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Abstract

A decoupling method for flight control is presented that greatly simplifies the controller design. By ap-
proximating the higher order derivatives of the angle of attack and sideslip, it enables a rotation controller
and a speed controller to be derived independently of each other, and thus gives access to a vast number
of controller solutions derived for general classes of rotational and translational systems. For rotational
control, a quaternion-based sliding surface controller is derived to align the wind frame in a desired direc-
tion, and using standard Lyapunov methods an airspeed controller is derived to ensure that an unmanned
aerial vehicle moves with a positive airspeed. Simulations validate the potential of the proposed method,
where the unmanned aerial vehicle is able to obtain leveled flight and move in a desired direction with a
desired airspeed.
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1. Introduction

Fixed-wing unmanned aerial vehicles (uavs) have six
degrees of freedom and four actuators: thrust for trans-
lational control and three control surfaces for rotational
control. With fewer degrees of freedom than number
of actuators, this constitutes an underactuated control
problem (cf. Reyhanoglu et al. (1999)), a control prob-
lem that has received much attention with regards to
e.g. ships, autonomous underwater vehicles (auv) and
quadrotors (cf. Børhaug and Pettersen (2005), Fossen
et al. (2003), Tayebi and McGilvray (2006)). Surpris-
ingly, fixed-wing uavs are rarely defined as underactu-
ated, even though the same constraints as for an auv
are present. With basis in the fact that the uav is un-
deractuated, the question remains: ”how can we make
the uav reach a desired point in Euclidean space?” In
the case of an ideal particle with all its speed along one
of its axes, the problem reduces to that of pointing the
speed axis in a desired direction and move with a posi-
tive speed. This will make the particle reach a desired
point in finite time. This basic example can be related
to that of controlling a fixed-wing uav. The thrust can

be used to control the speed, while the control surfaces
can be used to control the orientation. This enables
the uav to obtain a desired speed that can be pointed
in a desired direction and which then can be used to
solve any control objective.

The common approach for flight control is to solve
the translational dynamics for the angle of attack and
sideslip rates. The angle of attack and sideslip can then
be made to track desired values using the angular ve-
locities, while the angular velocities can be controlled
using the deflection angles (cf. Farrell et al. (2005), Lee
and Kim (2001), Sonneveldt et al. (2009)). For exam-
ple in Sonneveldt et al. (2009), the dynamics become
on a non-affine form as

ẋ1 =f1(x1,x2,x3, T,u) + g1(T,x2) (1)

ẋ2 =f2(x1,x2,x3, T,u) + G2(x2)x3 (2)

ẋ3 =f3(x1,x2,x3) + G3(x1)u (3)

where x1 represents the heading, flight path and air-
speed, x2 represents the bank angle, angle of attack
and sideslip, x3 represents the angular velocity, T is
the thrust and u represents the deflection angles. Even
though the dynamics is on a non-affine form with the
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control signal in the x1 system, it is possible to apply
command-filtered backstepping to stabilize the system
resulting in good tracking capabilities.

Instead of controlling the angle of attack and sideslip
directly, they can be used indirectly as part of a rota-
tional control law that points the airspeed in a desired
direction. Some preliminary results on this approach
are given in Oland et al. (2013) and Oland and Kris-
tiansen (2014).

1.1. Contribution

This paper presents a new approach for flight control.
By approximating higher order derivatives of the angle
of attack and sideslip, it enables a decoupling of the
rotational and translational systems. A quaternion-
based sliding surface controller is derived to point the
airspeed in a desired direction, while an airspeed con-
troller is derived using standard Lyapunov methods to
enable the uav to track a desired speed profile. The
combination of the two relatively simple control laws,
enables the uav to reach any point in R3 by properly
defining the desired airspeed, orientation, angular ve-
locity and angular acceleration.

