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Abstract

A model reduction technique based on optimization theory is presented, where a possible higher order
system/model is approximated with an unstable DIPTD model by using only step response data. The
DIPTD model is used to tune PD/PID controllers for the underlying possible higher order system. Nu-
merous examples are used to illustrate the theory, i.e. both linear and nonlinear models. The Pareto
Optimal controller is used as a reference controller.

Keywords: PD and PID controllers, tuning, double integrating system, time delay, maximum time delay
error, relative time delay margin, robustness, performance, Pareto Optimal

1 Introduction

Many unstable plants and higher order systems may
be controlled sufficiently well with PD/PID feedback
controllers (p. 162, Silva et al. (2005)). One way of
designing such control systems is to use a detailed first-
principles model of the higher order and possible un-
stable system. The resulting models often contain a
large number of states, integrators and also double in-
tegrators. This is at least the case in Mariner vessel
models. Based on this higher order model there is for
the moment no simple way to design a PID controller.

In this paper, it is proposed to approximate a Single
Input Single Output (SISO) part of the higher order,
possibly unstable and nonlinear Multiple Input Multi-
ple Output (MIMO) system, with an Integrating Plus
Time Delay (IPTD) model or Double IPTD (DIPTD)
model. Initially, only PID controller tuning was consid-
ered, but for a shot at completion, we will also include
PI controller tuning. We propose to use a simple step
response of the underlying higher order SISO model or
system in connection with optimization theory in order

to develop the simplified (D)IPTD (IPTD or DIPTD)
model between a control input, u, and output variable,
y = hp(s)u, where

hp(s) = K
e−τs

s
, (1)

hp(s) = K
e−τs

s2
, (2)

where, K, is the gain- velocity or acceleration, i.o. and,
τ , is the time delay.

Hence, the approximating model parameters, K and
τ , are simply obtained by minimizing the difference be-
tween the output of a step response of the higher order,
possibly unstable and nonlinear model or system, and
a step response of the simplified (D)IPTD model ap-
proximation in Eqs. (1) or (2), i.o. Notice, that the
proposed method is a part of Prediction Error Methods
(Ljung (1999)). Real observations of the underlying
real system may also be used. Hence, instead of us-
ing a first-principles model, real process input-output
data/observations of the plant are used.

By numerical investigations such approximations
may be deduced from a short time interval, t > τ , and
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that the (D)IPTD model approximation is sufficient to
design a PI or PD/PID controller used to control and
stabilize the system. The recently published δ-tuning
method (Di Ruscio and Dalen (2017)) is used in or-
der to design the PD/PID controllers, and the earlier
publication Di Ruscio (2010) for PI controllers.

The contributions in this paper may be itemized as
follows:

• A model reduction technique to approximate
higher order, possible unstable and nonlinear sys-
tems, with (D)IPTD models based on optimiza-
tion over a possible short time interval is proposed
and presented in Sec. 2.

• The simplified (D)IPTD model is used to design
adequate PI or PD/PID controllers for sufficiently
controlling and stabilizing the input-output be-
havior of the real plant.

• Numerous examples, both unstable and higher or-
der systems, are used to illustrate the proposed
design strategy. The examples are presented in
Sec. 3.

All numerical calculations and plotting facilities are
provided by using the MATLAB software, MATLAB
(2016). The rest of this paper is organized as follows.
In Sec. 2 we propose definitions and the model re-
duction technique for a (D)IPTD plant. Simulation
examples are presented in Sec. 3. Lastly, discussion
and concluding remarks are given in Sec. 4.

2 Theory

2.1 Underlying Model

Consider a continuous time SISO nonlinear state space
model describing the dynamical system, viz.

ẋ = f(x, u), (3)

y = g(x), (4)

where, x ∈ Rn, is the state vector, u ∈ R, is the control
signal, y ∈ R, is the output vector, and the vector
functions, x(t0 = 0), is the initial state, f(x, u) ∈ Rn,
and, g(x) ∈ R, are assumed Lipschitz continuous.

In this paper, noise is not considered, i.e. determin-
istic systems or models are assumed. A case with noise
is suggested to be handled with a proper system iden-
tification method, e.g. Ljung (1999), Di Ruscio (1996)
and Di Ruscio (2009), thereafter, possible (D)IPTD
model approximations may be done for PI or PD/PID
controller tuning.

2.2 Definitions

Consider the following PID controller on ideal/parallel
form

hc(s) = Kp

(
1 +

1

Tis
+ Tds

)
, (5)

where, Kp, Ti and Td are the proportional constant,
integral time and derivative time, i.o.

In order to compare the different controllers against
each other we will consider indices such as defined in
Åström and Hägglund (1995), Seborg et al. (1989) and
Skogestad (2003).

For measuring performance in a feedback system as
in Figure 1, the Integral Absolute Error (IAE) is de-
fined in the following, as

IAE =

∫ ∞
0

|r − y|dt. (6)

Furthermore, from Eq. (6) we define:

• IAEr evaluates the performance in case of a step
response in the reference, no disturbance.

• IAEvu evaluates the performance in case of a
step input disturbance, with the reference equal
to zero.

• IAEvy evaluates the performance in case of a step
output disturbance, with the reference equal to
zero.

i - hc(s) - hp(s) - i -?

hv(s)

?

v

Plant
H
HH

6

-r u y

−

Figure 1: Control feedback system. Plant model,
hp(s), disturbance model, hv(s), and con-
troller, hc(s), in Eq. (5). Disturbance, v,
at the input when, hv(s) = hp(s), and at the
output when, hv(s) = 1.

