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Abstract

In this paper a novel feedback controller and stability analysis of a blockchain implementation is developed
by using a control engineering perspective. The controller output equals the difficulty adjustment in the
mining process while the feedback variable is the average block time over a certain time period. The
computational power (hash rate) of the miners is considered a disturbance in the model. The developed
controller is tested against a simulation model with constant disturbance, step and ramp responses as
well as with a high-frequency sinusoidal disturbance. Stability and a fast response is demonstrated in all
these cases with a controller which adjusts it’s output at every new block. Finally the performance of
the controller is implemented and demonstrated on a testnet with a constant hash rate as well as on the
mainnet of a public open source blockchain project.
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1. Introduction

The enabling technology in a cryptocurrency is a
blockchain. A blockchain works by linking crypto-
graphic information from previous blocks with the cur-
rent block. The most common method currently used
in blockchain implementations to calculate the cryp-
tographic puzzle linking the blocks is called proof-of-
work (POW), first coined and formalized in Jakobsson
and Juels (1999). In modern blockchain implementa-
tions POW is performed by computers called miners,
typically utilizing massive parallelization in graphical
processing units (GPUs) or Application-Specific Inte-
grated Circuits (ASICs).

In most blockchain implementations it is desirable to
have a near constant number of blocks generated per
day to ensure timely execution of transactions. For
example, if the goal is to generate blocks every 60 sec-
onds, then the average number of blocks per day is
1440. The blockchain implementation must try to keep
the number of blocks generated per day near constant

even if there is large variation in computing power,
also called hash rate, provided by the miners. Most
POW blockchain implementations achieve a near con-
stant generation of blocks per day by adjusting a pa-
rameter called “difficulty”.

The difficulty relates to the complexity of the crypto-
graphic puzzle which the miners have to solve. Hence,
if the difficulty level increases proportionally with the
combined hash rate of the miners, then the average
block time should stay constant. Examples of recent
algorithms for difficulty calculcations are described in
Booth (2017) and Sechet (2017).

In Sechet (2017) some of the goals for the developed
difficulty adjustment algorithm are stated as: 1) avoid
sudden changes in difficulty when hash rate is fairly sta-
ble, 2) adjust difficulty rapidly when hash rate changes
rapidly and 3) avoid oscillations from feedback be-
tween hash rate and difficulty. The algorithm in Sechet
(2017) calculates an estimated hash rate, and then uses
that as the basis of calculating a target. Booth (2017)
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presents an alternative algorithm where the difficulty
starts with the difficulty target of the previous block,
and then “nudges” it up or down, depending on the
observed timestamps of past blocks. In this way the
algorithm in Booth (2017) acts as a “feedback” mech-
anism.

Even though developers of recent difficulty adjust-
ment algorithms use terms such as stability, oscilla-
tions, rapid changes and feedback there are currently,
to the authors knowledge despite an extensive liter-
ature review, no publications available adressing the
blockchain difficulty adjustment problem from a feed-
back control engineering perspective.

In this paper a novel nonlinear feedback controller
and blockchain stability analysis is presented. The con-
troller is tested and the performance is demonstrated
in simulations as well as in both the testnet and main-
net of a real blockchain implementation. The selected
blockchain implementation for the developed controller
is the Bismuth project programmed in Python. The
open source code of the Bismuth project is available at
Kučera (2017).

The approach taken in this paper to develop a
blockchain difficulty adjustment controller and to
study the stability of the closed-loop system from a
control engineering perspective may become a standard
approach in the future.

2. Bismuth Blockchain Overview

Fig. 1 shows an overview of the proof-of-work algorithm
used by the Bismuth blockchain. The sha224 crypto-
graphic hash function is used. For a description of this
function, see for example Penard and van Werkhoven
(2007). A hash function is a mathematical algorithm
which maps data of any length to a bit string of a fixed
size. A hash function is also designed to be a one-way
function, ie. a function which is infeasible to invert.

The algorithm in Fig. 1 makes use of nonces, see for
example Rogaway (2004). In cryptography, a nonce
is a pseudo-random number used only once. Pseudo-
random nonce generators are often seeded by comput-
ers (milli- or nanosecond) clocks to make the gener-
ated nonces different on two or more computers run-
ning the same code. The proof-of-work algorithm in
Fig. 1 works as follows:

• The last stored block hash in the blockchain, the
last stored miner address and the last stored nonce
are hashed with sha224 generating a string of
length 28 bytes or 224 bits.