2. Modeling

2.1. Notation

The time derivative of a vector is denoted as ẋ = dx/dt

and the Euclidean length is written as ||x|| =
√

x>x.
Superscript denotes the reference frame of a vector.
The rotation matrix is denoted Rc

a ∈ SO(3) = {R ∈
R3×3 : R>R = I,det(R) = 1}, which rotates a vector
from frame a to frame c and where I denotes the iden-
tity matrix. The angular velocity vector is denoted
ωea,c, which represents the angular velocity of frame
c relative to frame a referenced in frame e. Angu-
lar velocities between different frames can be added
together as ωea,f = ωea,c + ωec,f (cf. Egeland and
Gravdahl (2002)). The time derivative of the rota-
tion matrix is found as Ṙc

a = Rc
aS(ωac,a) where the

cross product operator S(·) is such that for two vec-
tors v1,v2 ∈ R3, S(v1)v2 = v1 × v2, S(v1)v2 =
−S(v2)v1, S(v1)v1 = 0 and v>1 S(v2)v1 = 0. The
rotation matrix can be parameterized using quater-
nions (cf. Hamilton (1844)), where the quaternion
that represents a rotation from frame a to frame c
is denoted qc,a ∈ S3 = {q ∈ R4 : q>q = 1}
and can be written as qc,a =

[
ηc,a ε>c,a

]>
=[

cos
(
ϑc,a

2

)
k>c,a sin

(
ϑc,a

2

)]>
which performs a rota-

tion of an angle ϑc,a around the unit vector kc,a,
and the inverse quaternion is defined as qa,c =

NED Frame

Body Frame

Stability FrameWind Frame

Velocity Frame

Desired Frame

Rn
b (qn,b)Rn

v (χ, γ)

Rv
w(µ) Rb

s(α)

Rs
w(β)

Rn
d (µd, γd, χd)

Figure 1: Different reference frames to consider when
designing a flight controller (Inspired by
Stengel (2004)).

[
ηc,a −ε>c,a

]>
. The scalar part is denoted ηc,a and the

vector part as εc,a ∈ R3, enabling the rotation matrix
to be constructed as Rc

a = I + 2ηc,aS(εc,a) + 2S2(εc,a).
Composite rotations are found using the quaternion
product as (cf. Egeland and Gravdahl (2002)) qc,e =
qc,a ⊗ qa,e = T(qc,a)qa,e with

T(qc,a) =

[
ηc,a −ε>c,a
εc,a ηc,aI + S(εc,a)

]
, (4)

which ensures that the resulting quaternion maintains
the unit length property, while the quaternion kine-
matics is given as

q̇c,a =
1

2
qc,a ⊗

[
0
ωac,a

]
=

1

2
T(qc,a)

[
0
ωac,a

]
. (5)

2.2. Reference Frames

To facilitate flight control, several different reference
frames are needed as illustrated in Figure 1. The ob-
jective is to relate the wind and body frame with a
desired frame, which can be achieved by going through
the velocity frame, or through the body and stability
frame.

The North East Down (NED) Frame: is de-
noted by superscript n. The frame has its xn axis
pointing North, yn points East while zn points down
completing the right-handed orthonormal frame. The
ned frame is treated as an inertial frame.

Body Frame: is denoted by superscript b and has
its origin in the center of mass of the uav. The xb axis
coincides with the fuselage of the uav, yb goes through
the right wing, while zb points down completing the
right-handed orthonormal frame.
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2. Modeling
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Figure 2.1: The body, stability and wind frame. By using the angle of atta
k and

the sideslip angle, the relation between the body frame and the dire
tion of the

airspeed is obtained (illustration by Tom Stian Andersen).

are given as

Vg = ||vb|| =
√
(vb)⊤vb

(2.10)

Va = ||vb
r|| =

√
(vb

r)
⊤vb

r. (2.11)

The dire
tion of the ground speed tells how the uav moves relative to the ground,

whi
h is important from a guidan
e perspe
tive, while the airspeed a�e
ts the aero-

dynami
 for
es and moments and is therefore important from a 
ontrol perspe
tive.