Robustness is quantified as in Garpinger and
Hägglund (2014), i.e., Mst = max{Ms,Mt}, where

Ms = max
ω
| 1

1 + h0(jω)
|,Mt = max

ω
| h0(jω)

1 + h0(jω)
|, (7)

where, h0(s) = hp(s)hc(s), is the loop transfer func-
tion.

Input usage is defined as in (Skogestad et al. (2002)),

Mks = max
ω
| hp(jω)

1 + h0(jω)
|. (8)
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2.3 Model Reduction Techniques

The half rule for model reduction, proposed by Sko-
gestad (2003) can not be used to approximate unsta-
ble systems. It is proposed to use optimization the-
ory to approximate a class/some higher order, possible
unstable and nonlinear models as a (D)IPTD model,
Eq. (1) or (2). Hence, an optimization method is
used to find the two unknown parameters, i.e. the
velocity/acceleration gain, K, and the time delay, τ .
However, it was observed in numerical investigations
that introducing the final time, tf , as a third unknown
would give successful results.

Defining, ρ = [K, τ, tf ], in an optimal mean square
sense we have that

ρ̂ = arg min
ρ

V (ρ) s.t.

{
Aρ ≤ b
lb ≤ ρ ≤ ub

, (9)

where

V (ρ) =
1

N(tf )
(Y (tf )− Ŷ (ρ))TG (Y (tf )− Ŷ (ρ)),

(10)

where, Y (tf ) ∈ RN , and, Ŷ (ρ) ∈ RN , are the in-
put step response time-series for the system/model
and the (D)IPTD model, i.o., structured as vectors.
N=length(0:h:tf ), i.e. in MATLAB notation, is the
number of samples and, h, is the sampling interval.

Furthermore, in this paper, it is suggested to use the
following

A =

1 0 0
0 −1 0
0 1 −1

 , b =

 c1
−h2
−2h

 , (11)

lb =

 c1h
2

2h

 , ub =

c2L
2
L
2

 , G = I, (12)

where the upper bound on the time delay, τ , and final
time, tf , corresponds to the pre-act time/derivative ac-
tion (p. 190, Seborg et al. (1989)) setting, i.e. L

2 (p.
764, Ziegler and Nichols (1942)).
L is, in this paper, defined as Ziegler’s lag. See illus-

tration in Figure 2. In some cases, where Ziegler’s lag
is not possible to identify, we will instead prescribe, tf ,
i.e. we obtain a two-dimensional optimization problem.
Note that, in Eq. (12), G, is the identity matrix. No-
tice, that the lower bound on the time delay τ is chosen
according to Shannon’s sampling theorem (Kotelnikov
(1933), Shannon (1949)). The bounds for the gain K,
i.e. c1 < c2, need to be assigned from trial and error.

The optimization problem is solved by using
fmincon (MATLAB (2016)) with default options, i.e.
‘interior-point’ algorithm.

Time
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Ex. 3.1, Input step response

Figure 2: Illustration of the Ziegler’s lag.

Algorithm 2.1 (Simple δ-PI or PD/PID tuning)

1. Gather time series from open loop unit step re-
sponse.

2. Obtain the (D)IPTD model approximation by solv-
ing the optimization problem given in Eq. (9).

3. Use the δ-tuning method for PI or PD/PID con-
troller tuning, i.e. Algorithm 6.1 in Di Ruscio
(2010) or Algorithm 2.1 (include Eq. (27) for
PID) p. 98 in Di Ruscio and Dalen (2017) for
(D)IPTD i.o.

2.4 The Pareto Optimal PID Controller

For quantifying multiple performances, i.e. indices
IAEvu and IAEvy, consider the Pareto Optimal (PO)
criterion (PO concept is presented in p. 60 Pareto
(1894b))

J(p) = sr
IAEvy(p)

IAEovy
+ (1− sr)

IAEvu(p)

IAEovu
, (13)

where, p = [Kp, Ti, Td], and, sr = 0.5, is the servo-
regulator parameter, however it was suggested that,
0 ≤ sr ≤ 1 (p. 10, Di Ruscio (2012)).

The essential problem in generating the PO J vs.
Mst vs. Mks trade-off surface, i.e. finding the PO con-
trollers, renders in solving the following optimization
problem given by

p̂ = arg min
p

J(p) s.t. ceq(p) = 0, (14)
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where

ceq = [cs; ct], (15)

cs = Mst −Mpre
st , (16)

ct = Mks −Mpre
ks , (17)

where, Mpre
st , is the prescribed robustness and, Mpre

ks ∈
R, is the prescribed input usage. Notice, that this op-
timization problem is the same as considered in Ja-
hanshahi et al. (2014), i.e. if we were to use Integral
Squared Error instead of IAE.

Consider a two-dimensional optimization problem
for stable processes, i.e. we generate a PO J vs. Ms

trade-off curve, which is a similar problem as found in
Balchen (1958) (i.e. if, sr = 0, in Eq. (13)). The in-
dex presented in Balchen (1958) can be seen common
to IAE, however it is based on frequency response of
the closed loop system. Furthermore, for stable pro-
cesses, we will consider the range, 1.3 ≤Ms ≤ 2.0, i.e.
the robust range suggested in Åström and Hägglund
(1995). Note, that we will assume, Ms > Mt, for sta-
ble and, Mt > Ms, unstable processes, which is usually
true (Skogestad and Postlethwaite (1996), Jahanshahi
et al. (2014)).