• In Bismuth version 4.2.1.9 the 28 bytes hash is
run through a binary conversion function which
doubles the number of bits to 448, see Table 1.

• A mining condition string is created by using the
first D (difficulty) bits of the 448-bit string from
the previous step.

• Several miners (computers) running in parallel on
the network are using the last block hash stored
on the blockchain, their own miner address and
pseudo-random generated nonces to create unique
sha224 hashes converted to 448 bit strings using
the binary conversion in Table 1. The total num-
ber of such 448-bit strings generated per second
in the entire network of computers is denoted H
(hash rate) in this paper.

• The first miner to generate a 448-bit string which
contains the difficulty adjusted mining condition
substring becomes the winner. This miner’s
block hash, address and nonce are stored on the
blockchain and the entire process repeats.

Hex Binary Hex Binary
0 0011 0000 8 0011 1000
1 0011 0001 9 0011 1001
2 0011 0010 a 0110 0001
3 0011 0011 b 0110 0010
4 0011 0100 c 0110 0011
5 0011 0101 d 0110 0100
6 0011 0110 e 0110 0101
7 0011 0111 f 0110 0110

Table 1: 1-char (4-bits) hex value to 8-bits binary con-
version.

3. Simulation Model

In this section a simulation model for the Bismuth
blockchain in Matlab/Simulink is developed. The de-
veloped model differs from typical simulation models,
since the discrete time step in the model is selected
as one block. In other words, the Simulink model is
discretized and the simulation steps 1, 2, · · · , N corre-
spond to block numbers in the blockchain. The actual
time as measured in seconds between the blocks is given
by the following equation.

T =
2floor(D/2)

H · ceil(28−D/16)
(1)

where T is the estimated block time in seconds, D is the
current difficulty in bits and H is the current hash rate
in hashes per second. The reason why D is divided by
two in the function above, is to reverse the binary con-
version given by Table 1. 2floor(D/2) then represents the
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Figure 1: Overview of the proof-of-work algorithm used by the Bismuth blockchain.

total number of different possible mining condition bit-
strings. The expression ceil(28−D/16) is explained as
follows: every 16 in difficulty adds one byte to the min-
ing condition. Total hash is 28 bytes (sha224, 224/8)
and to fit the mining condition into it, it has to start
at least D/16 bytes early. Only whole bytes are pos-
sible, therefore the ceil function is used. Fig. 2 shows
the implemented Matlab function in Simulink.

Figure 2: Block time T as a function of hash rate H
and difficulty D.

The floor() function in eq. (1) makes the system
highly nonlinear and the model linearization for the
frequency analysis becomes dependent on the pertur-
bation levels used in the linearization. Hence, for the
simulation and controller development in this paper the
block time calculation is approximated by the following
Matlab code:

function T = fcn (H,D)
T = 2ˆ(D/2)/(H∗ ce i l (28−D/ 1 6 ) ) ;

The effect of this approximation will be studied later in
the paper. The developed controller will be designed
with stability margins for robustness against the ap-
proximation. The ceil() function in eq. (1) results in a
much smaller sensitivity with respect to variations in
D and is kept in the simulated model.

The estimated current block time from Fig. 2 is fed
into a moving average filter implemented by the follow-
ing Matlab function:

Figure 3: Calculation of the average block time from
the last 1440 blocks using a moving average
filter.

function [ Tout , T2 ] = fcn ( Tin , T1)
N=1440;
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T2=zeros (N, 1 ) ;
T2 ( 1 :N−1)=T1 ( 2 :N) ;
T2(N)=Tin ;
Tout=mean(T2 ) ;

With an average block time of 60 seconds, there will
be 1440 blocks per 24 hours. Hence, the moving av-
erage filter outputs the average block time over this
period. In the function above Tin is the current block
time while Tout is the averaged block time over the
last 1440 blocks. The vectors T1 and T2 store the pre-
vious block times. The unit delay in Fig. 3 connects
the two vectors T1 and T2. The initial condition of the
unit delay when the simulation starts is a vector of size
1440 with all values equal to 60 seconds. The moving
average filter is the most common filter in digital signal
processing, mainly because it is the easiest digital filter
to understand and use (implement), see Smith (1999).
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Figure 4: Frequency response of the moving average fil-
ter of length 1440.