The wind triangle in Figure 2.2 shows the relation between the air, ground and wind

velo
ity ve
tors where vn
r := Rn

b v
b
r and vn

g := Rn
bv

b
.

The relative velo
ity ve
tor 
an be rotated to the wind frame as

vw
r = Rw

b v
b
r = Rw

b



Va
0
0




(2.12)

where the airspeed is aligned along the xw
axis and where the rotation matrix is

de�ned as

Rw
b =




cos(α) cos(β) sin(β) sin(α) cos(β)
− cos(α) sin(β) cos(β) − sin(α) sin(β)

− sin(α) 0 cos(α)




(2.13)

26

Figure 2: The relationships between the body, stability
and wind frame.

Stability Frame: is denoted by superscript s. The
stability frame is obtained from the body frame by per-
forming a left-handed rotation by the angle of attack,
α, around the yb axis as shown in Figure 2.

Wind Frame: is denoted by superscript w. The
wind frame is obtained from the stability frame by per-
forming a right-handed rotation by the sideslip angle,
β, around the zs axis as shown in Figure 2. In this
frame, the total airspeed is aligned along the xw axis.

Velocity Frame: is denoted by superscript v and is
defined relative to the ned frame. The velocity frame is
obtained by rotating around the zn axis by the heading
angle, χ, and around the yn axis by the flight path an-
gle, γ. In this frame, the total ground speed is aligned
along the xv axis. Note that the wind frame and ve-
locity frame are not the same frame, but are related
through the bank angle, µ (cf. Stengel (2004)).

Desired Frame: is denoted by superscript d and
can be defined arbitraily to achieve any control ob-
jective. Waypoint tracking with collision and ground
avoidance is presented in Oland et al. (2016), and can
be combined with the results of this paper.

2.3. Translational Kinematics and
Dynamics

The translational kinematics for a fixed-wing uav can
be defined as (cf. Stevens and Lewis (2003))

ṗn = Rn
b vb (6)

vbr = vb −Rb
nvnwind (7)

where pn :=
[
x y z

]>
is the position of the uav

in the ned frame, Rn
b is the rotation matrix from the

body to the ned frame, vb is the velocity of the uav rel-

ative the Earth and vbr :=
[
u v w

]>
is the velocity

relative the surrounding air, where vnwind is the veloc-
ity vector of the wind which is assumed to be constant.
The ground speed of the uav is defined as Vg := ||vb||
which is the speed of the uav relative to the Earth,
and the airspeed is defined as

Va := ||vbr|| = (vbr)
>vbr (8)

which is the speed relative to the surrounding air. The
relative velocity can be rotated to the wind frame as

vbr = Rb
wvwr = Rb

w



Va
0
0


 (9)

where the total airspeed is aligned along the xw axis.
The rotation matrix from the body frame to the wind
frame can be constructed using the angle of attack and
sideslip angle as (cf. Stevens and Lewis (2003))

Rw
b =




cos(α) cos(β) sin(β) sin(α) cos(β)
−cos(α) sin(β) cos(β) − sin(α) sin(β)
−sin(α) 0 cos(α)


 (10)

where α = tan−1
(
w
u

)
and β = sin−1

(
v
Va

)
. Using the

laws of Newton, the relative acceleration is found as
(cf. Stevens and Lewis (2003))

v̇br=
1

m
(f bthrust + Rb

wfwaero) + Rb
nfng − S(ωbn,b)v

b
r (11)

where m is the mass, f bthrust =
[
T 0 0

]>
is the

thrust vector with T as the total thrust, fng =[
0 0 g

]>
is the gravity vector where g is the acceler-

ation due to the gravity, and ωbn,b =
[
p q r

]>
is the

angular velocity of the body frame relative to the ned
frame referenced in the body frame. The aerodynamic
force vector can be defined as (cf. Campa et al. (2007),
Etkin (1972), Stengel (2004))

fwaero =
1

2
ρSV 2

a

[
−CD CY −CL

]>
(12)