It might be beneficial to measure how close to op-
timal, i.e. PO, a given tuning method is performing,
hence the following mean square error criterion is in-
troduced

Γm(θ) =
1

M
(JPO − Jm(θ))T (JPO − Jm(θ)), (18)

where, Jm(θ) ∈ RM , is the performance vector gener-
ated from a given tuning method, m, with correspond-
ing θ (i.e. generally free-parameter vector), JPO ∈ RM ,
is the PO-PID performance vector previously solved,
M = length(Jm). E.g. for δ-tuning, i.e. step 3. in
Alg. 2.1, we may have that, θ = [K, τ, c, γ], however,
θ, may be fixed as well. This is exercised in the coming
sections and the numerical examples.

Lastly, we define an optimization problem

θ̂ = arg min
θ

Γm(θ), (19)

where, Γm, is given in Eq. (18).

2.5 Extending settings for δ-tuning

We propose some results for a possible extension of
Sec 4.4 in Di Ruscio and Dalen (2017), i.e. choosing
δ-tuning PID parameters c and γ.

Consider a DIPTD process model, where K = 1 and
τ = 1, i.e. θ = [c, γ]. The reference controllers, i.e.
the optimal output PD controller and the optimal in-
put disturbance PID controller are given in Table 1.
The solution to the optimization problem in Eq. (19)

is given in row 1 in Table 4. Interestingly, we ob-
tain, θ̂ = [2.12, 2.12], i.e. cf. Di Ruscio and Dalen

(2017) where, θ̂∗ = [2.24, 2.24] (* means the JPO in
Eq. (18) is substituted by δ-optimal J curve, i.e. the
optimization problem is solved per Ms instead of the
full range). Hence, considering the reference example,
this change in settings can be thought of as rotating
the δ-tuning trade-off curve counter-clockwise around
the point (1.54, 1.56), see Figure 3.
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3=[2.12,2,12]
3=[2.24,2.24]
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Figure 3: Reference Example: Performance vs. ro-
bustness, J vs. Ms trade-off curves. Com-
paring settings, θ̂ = [2.12, 2.12], and θ̂∗ =
[2.24, 2.24] vs. the PO curve.

Table 1: Shows the reference controllers which mini-
mize the indices, IAEvy, and, IAEvu, i.e.
optimal output and input disturbance (ideal)
PD/PID controllers as in Eq. (5), i.o., given
a prescribed, Ms = 1.59. DIPTD process
where, K = 1, τ = 1. The weights, IAEovy =

IAEovu = 1, in Eq. (13).
sr p̂ JAlg.2.1(p̂)

1 0.02, ∞, 25.84 4.15
0 0.07, 9.15, 5.41 169.09

3 Numerical Examples

We seek to justify the proposed method, Algorithm
(Alg.) 2.1, in the coming sections by using a good va-
riety of models with stable and unstable nature. We
will first demonstrate the proposed method on linear
process examples, thereafter we consider unstable non-
linear models.
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Table 2: Settings for the δ-tuning PID parameters c
and γ in Alg. 2.1 and Eq. (27) in Di Ruscio
and Dalen (2017). row 1) optimized over the
robust region and 2) over the entire region.
The solution of the optimization problem in
Eq. (19).

Option θ̂ ΓAlg.2.1(θ̂) Region

1 2.12, 2.12 1.8323E-4 1.3 ≤Ms ≤ 2.0
2 2.24, 2.24 7.8248E-4 1.3 ≤Ms ≤ 2.0

3.1 Linear Examples

We start by studying some of the linear process model
examples given in Seborg et al. (2004) or Skogestad
(2003). We will compare Alg. 2.1 vs. some exist-
ing model-based PID tuning methods, i.e. the Sim-
ple Internal Model Control (SIMC) (Skogestad (2003))
and the Korean-SIMC (K-SIMC) method (Lee et al.
(2014)).

Example 3.1 (Fourth-Order Model)
Consider the fourth-order process model studied in ex-
ercise 12.7 on p. 331 in Seborg et al. (2004) and Exam-
ple E5 in Skogestad (2003), i.e. the transfer function
in row 1 and column (col.) 2 in Table 3.

The Second Order Plus Time Delay (SOPTD) model
approximations (sampling interval h = 0.001) for the
SIMC and K-SIMC methods are given in rows 1:2, and
col. 3 in Table 6, i.o. The DIPTD model approxima-
tion, i.e. step 2 in Alg. 2.1, is given in row 1 and col.
2 in Table 5, where c1 = 1 and c2 = 10 are chosen as
bounds for the gain.

In this example, Alg. 2.1 is shown superior to the
SIMC and K-SIMC method, viz. rows 1:3 and col. 4 in
Table 6 shows that that Alg. 2.1 is ΓSIMC

ΓAlg.2.1
= 4.0 times

better than the runner up, SIMC. The corresponding J
vs. Ms trade-off curves are shown in Figure 4.

Example 3.2 (Bioseperation Process)
A multistage bioseperation process, as motivated in ex-
ercise 7.4 on p. 183 in Seborg et al. (2004), may be
described by the transfer function in Table 3 (row 2,
col. 2).

