
these optimal control methods is the linear-quadratic
regulator (LQR). The controller tuning is based on
minimization of the quadratic cost function

J =
1

2

N∑
k=0

[xT (k)Q1x(k) + uT (k)Q2u(k)], (15)

where J is the cost function, x is the state vector, u
is the input vector, Q1 is the output weight function,
and Q2 is the input weight function. The weighting
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Figure 6: Description of radial force generation in a permanent magnet bearingless motor. The three-phase
windings are transformed into a two-phase presentation in the xy plane. The currents of the two-phase
windings are denoted by ix and iy. The principle of producing radial force in the x -axis is shown in
a). By applying current to the x phase windings, the flux is increased and decreased opposite to the
air gap in x -axis. This flux unbalance produces the radial force. By applying negative current, the
force direction can be reversed. In a similar fashion, the radial force in the y-axis can be produced by
applying current in the y-phase winding.
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Figure 7: Block diagram of the position control loop.

functions are diagonal matrices that affect the states
and inputs of the system. There are different methods
to determine the weighting functions Q1 and Q2. One
of the methods is called Bryson’s rule Franklin et al.
(2010), where the effect of the state weight on the out-
put follows

Q1 = CT Q̄1C. (16)

The weights are selected for the output by deciding
how large a deviation of the output is acceptable

Q̄1,n =


1/m2

1 0 · · · 0
0 1/m2

2 · · · 0
...

...
. . .

...
0 0 · · · 1/m2

n

 , (17)

where mn is the maximum deviation of the output sig-
nal. The weights for the inputs are selected by the
maximum input signal amplitude

Q2,n =


1/u21max 0 · · · 0

0 1/u22max · · · 0
...

...
. . .

...
0 0 · · · 1/u2nmax

 ,

(18)

where unmax is the maximum input signal deviation.
Table 1 lists the values selected for the weights m and
u based on several simulation iterations.

When designing the LQR-based controller, the de-
gree of freedom is lower (two parameters) than with
the pole placement method, where eight poles have to
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Figure 8: Block diagram of the state feedback con-
troller. A state estimator is necessary for
generating the full state vector including ro-
tor acceleration, which is not measurable.
Naturally, an integral action is added to re-
move the steady-state error.

be selected. This difference is amplified in the case of
the flexible plant model, where more states are added
to the system plant.

5 Experimental Results

Both controllers are tested with the prototype bearing-
less machine. First, the initial lift-up test is conducted
and compared with simulations in Fig. 9. The rotor
position is shown during the initial lift-up with the pole
placement and the LQR controller. At the beginning
of the test, the rotor is resting on the backup bear-
ings, where it is levitated to the center of the air gap.
Based on the simulations, it can be noted that the pole
placement controller has a higher overshoot, but both
controllers provide full levitation.

In Figs. 10 and 11, the current in the dq reference
frame is shown for the pole placement controller and
the LQR controller during the rotor lift-up sequence.
Because of the unbalanced magnetic pull of the em-
bedded magnets in the rotor, a high current peak is
needed to lift the rotor away from the backup bearings
to the center of the air gap. Based on the results, it
can be concluded that both of the proposed controllers
meet the requirement of levitating the rotor. It can
also be seen that a good correspondence between the
simulations and measurements is achieved. From the
current RMS values in the steady-state situation we
can notice that the LQR controller provides lower cur-
rent demand. It is pointed out, however, that there is
one notable difference between the BMs in the exper-
imental test; the ND-end has a smaller current ripple
than the D-end.

5.1 System Identification

As was shown in Fig. 9, both the proposed control ap-
proaches provided a stable fully levitated operation of
the bearingless machine. Thus, system identification

 
a)                                                                b) 

 
c)                                                                 d) 

Figure 9: Simulated and measured rotor lift-up from
the backup bearings. Initially, the rotor is
lying on the backup bearings, and after the
controller is enabled, the rotor is magneti-
cally levitated to the operating point, that
is the origin (x, y) = (0, 0). Simulation and
measurement results for the pole placement
controller are shown in a) and b), and for the
LQR controller in c) and d).