Fig. 4 shows the frequency response (Bode) plot of
the moving average filter. As noted by Smith (1999):
In spite of its simplicity, the moving average filter is
optimal for a common task: reducing random noise
while retaining a sharp step response. This makes it the
premier filter for time domain encoded signals. How-
ever, the moving average is the worst filter for fre-
quency domain encoded signals, with little ability to
separate one band of frequencies from another. Rela-
tives of the moving average filter include the Gaussian,
Blackman, and multiple- pass moving average. These
have slightly better performance in the frequency do-
main, at the expense of increased computation time.
The closed-loop control system to be presented in Sec-
tion 4 of this paper operates in frequencies where the
moving average filter has a gain close to 1 (0dB). Hence,
the drawback mentioned in Smith (1999) is not a major
concern for the developed controller.

4. Feedback Controller

The proposed controller is illustrated in Fig. 5. The
constant Td is the desired average block time equal to
60 seconds, T is the current average block time from
the moving average filter presented in the previous sec-
tion. T1 is the average block time from the previous
step, calculcated by the unit delay function. D is the
difficulty and also the controller output. The Matlab

Figure 5: Proposed controller for the difficulty adjust-
ment.

function named ’Calculated New Difficulty’ shown in
Fig. 5 contains the following nonlinear code, which in-
cludes a model inversion and a derivative term:

function Dnew = fcn (Td,T, T1 ,D)
H = 2ˆ(D/2)/(T∗ ce i l (28−D/ 1 6 ) ) ;
Dnew = 2/ log (2)∗ log (H∗Td∗ ce i l (28−D/ 1 6 ) ) ;
Kd=10;
Dnew = Dnew − Kd∗(T−T1 ) ;

In the code above H is the estimated network hash rate
calculated from the current average block time T and
the current difficulty D. Dnew is the approximated new
difficulty to achieve the desired block time of Td = 60
seconds. The formula is an approximation because the
current block time D is kept on the right-hand side of
the equation. The effect of this approximation is small
because of the ceil() function and also the division of
16, but it could have an effect at certain integer values
of D. The effect of this approximation will be discussed
in Section 5. The controller also contains a derivative
term with a gain factor Kd which is multiplied by the
difference between the current and the previous average
block time, T and T1. This term is subtracted from
Dnew because of negative feedback.

In series with the difficulty estimation and the
derivative term, there is a gain K and a discrete-time
integrator with a feedback loop which is an easy and
practical way to implement a lowpass filter. In the con-
tinuous time domain, the closed-loop transfer function
of a gain and an integrator with a feedback loop is:

G(s) =
K/s

1 +K/s
=

K

s+K
=

1
s
K + 1

(2)

Hence, the gain factor K becomes the cutoff frequency
for a first-order lowpass filter. In practice, this low-
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pass filter is used to limit the frequency range of the
derivative term previously described to low frequencies
only.

In summary, the controller consists of a nonlinear
model inversion term which estimates the next diffi-
culty level from the desired block time, the current
average block time and the previous difficult level. In
addition there is a lowpass filtered derivative term with
controller parameters K and Kd.

Figure 6: The overall hash rate from the miners mod-
elled as a disturbance into the system.

The hash rate of all the miners in the network com-
bined is modelled as a disturbance into the system.
In order to analyse the closed-loop performance of the
simulated system Fig. 6 shows the disturbance mod-
elled as a constant hash rate of 1.8 gigahashes per sec-
ond (GH/s) plus three optional terms which allow to
vary the disturbance as a step, ramp and sinusoidal
function, respectively.

Fig. 7 shows the overall control system model used
in the Bismuth blockchain, version 4.2.1.9. The blocks
marked in blue represent the blockchain system, the
blocks marked in yellow represent the control system
(difficulty adjustment calculation plus lowpass filtered
derivative term) while the blocks marked in magenta
represent the disturbance into the system (variation in
the overall hash rate of the miners). The simulation
step time defined in the zero-order hold function and
the discrete-time integrator is set to 1, corresponding
to one block in the blockchain.