The SOPTD model approximations (h = 0.01) for
the SIMC and K-SIMC methods are given in Table 6
(rows 4:5, col. 3). The DIPTD model approximation
(c1 = 0.01, c2 = 1) is given in Table 5 (row 2 and col.
2).

Alg. 2.1 is observed to be superior compared to the
other model based methods, i.e. in Table 6 (rows 4:6,
col. 4) it is seen that Alg. 2.1 is ΓSIMC

ΓAlg.2.1
= 8.5 times

better than the runner up, SIMC. The J vs. Ms trade-
off curves are shown in Figure 5.

Robustness, M
s

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

P
e

rf
o

rm
a

n
ce

, 
J

1

1.5

2

2.5

3

/
1
=2.00

T
c
=1.51 =

6=0.95 =

/
1
=3.74

T
c
=3.39 =

6=1.90 =

/
1
=1.25

T
c
=0.73 =

6=0.62 =

Alg. 2.1
SIMC
K-SIMC
PO-PID

Figure 4: Example 3.1: Performance vs. robustness,
J vs. Ms trade-off curves. Comparing Alg.
2.1, SIMC and K-SIMC vs. the PO-PID con-
trollers for the process model at row 1, col. 2
in Table 3. The weights for the PO criterion
in Eq. (13) are given in Table 5. The perfor-
mance measures, i.e. Γm, Eq. (18), are given
in Table 6.
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Figure 5: Example 3.2: Performance vs. robustness,
J vs. Ms trade-off curves. Comparing Alg.
2.1, SIMC and K-SIMC vs. the PO-PID con-
trollers for the process model at row 2, col.
2 in Table 3. The servo-regulator, sr = 0.5,
and the weights for the PO criterion in Eq.
(13) are given in Table 5. The method per-
formance measures, i.e. Γm in Eq. (18), are
given in Table 6.
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Example 3.3 (Positive Numerator)
Consider the process model with a positive numerator
as studied in Example 4 in Åström et al. (1998) and
Example E3 Skogestad (2003), i.e. the transfer func-
tion given in Table 3 (row 3, col. 2).

The SOPTD model approximations (h = 0.01) for
the SIMC and K-SIMC method are shown in Table 6
(rows 7:8, col. 3) The DIPTD model approximation
(c1 = 1, c2 = 10) is given in Table 5 (row 3, col. 2).

Notice, that the gain, K, in the K-SIMC method is
a function of the tuning parameter, i.e., K = f(λ),
where, λ, is similar to the tuning parameter, Tc, in
SIMC.

Alg. 2.1 gives the best performance, viz. from Ta-
ble 6 (rows 7:9, col. 4) we have that Alg. 2.1 is
ΓSIMC

ΓAlg.2.1
= 2.9 times better than the runner up, SIMC.

The corresponding J vs. Ms trade-off curves are shown
in Figure 6.
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Figure 6: Example 3.3: Performance vs. robustness,
J vs. Ms trade-off curves. Comparing Alg.
2.1, SIMC and K-SIMC vs. the PO-PID con-
trollers for the process model at row 3, col.
2 in Table 3. The servo-regulator, sr = 0.5,
and the weights for the PO criterion in Eq.
(13) are given in Table 5. The method per-
formance measures, i.e. Γm in Eq. (18), are
given in Table 6.

Example 3.4 (Quadruple Poles)
Consider the transfer function with quadruple poles in
Table 3 (row 4, col. 2).

The SOPTD model approximations (h = 0.01) for
SIMC and K-SIMC methods are given in Table 6 (rows
10:11, col. 3). The DIPTD model approximation (c1 =
1, c2 = 10) is given in Table 5 (row 4, col. 2).

Alg. 2.1 is shown superior, i.e. from Table 6 (rows

10:12, col. 4) we have that Alg. 2.1 is ΓK−SIMC

ΓAlg.2.1
= 13.0

times better than the runner up, K-SIMC. The J vs.
Ms trade-off curves are shown in Figure 7.
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Figure 7: Example 3.4: Performance vs. robustness,
J vs. Ms trade-off curves. Comparing Alg.
2.1, SIMC and K-SIMC vs. the PO-PID con-
trollers for the process model at row 4, col.
2 in Table 3. The servo-regulator, sr = 0.5,
and the weights for the PO criterion in Eq.
(13) are given in Table 5. The method per-
formance measures, i.e. Γm in Eq. (18), are
given in Table 6.

Example 3.5 (Perfectly Stirred Tank)
This example is taken from Exercise 14.3. on p. 334 in
Seborg et al. (1989). A perfectly stirred tank heating a
flowing liquid is described by the process model in Table
3 (row 5, col. 2), i.e. a transfer function from power
applied to the heater to the measured temperature.

The SOPTD model approximations (h = 0.01) for
SIMC and K-SIMC methods are given in Table 6 (rows
13:14, col. 3), i.o. The DIPTD model approximation
is shown in (c1 = 1, c2 = 10) Table 5 (row 5, col. 2).

Alg. 2.1 has an edge over the other model based tech-
niques, i.e. in Table 6 (rows 13:15, col. 4) observe that
Alg. 2.1 is ΓSIMC

ΓAlg.2.1
= 2.4 times better than the next best,

SIMC. The corresponding J vs. Ms trade-off curves are
shown in Figure 8.