CD =CD0 + CDαα+
c̄

2Va
CDqq + CDδe δe (13)

CY =CY0
+ CYββ +

b

2Va
CYpp+

b

2Va
CYrr

+ CYδa δa + CYδr δr (14)

CL =CL0
+ CLαα+

c̄

2Va
CLqq + CLδe δe (15)

where ρ is the air density, S is the wing area, C(·) are
aerodynamic coefficients, b is the wing span and c̄ is the
mean aerodynamic chord, and δa, δe, δr are the deflec-
tion angles of the aileron, elevator and rudder respec-
tively, which are used for rotational control. Note that
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the aerodynamics are linear in the angle of attack and
sideslip angle, making this aerodynamic model only
valid for small angles of attack and sideslip. The aero-
dynamic model presented here has no impact on the
overall design method, and can easily be extended to
allow high angles of attack without affecting the pro-
posed control solution. The acceleration relative to the
surrounding air is found by differentiating eq. (8) and
inserting eq. (11), and using that (vbr)

>S(ωbn,b)v
b
r = 0

resulting in

V̇a =
u

mVa
T +

(vbr)
>

Va
(

1

m
Rb
wfwaero + Rb

nfng ), (16)

which can be used to design an airspeed controller.
Note that with Va > 0 and u >> v,w it follows that
u > 0 ∀t ≥ t0.

To summarize, from eq. (9) the airspeed is aligned
along the xw axis, such that by pointing the xw axis in
a desired direction and moving with a positive airspeed,
the uav can reach any point in R3.

2.4. Rotational Kinematics and Dynamics

Using quaternions, the rotational kinematics and dy-
namics can be written as

q̇n,b =
1

2
qn,b ⊗

[
0
ωbn,b

]
(17)

Jω̇bn,b = −S(ωbn,b)Jω
b
n,b + τ baero (18)

τ baero = f(x)−D(x)ωbn,b + G(x)u (19)

where qn,b represents the orientation of the body frame
relative to the ned frame, J = J> ∈ R3×3 is the inertia
matrix which is assumed to be constant, τ baero is the
aerodynamic moments acting on the uav (cf. Campa
et al. (2007), Etkin (1972), Stengel (2004)), where

x =
[
Va α β

]>
, and where u =

[
δa δe δr

]>
is

the control signal. The aerodynamic vector f(x) is de-
fined as

f(x) =
1

2
ρSV 2

a



b(Cl0 + Clββ)
c̄(Cm0

+ Cmαα)
b(Cn0

+ Cnββ)


 (20)

and the damping matrix is defined as

D(x)=−1

2
ρSV 2

a




b2

2Va
Clp 0 b2

2Va
Clr

0 c̄2

2Va
Cmq 0

b2

2Va
Cnp 0 b2

2Va
Cnr


 . (21)

Note that D(x) is positive definite for all Va > 0. The
control effectiveness matrix is defined as

G(x) =
1

2
ρSV 2

a



bClδa 0 bClδr

0 c̄Cmδe 0
bCnδa 0 bCnδr


 (22)

which has full rank as long as Va > 0 and
Cmδe (ClδaCnδr − ClδrCnδa ) 6= 0. Hence, by changing
the deflection angles of the aileron, elevator and rudder
(δa, δe, δr), aerodynamic moments are produced which
result in a change of orientation and angular velocity.