The closed-loop system’s bandwidth is defined as
the frequency where the closed-loop gain equals -3dB,
which occurs at 0.00202 rad/sec in Fig. 8 (blue curve).
The frequency response plot was generated using Mat-
lab’s Control Systems Toolbox. The frequency 0.00202
rad/sec corresponds to Bbw = 2π/0.00202 = 3111
blocks or approximately 2.16 days with 1440 blocks per
day. The red curve shows the closed-loop frequency re-
sponse when the floor() function in eq. (1) is included.
As can be seen from Fig. 8 the closed-loop bandwidth
increases when the floor() function is included. A study
of the closed-loop eigenvalues of the system, by using
Matlab’s Control Systems Toolbox, shows that the sta-

bility margin is reduced when the floor() function is
included. The amount of stability margin reduction
depends on the perturbation levels used when lineariz-
ing the model.

Fig. 9 shows the transfer function from the hash rate
(disturbance) to the average block time (blue curve).
The amplitude of this transfer function is always below
−200dB, which is equivalent to a disturbance rejection
of at least 10−10. Hence a sinusoidal disturbance hash
rate of 10GH/s will cause a disturbance in the average
block time of less than 1 second. The red curve shows
the same frequency response with the floor() function
in eq. (1) included. Interestingly, the disturbance re-
jection is improved by approximately 50dB, or a factor
of more than 300, for low frequencies when the floor()
function is included.

The absolute values of all the eigenvalues of the dis-
crete state space model were found using Matlab’s Con-
trol System Toolbox and the feedback control system
is found to be stable. The largest absolute value of the
eigenvalues when K = 1

720 and Kd = 10 was found to
be 0.9991 which is inside the unit circle and guaran-
tees that the closed-loop system is stable, see Table 2.
The controller parameter K can be increased by a fac-
tor 4.7 before the largest absolute eigenvalue is on the
unit circle. Hence, the gain margin of the closed-loop
system with respect to K is 4.7 = 13.4dB. The pa-
rameter Kd can be increased to a large value without
causing instability but the drawback is a reduction in
closed-loop bandwidth when Kd increases.

K Kd λmax ωb1 (rad/s) ωb2 (blocks)
1

720 0 0.9995 0.00210 2992
1

720 10 0.9991 0.00202 3111

Table 2: Closed-loop performance as a function of the
controller parameters K and Kd.

5. Simulation Results

This section contains simulation results using the
Simulink model in Fig. 7. Fig. 10 shows the simulated
average block time when the hash rate (disturbance)
is doubled from 1.8 terrahashes (1.8 · 1012) per second
(TH/s) to 3.6TH/s at block number 10,000. The blue
and the red curves are with Kd = 0 and Kd = 10, re-
spectively. The simulation results show that the block
time oscillates between 39 and 65 seconds, the set-
tling time is approximately 4,000 blocks, there is zero
steady-state error for a step disturbance and that the
differentiation term of Kd = 10 increases phase margin
/ reduces overshoot. The initial condition for the diffi-
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Figure 7: Feedback control system used in the Bismuth blockchain, version 4.2.1.9.
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Figure 8: Closed-loop frequency response from desired
block time Td to moving-average block time
T with controller parameters K = 1

720 and
Kd = 10. The red and blue curves are with
and without the floor() function in eq. (1),
respectively.

culty D (discrete-time integrator) was set to 102 in the
simulation. Fig. 11 shows how the difficulty D (con-
troller output) increases from 102 to a new steady-state
value of 104.2.

Fig. 12 shows the simulation results when the hash
rate is ramped up from 1.8TH/s to 5TH/s at a rate of
0.1GH/s per block. The ramp disturbance causes the
block time to drop initially, but the error goes to zero as
time goes to infinity, also if the ramp was not stopped
at block 50,000. Fig. 13 shows the corresponding con-
troller output (difficulty level for the mining condition).

Fig. 14 shows the simulated block time when a
high-frequency sinusoidal disturbance with amplitude
of 0.2TH/s and period of 100 blocks is added to the
hash rate. 100 blocks correspond to a frequency of
2π
100 = 0.0628rad/sec in the plot. At this frequency the
disturbance rejection in Fig. 9 equals approximately
−250dB or a gain of 3.16 · 10−13. This gain multiplied
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Figure 9: Frequency response from disturbance (hash
rate) H to moving-average block time T with
controller parameters K = 1

720 and Kd = 10.
The red and blue curves are with and without
the floor() function in eq. (1), respectively.

by 0.2TH/s gives a disturbance in the block time of
0.06s, which corresponds to the oscillations observed
in Fig. 14. As can be seen in the figure, the deriva-
tive term Kd = 10 has no negative impact on the high-
frequency disturbance rejection. Fig. 15 shows the cor-
responding controller output.