experiments can be carried out when the rotor is lev-
itating by superposing artificially generated excitation
signals to the control system. In this paper, an adap-
tive amplitude stepped sine signal is considered with
a frequency band from 1 Hz to 750 Hz in order to
validate the suitability of the control approaches for
commissioning purposes. System identification exper-
iments are carried out with both control approaches.
In Fig. 12, the experimentally obtained frequency re-
sponses are shown. Uncertainty is shown in the low
frequency area (<10 Hz) as it is challenging to identify
the DC-area with the motor inverter. Also the closed
loop controller influences to the low frequency region
limiting the accuracy of identification. Nevertheless,
identified rotor model for both controllers is matching
closely to the initial rigid rotor model. Identified rotor
model can be further use in the control design where
the flexible part is included. Evidently, the system
rotor dynamics can be identified in the full-levitation
mode similarly as with the 5-DOF AMB system Vuo-
jolainen et al. (2017).
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a)                                                                 b) 

 
c)                                                                  d) 

Figure 10: Simulated and measured DQ currents dur-
ing the rotor lift-up with the pole placement
controller. Simulation of the DQ axis cur-
rent of the D-end and the ND-end motor
are shown in a) and b), respectively. The
measured DQ axis current of the D-end and
the ND-end motor are shown in c) and d),
respectively. Steady state RMS values for
current in the simulation a) and b) are 2 A.
For the measured steady state RMS current
values c) 2.3 A and d) 2.4 A.

5.2 Rotational tests

To further validate the observations reported in this
paper, rotational tests are carried out with modest
velocity of 150 and 300 r/min. The measured cur-
rents from the motor and levitation coils are shown
with the measured position during the rotation test
for both speeds in Fig. 13 and Fig. 14. Note, that,
for illustrative purposes the rotational test are carried
out only with the LQR based control approach. These
results clearly indicate that the proposed control ap-
proach produces stable levitation also during rotation.
Torque for the rotation is produced with the D-end
motor windings without the decoupling in the levita-
tion controller. The average fluctuation of the positon
measurement during the rotation is 2.5 µm, which is
caused by the sensor noise and the runout of the sensor
surface together with the unbalance of the rotor. By
comparing rotor position measurements in Fig. 13 and
Fig. 14 it can be noticed that D-end orbit is affected
the most from the rotation speed change. Fundamen-
tal orbit change of the rotor position with rotor speed
from 150 to 300 r/min is for D-end from 2.15 µm to

 
a)                                                                 b) 

 
c)                                                                  d) 

Figure 11: Simulated and measured DQ currents dur-
ing the rotor lift-up when using the LQR
controller. Simulation of the DQ axis cur-
rent of the D-end and the ND-end motor are
shown in a) and b), respectively. The mea-
sured DQ axis currents of the D-end and
the ND-end motor are shown in c) and d),
respectively. Steady state RMS values for
current in the simulation a) and b) are 2 A.
For the measured steady state RMS current
values c) 2.2 A and d) 2.3 A.

 

Figure 12: Frequency response plot where the result
of the experimental identification with the
stepped sine method is compared with the
rigid body rotor model. The experimental
result shows the first flexible mode peak.

2.1 µm and for ND-end 4.5 µm to 3.2 µm. Effect of the
cross-coupling between the levitation and the torque
windings in D-end is seen from the results.
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a)                                                                 b) 

 
c)                                                                  d) 

 
e) 

Figure 13: Rotation test with speed of 150 r/min. Mea-
sured rotor position is shown for D-end and
ND-end in a) and b), respectively. Levita-
tion winding current for D-end and ND-end
is shown in c) and d). respectively. Torque
producing current in the D-end motor wind-
ings is shown in e). The motor currents
are represented in αβ -armature reference
frame.

6 Summary of the Commissioning
Steps

A summary of the commissioning steps is given to ex-
plicate the connection between the proposed control
methods and the control system.

� Step I: Derivation of the rigid system model (2)
using the rotor mass m and the inertia J with
the position stiffness Kx and current stiffness Ki

parameters obtained from the FEM and validated
by experiments (see Fig. 5). To derive the full
model used for the control design (10), the inner
current controller dynamics (14) is considered.