2.5. Total System

Let the aerodynamic force vector in eq. (12) be rewrit-
ten as

fwaero = f2(x,ωbn,b) + G2(x)u (23)

where f2(x,ωbn,b) is given in eq. (24) and

G2(x) =
1

2
ρSV 2

a




0 −CDδe 0
CYδa 0 CYδr

0 −CLδe 0


 , (26)

then the total system can be written using eq. (11) and
eq. (18) as shown in eq. (25). For this system there are
four actuators, the thrust, T , that is acting along the

xb axis, and three deflection angles, u =
[
δa δe δr

]>
that produce moments as well as affecting the aerody-
namic drag, lift and sideforce. A critical issue with
this model, and control of aircraft in general, is that
the deflection angles enter the translational dynamics,
an issue that often is ignored by simplifying the aero-
dynamics or solved by using values from the previous
time-step. This represents a strong coupling between

f2(x,ωbn,b) =
1

2
ρSV 2

a




−(CD0
+ CDαα+ c̄

2Va
CDqq)

CY0 + CYββ + b
2Va

CYpp+ b
2VT

CYrr

−(CL0 + CLαα+ c̄
2Va

CLqq)


 (24)

[
v̇br

Jω̇bn,b

]
=




1
m





T
0
0


+ Rb

w(f2(x,ωbn,b) + G2(x)u)


+ Rb

nfng − S(ωbn,b)v
b
r

−S(ωbn,b)Jω
b
n,b + f(x)−D(x)ωbn,b + G(x)u


 . (25)
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the rotational and translational systems that must be
accounted for when designing the control laws. The
common approach to address this issue, is to divide the
system into a slow system and a fast system, where
the deflection angles are treated as constants in the
slow system, and are only ”active” in the fast system.
This means that the elevator is assumed to be constant
when designing the speed controller. To be precise,
the common approach is to solve the translational dy-
namics first, followed by the rotational dynamics. By
studying the dynamics in eq. (25), it is evident that
the thrust only appears in the translational dynamics,
while the deflection angles are part of both systems. A
better approach which is the focus of this paper is to
first control the rotational system and then the trans-
lational system, something that can be achieved by ap-
proximating the higher order derivatives of the angle
of attack and sideslip angle. With the deflection an-
gles available from the control law, their impact on the
translational system can be removed from the closed
loop dynamics using the thrust.

2.6. Decoupling

The rotation matrix Rb
w can be parameterized us-

ing quaternions as qb,w = qb,s ⊗ qs,w where s de-
notes the stability frame. The quaternions can be de-

fined as qb,s =
[
cos(α2 ) 0 − sin(α2 ) 0

]>
and qs,w =

[
cos(β2 ) 0 0 sin(β2 )

]>
. The angular velocity of the

wind frame relative the body frame is found as (cf.
Stevens and Lewis (2003))

ωwb,w =



−α̇ sin(β)
−α̇ cos(β)

β̇


 (27)

and the angular acceleration is found through differen-
tiation as

ω̇wb,w =



−α̈ sin(β)− α̇β̇ cos(β)

−α̈ cos(β) + α̇β̇ sin(β)

β̈


 . (28)

The angle of attack and sideslip are functions of the lin-
ear velocity components, such that higher order deriva-
tives are not directly available (requires measurements
of the acceleration and jerk). Instead they can be ap-
proximated using a linear filter. In the case of esti-
mating the angle of attack, let x1 := αr, x2 := α̇r
and x3 := α̈r where αr represents the estimated angle
of attack. Then a linear filter with saturation can be

proposed as (cf. Fossen (2011))

ẋ1 =σ(x2) (29)

ẋ2 =σ(x3) (30)

ẋ3 =− (2ζ + 1)ωnσ(x3)− (2ζ + 1)ω2
nσ(x2)

+ ω3
n(α− x1) (31)

where ζ is the relative damping ratio, ωn is the natural
frequency, and the saturation function is defined as

σ(x) :=

{
sign(x)xmax if |x| ≥ xmax
x otherwise

(32)

which ensures that the higher derivatives remain
smooth and bounded. A similar filter can be applied for
the sideslip angle. Note that the higher order deriva-
tives of the angle of attack and sideslip can also be
found using other methods such as e.g a high gain
observer (cf. Khalil (2002)) or a linear Kalman fil-
ter. For example a linear Kalman filter can be imple-
mented by assuming constant angular acceleration as
xk+1 = Axk + wk, with

A =




1 ∆T 0.5(∆T )2 0 0 0
0 1 ∆T 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆T 0.5(∆T )2

0 0 0 0 1 ∆T
0 0 0 0 0 1




(33)

where ∆T is the time-step for the filter, xk =[
α α̇ α̈ β β̇ β̈

]>
and wk is the process noise.