In eq. (1) and implemented in Fig. 2 there is the
expression ceil(28-D/16). When developing the con-
troller it was assumed that this term was constant,
but at certain difficulty levels this will not be the case.
For example, if D=112 we get ceil(28-D/16)=21, while
D=111.99 results in ceil(28-D/16)=22. These disconti-
nuities in the system model will affect the closed-loop
control system. Consider a case when the overall hash
rate (disturbance) is set to a constant of 55.9TH/s and
the initial difficulty D=110. Fig. 16 then shows the
response in the average block time. With Kd = 0 sta-
ble oscillations with amplitude 2.18 seconds around the
desired block time occur, while with Kd = 10 these
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Figure 10: Block time when hash rate is doubled from
1.8TH/s to 3.6TH/s at block 10000. Kd = 0
for the blue curve, while Kd = 10 for the red
curve.
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Figure 11: Difficulty when hash rate is doubled from
1.8TH/s to 3.6TH/s at block 10000. Kd = 0
for the blue curve, while Kd = 10 for the red
curve.
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Figure 12: Simulated average block time when hash rate
ramps up from 1.8TH/s to 5TH/s at a rate
of 0.1GH/s per block. The ramp stops at
block 50,000. Kd = 0 for the blue curve,
while Kd = 10 for the red curve.
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Figure 13: Controller output (difficulty) when hash rate
ramps up from 1.8TH/s to 5TH/s at a rate
of 0.1GH/s per block. The ramp stops at
block 50,000. Kd = 0 for the blue curve,
while Kd = 10 for the red curve.
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Figure 14: Simulated average block time when a high-
frequency sinusoidal disturbance with ampli-
tude of 0.2TH/s and period of 100 blocks is
added to the hash rate. Kd = 0 for the blue
curve, while Kd = 10 for the red curve.
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Figure 15: Controller output (difficulty) when a high-
frequency sinusoidal disturbance with ampli-
tude of 0.2TH/s and period of 100 blocks is
added to the hash rate. Kd = 0 for the blue
curve, while Kd = 10 for the red curve.
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Figure 16: Stable oscillations in average block time be-
tween 58.3s and 61.7s when hash rate is
constant at 55.9 TH/s. Kd = 0 for the blue
curve, while Kd = 10 for the red curve.
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Figure 17: Stable oscillations in controller output (dif-
ficulty) between 111.98 and 112.02 when
hash rate is constant at 55.9 TH/s. Kd = 0
for the blue curve, while Kd = 10 for the red
curve.
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oscillcations are reduced to an amplitude of 0.81 sec-
onds. In other words, the derivative term Kd increases
the damping in the closed-loop system and reduces
the oscillation in this particular case by a factor 2.7.
Fig. 17 shows the corresponding controller output (dif-
ficulty) as it initially starts at 110 and goes towards
112. The stable oscillations in the controller output
are caused by the discontinuous ceil() function in the
system model. This behaviour of the closed-loop sys-
tem will occur at the following discrete set of difficulty
levels D ∈ {8, 16, 24, · · · , 432}.

6. Blockchain Network Results

In addition to simulations the difficulty adjustment
feedback controller developed in this paper is imple-
mented in the Bismuth blockchain as of version 4.2.1.9.
The code in Fig. 24 shows the actual code implemented
in Python.
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Bismuth 4.1.9 Testnet, Constant Hash rate

Figure 18: Block time as a function of block number on
testnet. Initial difficulty equals 86.26.

Fig. 18 shows the block time when the developed
controller is running on testnet with a constant hash
rate. In this example testnet consisted only of one
single node and two miners. Fig. 19 shows the corre-
sponding difficulty level which initially started at 86.25.
Since the initial difficulty in this test was too high for
the available hash rate from the miners, the block time
increases from 60 seconds to about 105 seconds, before
the feedback controller reduces the difficulty and brings
it back to the desired level of 60 seconds. Since the min-
ers only generate solutions with integer difficulties, it is
interesting to notice from Figs. 18 and Fig. 19 that the
best level of control is achieved when the difficulty is
close to the integer value of 84. This occurs near block
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Bismuth 4.1.9 Testnet, Constant Hash rate

Figure 19: Difficulty as a function of block number on
testnet. Initial difficulty equals 86.26.

number 7,500. If the block time goes above the desired
value of 60 seconds, then the controller adjusts the dif-
ficulty to slightly below 84.0. Similarly, if the difficulty
goes below the desired value of 60 seconds, then the
controller adjusts the difficulty to slightly above 84.0.
From block 8,000 to 10,000 in Fig. 18 the mean value
of the block time is 59.80 seconds while the standard
deviation is 0.66 seconds, which is considered a good
result. Mining and generation of blocks is a stochastic
process, hence on testnet the block time will not settle
exactly at the desired reference level as it does in the
simulations when the hash rate is constant.
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Figure 20: Block time as a function of block number on
mainnet starting from block 427,000.