� Step II: MIMO state space controller design con-
sidering pole placement or LQR. The initial se-

 
a)                                                                 b) 

 
c)                                                                  d) 

 
e) 

Figure 14: Rotation test with speed of 300 r/min. Mea-
sured rotor position is shown for D-end and
ND-end in a) and b), respectively. Levita-
tion winding current for D-end and ND-end
is shown in c) and d). respectively. Torque
producing current in the D-end motor wind-
ings is shown in e). The motor currents
are represented in αβ -armature reference
frame.

lection for the pole placement control is to place
all the poles in the same location, that is, z =

e−
√

Kx
m ·Ts , which corresponds to the eigenvalue

for a spring-mass-system with a negative stiffness.
The LQR can be straightforwardly designed with
Bryson’s rule by selecting reasonable maximum
input signal and output deviation limits for the
controller. A good initial selection for the maxi-
mum output deviation is to consider smaller val-
ues for the deviation than the values given in the
ISO standard ISO 14839-2:2004(E) (2004), where
the acceptable rotor vibration with respect to the
air-gap length in magnetic levitation applications
is recommended. Here, a value of 0.083·Cmin is
considered, where Cmin is the minimum clearance.
The maximum levitation current can be used as
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the initial value for the input deviation. An ac-
ceptable control effort can be achieved by tuning
the input deviation, and thus, in this paper, the
selected input deviation is 2 A.

� Step III: Estimator design (14) based on the sys-
tem model, The estimator can be tuned by using
the general guidelines given for instance in Mes-
sager and Binder (2016) , Franklin et al. (2010)
so that the observer poles are around 4–10 times
faster than the closed-loop poles. Here, a ten times
faster design is considered.

� Step IV: Check in the simulation that the desired
response and dynamics are obtained for the lift-up
test (see example in Fig. 9 a) and c)). If the
requirements are not met, redesign the controller
and the estimator in Steps II and III.

� Steps V–VI: Experimental lift-up test, where the
basic functionality of the controller is further ver-
ified. After that, identification tests supported
with a model validation routine should be carried
out. Here, the adaptive amplitude stepped sine
Vuojolainen et al. (2017) is used as an excitation
signal in the identification experiments.

After the proposed commissioning routine, the natural
next step is the controller retuning based on the iden-
tified model, if the initial mathematical model does
not correspond to the identified one. This step is im-
portant, especially if there is some identified dynam-
ics, such as cross-coupling, which should be considered
in the final controller design for the rotation over the
whole speed range. To this end, previous studies fo-
cusing on the control of different bearingless machine
applications Zhang et al. (2016), Zhao and Zhu (2017)
have shown that PID-based controllers are useful tools
for stabilizing a rigid rotor. However, a MIMO con-
troller should be considered as a final controller as it
is more straightforward to tune in order to adequately
stabilize the complex dynamics in the case of a flex-
ible rotor Yoon et al. (2013). Moreover, in general,
when considering a magnetically levitated high-speed
motor application with a very high speed requirement,
the PID controller has certain shortcomings that can
destabilize the system for example if there are flexible
modes within the controller bandwidth. When com-
missioning is carried out with a MIMO controller, the
final control law can be designed using the same al-
gorithm straightforwardly. In this case, this ensures a
better cooperation between bearingless motors for the
stabilization of the system and stable rotational oper-
ation over the whole speed range.

7 Conclusion

Commissioning steps for fully levitated bearingless ma-
chine using the model based control approach is pre-
sented. It is beneficial to apply the MIMO control prin-
ciples over very traditional PID-based control struc-
tures, which do not take into account the coupling of
the rotor system. In this paper, it was shown that
the well-established MIMO AMB control principles can
be straightforwardly applied to a bearingless machine
system. By comparing the adopted controllers, it is
shown that the LQR outperforms the pole placement
controller. Designing an LQR-based controller is much
more straightforward as a result of the more intuitive
tuning methods. Secondly, weighting-function-based
controllers are not sensitive to a model order change as
the weights affect the inputs and outputs but not the
states themselves. Updating a rigid body rotor model
to a flexible model would increase the number of poles
to be tuned. Naturally, the pole placement controller
is more suitable for simpler systems than a complex
MIMO system, such as a 4-DOF levitated rotor sys-
tem, but in this paper, it was only considered as an
example MIMO control case for a bearingless machine.

The results presented in this paper are important as
the 5-DOF operation of bearingless machines has not
been comprehensively analyzed in the literature thus
far. The 5-DOF operation was shown and analyzed
with two distinct MIMO control approaches using sim-
ple rigid rotor model. The proposed controllers can be
applied for commissioning purposes, and it was experi-
mentally shown that artificial-excitation-based system
identification experiments can be carried out during
full levitation operation. Additionally, stability of the
LQR based levitation controller was verified with the
low-speed rotation tests.
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