Example 3.6 (Pipeline-Riser System)
The severe-slugging flow regime is a common problem
at the oil fields and it is characterized by large oscil-
lations in pressure and flow rates. Active control of
the topside choke is the recommended solution (Yocum
(1973) and Schmidt Z. (1979)).

A schematic model describing a pipeline-riser system
is given in Figure 9. The inflow rates of liquid and gas
to the system, wl and wg, i.o., are assumed to be in-
dependent disturbances. Based on experimental data,
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Figure 8: Example 3.5: Performance vs. robustness,
J vs. Ms trade-off curves. Comparing Alg.
2.1, SIMC and K-SIMC vs. the PO-PID con-
trollers for the process model at row 5, col.
2 in Table 3. The servo-regulator, sr = 0.5,
and the weights for the PO criterion in Eq.
(13) are given in Table 5. The method per-
formance measures, i.e. Γm in Eq. (18), are
given in Table 6.

it was shown in Jahanshahi and Skogestad (2013) that
such a pipeline-riser system can be described by the pro-
cess model in Table 3 (row 6, col. 2), i.e. a transfer
function from the topside choke, u, to inlet pressure, y.

The DIPTD model approximation, i.e. step 2 in Alg.
2.1, where c1 = −10 and c2 = −0.001, are given in
Table 5 (row 6, col. 2). The IMC PID plus derivative
Filter (IMC-PIDF) method in Jahanshahi et al. (2014)
is based on the exact model, in Figure 9.

Note, that for this application it is crucial for the dy-
namics to have a low-pass filter on the derivative action
(Jahanshahi et al. (2014)), hence we have the following
PIDF controller

hc(s) = Kp(1 +
1

Tis
+

Tds

Tfs+ 1
), (20)

where Tf = 4, cf. the numerator in the process model.

This filter is also added to Alg. 2.1, hence Alg. 2.1
(PIDF) is written in instead.

The trade-off PO surface together with the curves for
Alg. 2.1 (PIDF) and IMC-PIDF are shown in Figure
10. See also Figure 11 for equivalent sets of 2D plots.

Note, that for making Alg. 2.1 (PIDF) competitive
we have used, c = γ = 4.24, i.e. 2 times our suggested
settings for this case.

Alg. 2.1 (PIDF) was found superior in terms of Γm,

viz. Alg. 2.1 (PIDF) is ΓIMC−PIDF

ΓAlg.2.1(PIDF )
= 18.1 times

better than IMC-PIDF, however it might be argued that
a better criterion may exist.

Converting the Alg. 2.1 (PIDF) controller in row
6, col. 2 in Table 8, where τ = 6.66, to Kc =
Kp = −11.87, Ki =

Kp

Ti
= −1.38 and Kd = Kp Td =

−152.77, we see that these are approximately equal to
the controller proposed in Table 1 row 1 in Jahanshahi
et al. (2014).

Note, that we propose to use PO-PIDF controller for
prescribed robustness Mt = 1.4 instead of Mt = 1.15,
as in Jahanshahi et al. (2014). See row 6, col. 3 in
Table 8.

u

y

wl
wg

w

Figure 9: Example 3.6. Schematic model of the
pipeline-riser, viz. the plant in the feedback
system in Figure 1.

Table 3: Examples and the corresponding linear pro-
cess models for Sec. 3.1.
Example Process model, hp(s)

3.1 1
(s+1)(0.2s+1)(0.04s+1)(0.008s+1)

3.2 2
(5s+1)(3s+1)(s+1)

3.3
2(15s+1)

(20s+1)(s+1)(0.1s+1)2

3.4 1
(s+1)4

3.5 10
(s+1)(5s+1)(0.2s+1)

3.6
−0.0098(s+0.25)

s2−0.04s+0.025

3.2 Nonlinear Examples

This section contains results on PID controller imple-
mentation on a good variety of nonlinear models with
unstable nature. Note, that we are only given open
loop data, hence model reduction techniques as the
half rule method (Skogestad (2003)) can not be used,
however we will instead use Alg. 2.1 where step 3. is
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Figure 10: Example 3.6: Performance vs. robustness
vs. input usage, J vs. Mt vs. Mks trade-off
surface. Comparing Alg. 2.1, IMC-PIDF
vs. the PO-PID controllers for the process
model at row 6, col. 2 in Table 3. The
servo-regulator, sr = 0.5, and the weights
for the PO criterion in Eq. (13) are given
in Table 5.

Table 4: Examples and the corresponding reference
controllers, i.e. the optimal input and out-
put performances for prescribed Mst = 1.59
or input usage Mks = 100, (i.e. only ‘and’ for
col. 6).

Example IAEo
vy IAEo

vu

3.1 0.0847 0.0133
3.2 1.2877 0.7215
3.3 0.1074 0.0250
3.4 1.9054 1.5851
3.5 0.3020 0.2740
3.6 2.0855 0.0380

Table 5: Results from Sec. 3.1. Step 2 in Alg. 2.1, i.e.
optimal DIPTD model approximation.