The proposed feedback controller for the difficulty
adjustment was introduced on the Bismuth mainnet
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Figure 21: Difficulty as a function of block number on
mainnet starting from block 427,000.
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Figure 22: Hash rate as a function of block number on
mainnet starting from block 427,000.

at block 427,000 on December 15, 2017 at UTC time
22:36:51. Figs. 20, 21 and 22 show the mainnet block
time, difficulty and estimated hash rate starting from
block 427,000. The initial condition for the block time
was slightly above 45 seconds, due to the previous dif-
ficulty adjustment algorithm used on mainnet. For the
first 500 blocks in the plots the new controller and the
previous algorithm were compatible, then at block 500
the chains forked and as a result the hash power was di-
vided between the two chains. Due to the reduced hash
rate the block time increased sharply to above 70 sec-
onds while the controller reduced the difficulty below
103, as shown in Figs. 21-20. Then at approximately
block 2000 in the plots all the major miners updated to
the new version and the hash rate increased sharply as
seen in Fig. 22, which as a result caused the blocktime
to decrease sharply to 37 seconds. For the remaining
blocks 2000-13000 the feedback controller works con-
tinuously to keep the blocktime near 60 seconds, de-

spite large variations in the hash rate (disturbance) as
miners come and go. The results from mainnet demon-
strate that the proposed feedback controller presented
in this paper stabilizes the system.
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Figure 23: Top: Analysis of solutions from miners vs.
difficulty. The blue curve shows a statisti-
cal sample of 556,728 solutions from Egg-
Pool.Net, while the red curve is based on
eq. (1). Bottom: Real increase in difficulty
at different difficulty levels. Figures based
on data from EggPool.Net.

In eq. (1) it can be seen from 2floor(D/2) that the
block time should theoretically increase by a factor
of
√

2 when D increases by 1 and the hash rate is
constant. The developer EggdraSyl at EggPool.Net
which is one of the largest mining pools for the Bis-
muth blockchain, has analyzed the theoretical increase
in difficulty vs. the real solutions generated by the
miners contributing to the pool. Fig. 23 (top) shows
that there is some discrepancy between the modelled
difficulty increase and the statistical analysis. While
the overall reduction in block generation matches well
with 1/

√
2, there are variations between the different

levels. For example, the reason why D = 104 occurs
relatively seldom and 105 relatively often, is that 104/8
is a whole integer. The first bit in the next byte is then
always a zero introduced by the binary conversion in
Table 1. This means that hits on 104 will almost always
also give hits on 105. This behavior occurs for other
integer values of D/8, for example 96 and 112 (± 8 bits
from 104). Fig. 23 (bottom) shows the experimentally
found difficulty increases at different difficulty levels.
As can be seen from this figure, the difficulty increases
96→97, 104→105 and 112→113 are all approximately
1. The average difficulty increase of 1.49 in Fig. 23
matches quite closely the theoretical value of

√
2.
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# Assume current d i f f i c u l t y D i s known
D = d i f f b l o c k p r e v i o u s
# Assume current b l o c k time i s known , c a l c u l c a t e d from h i s t o r i c data ,
# f o r example l a s t 1440 b l o c k s
T = block t ime
# C a l c u l c a t e network hash r a t e
H = pow(2 , D / 2 . 0 ) / (T ∗ math . c e i l (28 − D / 1 6 . 0 ) )
# C a l c u l a t e new d i f f i c u l t y f o r d e s i r e d b l o c k time o f 60 seconds
Td = 60.00
D0 = D
Dnew = (2 / math . l og ( 2 ) ) ∗ math . l og (H ∗ Td ∗ math . c e i l (28 − D0 / 1 6 . 0 ) )

# Feedback C o n t r o l l e r
Kd = 10
Dnew = Dnew − Kd∗( b lock t ime − b lock t ime prev )
d i f f a d j u s t m e n t = (Dnew − D)/720 #reduce by f a c t o r o f 720
Dnew adjusted = D + d i f f a d j u s t m e n t

Figure 24: Implementation of controller in the Bismuth blockchain, file node.py as of version 4.2.1.9.