Example ρ̂ V (ρ̂)

3.1 3.9559, 0.0249, 0.0578 1.3515E-8
3.2 0.0907, 0.3061, 0.6928 2.4642E-7
3.3 4.8212, 0.0193, 0.0530 4.0529E-8
3.4 0.9164, 0.4900, 0.6079 6.4056E-7
3.5 1.0205, 0.0602, 0.3295 1.0444E-7
3.6 -0.0934, 0.1181, 0.5243 1.4997E-6
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Figure 11: Example 3.6: J vs. Mks and J vs. Mt

trade-off curve plots. Comparing Alg. 2.1,
IMC-PIDF vs. the PO-PID controllers for
the process model at row 6, col. 2 in Table
3. col. 1 is Alg. 2.1 (PIDF) and col. 2 is
IMC-PIDF.

Table 6: Summarised results from Sec. 3.1. Compar-
ing SIMC, K-SIMC and the proposed Alg.
2.1, based on model reduction to SOPTD
(K, τ, T1, T2) or DIPTD (K, τ) models. †
means that the model approximation is given
in col. 2 in Table 5 for the corresponding
example.

Ex Method Approximation Γm

3.1 SIMC 1, 0.0285, 1, 0.2200 0.0628
K-SIMC 1, 0.0446, 1, 0.2040 0.0966
Alg. 2.1 † 0.0156

3.2 SIMC 2, 0.5050, 5, 3.5 0.1899
K-SIMC 2, 0.8471, 5, 3.1667 0.4947
Alg. 2.1 † 0.0224

3.3 SIMC 1.5, 0.05, 1, 0.15 0.4255
K-SIMC f(λ), 0.05, 1, 0.15 0.5142
Alg. 2.1 † 0.1489

3.4 SIMC 1, 1.5050, 1, 1.5 0.4000
K-SIMC 1, 1.6717, 1, 1.5 0.2068
Alg. 2.1 † 0.0159

3.5 SIMC 10, 0.1050, 5, 1.1000 0.2165
K-SIMC 10, 0.1854, 5, 1.0200 0.5637
Alg. 2.1 † 0.0885

3.6 Alg. 2.1 (PIDF) † 0.0187
IMC-PIDF Exact model 0.3392
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Table 7: Results from Sec. 3.1. Margins organized as
(GM,PM,DM) for Alg. 2.1 and runner-up,
i.e. SIMC, with exception of row 4, K-SIMC,
and the optimal controller, PO-PID, for pre-
scribed robustness, Mst = 1.59 or input usage
Mks = 50, (i.e. only ‘and’ for col. 6).

Ex Alg. 2.1 Runner-up PO-PID

3.1 8.05, 48.55, 0.06 8.81, 46.67, 0.06 8.18, 47.94, 0.06
3.2 ∞, 45.82, 0.79 ∞, 45.49, 0.85 ∞, 46.69, 0.71
3.3 ∞, 47.26, 0.05, ∞, 44.81, 0.07 ∞, 47.11, 0.05
3.4 4.47, 56.22, 1.68 4.76, 58.88, 2.20 4.32, 65.44, 1.91
3.5 ∞, 45.15, 0.18 ∞, 43.49, 0.21 ∞, 45.28, 0.18
3.6 0.25, 45.97, 1.67 0.11, 75.74, 2.49 0.17, 64.30, 2.11

Table 8: Results from Sec. 3.1. PID controllers orga-
nized as (Kp, Ti, Td) for Alg. 2.1 and runner-
up, i.e. SIMC, with exception of row 4, K-
SIMC, and the optimal controller, PO-PID,
for prescribed robustness, Mst = 1.59 or in-
put usage Mks = 50, (i.e. only ‘and’ for col.
6).

Ex Alg. 2.1 Runner-up PO-PID

3.1 24.3, 0.32, 0.15 24.7, 0.51, 0.12 24.5, 0.30, 0.14
3.2 5.54, 4.36, 2.05 5.31, 7.17, 1.79 5.56, 3.40, 2.54
3.3 13.2, 0.39, 0.18 11.0, 0.50, 0.10 13.3, 0.24, 0.17
3.4 1.79, 2.41, 1.14 1.38, 3.06, 0.67 1.82, 2.62, 1.33
3.5 4.29, 1.48, 0.70 4.09, 2.12, 0.53 4.27, 1.00, 0.73
3.6 -30.4, 5.49, 1.30 -11.9, 8.59, 12.9 -21.2, 5.09, 5.45

substituted with SIMC PID tuning, i.e. denoted Alg.
2.1 (SIMC).

We define Total Value (TV) index formulated in dis-
crete time as

TV =

∞∑
k=1

|∆uk|, (21)

where, ∆uk = uk − uk−1, is the control rate of change,
and, k, is discrete time.

Example 3.7 (Inverted pendulum-cart system)
In this example, we will consider an inverted pendulum
system, which is one of the most used systems for
benchmarking various control strategies. The reason
being that the structure renders as both relatively
simple and rich (Boubaker (2012)).

It may be shown that the dynamics of an inverted
pendulum on a cart with mass can be described using
the model in Eqs. (3)-(4), where the RHS is substituted
by the following,

f1 = x2, (22)

f2 = b(g(1 +m1 +m2) sin(x1)− u cos(x1)),(23)

g = x1, (24)

where,

b =
(m1 +m2) lg

Jt + (m1 +m2) l2g
. (25)

In Eq. (25), the moment of inertia of the rod and the
distance to center of mass are expressed as

Jt = m2

l2 − 3 l lg + 3 l2g
3

+m1(l − lg)2, (26)

lg =
l

2

m1 + 2m2

m1 +m2
, (27)

i.o., where l = 0.7 is the length, m2 = 0.044, is
the mass of the pendulum arm (neglecting the load),
m1 = 0.2, is the mass of the load and g = 9.81 is
the gravitational constant. A schematic model of the
inverted pendulum on a cart is shown in Figure 12.