7. Discussion and Conclusions

In this paper a simulation model for the Bismuth
blockchain has been developed and implemented. The
model has been validated by a statistical analysis of
miners solutions vs. difficulty levels from a sample of
more than 500,000 solutions provided by EggPool.Net.
Although there are variations in the increase at dif-
ferent levels of difficulty, the overall trend of increase
matches the theoretical average of

√
2.

A novel control algorithm for the difficulty adjust-
ment has been developed, analyzed and implemented.
The controller estimates the total hash rate H in the
network based on the current levels of difficulty D and
average block time T . This part of the controller is
an approximated model inversion of the system model
illustrated in Fig. 2. A discontinuous function (floor())
in eq. (1) is not invertible and hence has not been in-
cluded in the inversion and system simulation. Instead,
this approximation is seen as a model uncertainty and
handled by the stability margins of the closed-loop con-
troller. In addition to the model inversion, a derivative
term multiplied by the gain Kd is introduced, which
significantly reduces oscillations and increases the sta-
bility margin of the closed-loop system.

The proposed controller has been tested not only in
simulations but also on a testnet using a constant hash
rate and on the mainnet of the Bismuth blockchain
starting from block 427,000 where there are relatively
rapid changes in the overall hash rate. In both imple-
mentations the proposed controller has performed as
expected and in correspondance with the simulation
results.
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import j son , base64 , hash l ib , socks , connec t i ons

def f i l e h a s h ( f i l ename ) :
#f i l e h a s h
h = hash l i b . sha256 ( )
with open( f i l ename , ’ rb ’ , b u f f e r i n g =0) as f :

for b in iter (lambda : f . read (128∗1024) , b ’ ’ ) :
h . update (b)

return h . hexd ige s t ( )
#f i l e h a s h

def b lockge t ( socket , arg1 ) :
#g e t b l o c k
connec t i ons . send ( s , ” b lockge t ” , 10)
connec t i ons . send ( s , arg1 , 10)
b l o c k g e t = connect ions . r e c e i v e ( s , 10)
return b l o c k g e t
#g e t b l o c k

s = socks . socksocke t ( )
s . s e t t imeout (10)
s . connect ( ( ” 1 2 7 . 0 . 0 . 1 ” , 5658))
b lock = blockge t ( s , 406054)
s . c l o s e ( )

jsonData = block [ 0 ] [ 1 1 ] [ 4 : ]
jsonToPython = json . l oads ( jsonData )

with open( jsonToPython [ ’ f i l ename ’ ] , ”wb” ) as fh :
fh . wr i t e ( base64 . b64decode ( jsonToPython [ ’ data ’ ] . encode ( ’ a s c i i ’ ) ) )

f i l e h a s h = f i l e h a s h ( jsonToPython [ ’ f i l ename ’ ] )
print ( ” F i l e {} ex t rac t ed ” . format ( jsonToPython [ ’ f i l ename ’ ] ) )
print ( ” F i l e hash matches : {}” . format ( f i l e h a s h == jsonToPython [ ’ sha256 ’ ] ) )

Figure 25: Python3 code for extracting the Simulink model in Fig. 7 from the blockchain, block 406,054, trans-
action 0. The JSON data for the Simulink model is stored in the OpenField, array index 11.

A. Simulink Model

The Simulink model in Fig. 7 is stored on the Bis-
muth blockchain and can be extracted by running the
Python3 code listed in Fig. 25. The code in Fig. 25
must be saved and executed in the main directory of a
Bismuth local node where the required import file con-
nections.py is also stored. Before the model can be ex-
tracted a local node must be started and the blockchain
synced. The simulation model is made publicly avail-
able in this way in the spirit of open access publication
and open source software, to ensure long-term archiv-
ing, to encourage others to work on the problem and
to provide a simulation testbench for further develop-
ment and analysis of blockchain feedback controllers.

By using the simulation model presented in this pa-
per controller designs can be tested and analyzed in a
few seconds compared to typically several days for an
implementation on a testnet.
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