Furthermore, we define the input-output case as,

u ∈ R : =
{
u: force exerted on the cart (N),

y ∈ R : =
{
y: tilt angle (rad).

y

u

m1

m2, l

Figure 12: Example 3.7. Schematic model of the in-
verted pendulum on a cart, i.e. the plant in
the feedback system in Figure 1. Note, that
arrows may have different meanings, i.e. la-
bels and vector force u.

The optimal DIPTD model approximation is given
in Table 9 (col. 2).

Table 9: Example 3.7. Results from step 2 in Alg. 2.1,
i.e. optimal DIPTD model approximation,
where c1 = 0 and c2 = 10.

Method p̂ V (p̂)

Alg. 2.1 -1.8252, 0.0139, 0.2423 2.3618E-7

Zero tilt angle is desired, at Time = 0.1 s, we give the
pendulum an output step vvy = π

30 rad (6 deg), and at,
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Time = 2.0 s, we introduce an input step disturbance
vvu = 20 N. The time-series are shown in Figure 13.

From Table 10, we see that Alg. 2.1 outperforms Alg.
2.1 (SIMC) in terms of (sum) IAE. Furthermore, we

see that Alg. 2.1 is
IAEAlg.2.1 (SIMC)

vu

IAEAlg.2.1
vu

= 1.4 times better

in terms of IAEvu, however Alg. 2.1 (SIMC) is found
IAEAlg.2.1

vu

IAE
Alg.2.1 (SIMC)
vy

= 1.2 times better in terms of IAEvy.

0 0.5 1 1.5 2 2.5 3 3.5

y

-0.1

-0.05

0

0.05

0.1

y:= tilt angle (rad)

Alg. 2.1
Alg. 2.1 (SIMC)
reference

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5

u

-40

-20

0

20

40
u:= force exerted on the cart (N)

Figure 13: Example 3.7. Simulation of the inverted
pendulum nonlinear model with PID con-
trol. Output and input step disturbance at,
Time = 0.1 s and, Time = 2.0 s, i.o. Input
u is limited.

Table 10: Example 3.7. Shows the indices IAEvy,
IAEvu, IAE (sum) and TV for Alg. 2.1
where δ = 1.6, and Alg. 2.1 (SIMC) where
Tc = 1.5 τ .

Method IAEvy IAEvu IAE TV

Alg. 2.1 0.0182 0.0178 0.0360 184.7389
Alg. 2.1 (SIMC) 0.0158 0.0245 0.0403 171.6880

Example 3.8 (Segway)
A commercial example of a two-wheel system is the Seg-
way, which has been experiencing a growth of popular-
ity as an eco-friendly alternative for short journeys.
The dynamics of a Segway are presented in LIngenieur
(2005), which we have put on an implicit state space
form, viz.

M(x)ẋ = f(x, u), (28)

y = g(x), (29)

where

M =


1 0 0 0
0 91 −76 cos(x1) 0
0 −76 cos(x1) 124.7 0
0 0 0 1

 , (30)

f1 = x2, (31)

f2 = 744.8 sin(x1) + 48u, (32)

f3 = 200u− 76x2
2 sin(x1), (33)

f4 = x3, (34)

g = x1, (35)

hc(s)
r u y

vu vy

−
+

+
+

+
+

Figure 14: Example 3.8. Feedback system. Segway,
and PID controller, hc(s). The input, u, is
the motor drive voltage, y, is the tilt angle,
vu, is input additive disturbance and, vy, is
the output additive disturbance.

We will consider the input-output case defined as,

u ∈ R : =
{
u: motor signal (V),

y ∈ R : =
{
y: tilt angle (rad),

Table 11: Example 3.8. Results from step 2 in Alg. 2.1,
i.e. optimal DIPTD model approximation,
where c1 = 0 and c2 = 10.

Method p̂ V (p̂)

Alg. 2.1 4.3347, 0.0073, 0.2163 2.6528E-7

The simulation results are shown in Figure 15, where
at Time = 0.1 s, an output disturbance vvy = π

18 rad
(10 deg) is introduced, and at Time = 1.0 s, we give
an input disturbance vvu = 40 V.

The indices given in Table 12 show similarities with
previous Example 3.7, viz. Alg. 2.1 gives best re-

sult for IAEvu, i.e.
IAEAlg.2.1

vu

IAE
Alg.2.1 (SIMC)
vu

= 1.5 times

better than Alg. 2.1 (SIMC) and Alg. 2.1 (SIMC)
IAEAlg.2.1

vy

IAE
Alg.2.1 (SIMC)
vy

= 1.1 times better in terms of IAEvy.
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0.2
y:= tilt angle (rad)
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Alg. 2.1 (SIMC)
reference

Time (s)
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u

-60

-40

-20

0

20
u:= motor signal (V)

Figure 15: Example 3.8. Simulation of the Segway
nonlinear model with PID control. Output
and. input step disturbance at, Time = 0.1
s and, Time = 1.0 s, i.o. Input u is limited.

Table 12: Example 3.8. Shows the indices IAEvy,
IAEvu, IAE (sum) and TV for Alg. 2.1
where δ = 1.6, and Alg. 2.1 (SIMC) where
Tc = 1.5 τ .

Method IAEvy IAEvu IAE TV

Alg. 2.1 0.0143 0.0112 0.0255 245.6765
Alg. 2.1 (SIMC) 0.0128 0.0169 0.0297 223.5997

Example 3.9 (Nomoto Vessel)
We will end this section by considering a Mariner ves-
sel example. DIPTD model approximations for con-
troller tuning for Mariner class vessel was demon-
strated in Di Ruscio and Dalen (2017)) to be a suc-
cessful approach.

In this example we will consider the nonlinear model
proposed in Son and Nomoto (1982) which describes
the motion of a high-speed container vessel of length
175 m. This model has previously been implemented in
the MSS GNC MATLAB Toolbox, Fossen and Perez
(2004). We will consider the feedback system with
added disturbances as illustrated in Figure 16.

Here, we are interested in an input-output case de-
fined as,

u ∈ R : =
{
u: commanded rudder angle (rad),

y ∈ R : =
{
y: yaw angle (rad).

The simulation results of the PID controller imple-
mentation are shown in Figure 17. The scenario is: at
Time = 0 s, the reference yaw angle is zero, at Time
= 50 s, we give the vessel an output disturbance step

hc(s)
r u y

vu vy

−
+

+
+

+
+

Figure 16: Example 3.9. Feedback system. Vessel
model and controller hc(s). The input u is
the commanded rudder angle and the out-
put y is the perturbed yaw angle about zero.
vu is input additive disturbance and vy is
the output additive disturbance.

Table 13: Example 3.9. Results from step 2 in Alg. 2.1,
i.e. optimal DIPTD model approximation,
where c1 = 0 and c2 = 1.

Method p̂ V (p̂)

Alg. 2.1 0.0006, 1.7867, 7.3355 1.6228E-7

vvy = π
60 rad (3 deg), at Time = 250 s, we introduce

an input step disturbance vvu = 2π9 rad (40 deg).
We observe from Table 14 that Alg. 2.1 has an

edge over Alg. 2.1 (SIMC) in terms of IAEvu, viz.
IAEAlg.2.1 (SIMC)

vu

IAEAlg.2.1
vu

= 1.6 times better. Note, the algo-

rithms show approximately equal result for IAEvy.

Table 14: Example 3.9. Shows the indices IAEvy,
IAEvu, IAE (sum) and TV for Alg. 2.1
where δ = 1.6, and Alg. 2.1 (SIMC) where
Tc = 1.5 τ .

Method IAEvy IAEvu IAE TV

Alg. 2.1 0.9930 0.3782 1.3712 2.9826
Alg. 2.1 (SIMC) 0.9931 0.6140 1.6071 3.0588

4 Discussion and Concluding
Remarks

The concluding remarks in this paper may be itemized
as follows:

• The bounds, i.e. A, b, lb and ub in Eqs. (11)-(12)
in Alg. 2.1 are partly ad-hoc based, it might be
possible to make improvements on these.
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u:= commanded rudder angle (rad)

Figure 17: Example 3.9. Simulation of the nonlin-
ear Nomoto Vessel model with PID control.
Output and input step disturbance at, Time
= 50 s and, Time = 250 s, i.o. Input u is
limited.

• In Sec. 3.1 we have demonstrated successful imple-
mentations of the proposed model reduction tech-
nique Alg. 2.1 on a variety of linear models. We
see from the stable part in Sec. 3.1 that Alg.
2.1 has an edge over the model based techniques
SIMC and K-SIMC, viz., considering the optimal-
ity measures, Γm, in Table 6 (row 1:15, col. 4), the
proposed Alg. 2.1 is at least ΓSIMC

ΓAlg.2.1
= 2.4 times

better than SIMC and K-SIMC.

• Note, that in Sec. 3.1 it is shown in Table 6 that
SIMC is at least ΓK−SIMC

ΓSIMC
= 1.2 times better than

K-SIMC, with the exception of Example 3.4.

• We see in Table 7 in the stable part in Sec. 3.1 that
all the methods for prescribed robustness, Ms =
1.59, gives acceptable margins, i.e. GM > 1.7 and
PM > 30 (Seborg et al. (1989)).

• Sec. 3.2 demonstrated successful implementations
of Alg. 2.1 on unstable nonlinear models. In each
example it is seen that Alg. 2.1 gives lower (sum)
IAE indices than Alg. 2.1 (SIMC), where δ = 1.6
and Tc = 1.5 τ were chosen, i.o.

Furthermore, Alg. 2.1 was shown to be at least
IAEAlg.2.1 (SIMC)

vu

IAEAlg.2.1
vu

= 1.4 times better in terms of in-

put disturbance IAEvu, however Alg. 2.1 (SIMC)

was shown at least
IAEAlg.2.1

vy

IAE
Alg.2.1 (SIMC)
vy

= 1.2 times

better in terms of output disturbance IAEvy. The
exception is on the Nomoto vessel in Example 3.9
where both IAEvy were approximately equal.

• Note, that the derivative kicks are rather undesir-
able in practical applications. One possible solu-
tion is to use a low-pass filter on the derivative
term, as in Example 3.6. If the process is stable,
consider choosing a PI controller instead.

• It might be argued that, if the process model is
known it might be the best solution to simply use
the PO-PID controller.
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