Simulations using this process model have shown excel-
lent results in estimating the higher order derivatives
of the angle of attack and sideslip angle. The result of
using a filter to estimate the higher order derivatives is
that the rotational and translational systems become
decoupled, such that a rotational controller can be de-
signed first, followed by a speed controller.

3. Controller Design

3.1. Control Objective

The control objective is to point the wind frame in a de-
sired direction and then move with a positive airspeed.
Let qn,d,ω

d
n,d, ω̇

d
n,d ∈ L∞ represent the desired trajec-

tory, then the attitude error of the wind frame relative
to the desired frame can be written as the composite
quaternion

qd,w = qd,n ⊗ qn,b ⊗ qb,w (34)

which has two equilibria at q?d,w =
[
±1 0 0 0

]>
which physically represent the same orientation, but

241



Modeling, Identification and Control

mathematically they are different. From a control per-
spective it is more intuitive controlling the attitude
relative to the origin. Inspired by Kristiansen et al.
(2009), let an error function be defined as eq± :=[
1∓ ηd,w ε>d,w

]>
=
[
1∓ ηd,w ε1 ε2 ε3

]>
which

holds the kinematics as

ėq± = Te(eq±)Rw
b ω

b
d,w (35)

Te(eq±) =
1

2

[ ±ε>d,w
ηd,wI + S(εd,w)

]
(36)

ωbd,w = ωbn,b −Rb
dω

d
n,d + Rb

wω
w
b,w. (37)

For speed control, let a desired airspeed be defined
through Vd, V̇d ∈ L∞ which in general can be time-
varying, and let a speed error function be defined as
Ṽ = Va−Vd. By differentiating the speed error and by
inserting eq. (16) the error dynamics becomes

˙̃V =
u

mVa
T +

(vbr)
>

Va
(

1

m
Rb
wfwaero + Rb

nfng )− V̇d. (38)

The control objective is therefore to make
(Ṽ , eq±,ωbd,w) → (0,0,0), making the uav move
with a positive airspeed and track a desired attitude
and angular velocity.

3.2. Assumptions

Before stating the main results, a few assumptions are
required:

Assumption 1 Assume that Va ≥ βv > 0 ∀ t, where
βv is a lower bound on the airspeed.

Assumption 2 Assume that sign(ηd,w(t)) =
sign(ηd,w(t0)) ∀ t.

Lemma 1 Using Assumption 2 the following inequal-
ity holds:

e>q±Te(eq±)T>e (eq±)eq± ≥
1

8
e>q±eq±. (39)

Proof 1 The proof is given in Kristiansen et al.
(2009) and Schlanbusch et al. (2012) and is reproduced
in Appendix B.

Assumption 1 is required to enable flight, while As-
sumption 2 divides the rotation sphere into two halves
enabling the controller to be derived while focusing on
only one of the two equilibria of the quaternion error.
This assumption can be relaxed by introducing hybrid
switching as shown in Schlanbusch et al. (2011). The
assumptions included above are introduced to maintain
the focus on the main contribution in the paper, which
is the decoupling of the rotational and translational
systems.

3.3. Rotational Controller

The attitude and angular velocity can be controlled us-
ing a sliding surface controller based on Slotine and Li
(1987). The main result is summarized by the following
proposition:

Proposition 1 Let assumptions 1-2 hold. Given
qn,d,ω

d
n,d, ω̇

d
n,d ∈ L∞, then the dual equilibrium points

(eq±, s) = (0,0) of the dynamics from eq. (17) and eq.
(18) in closed loop with the controller

u =G−1(x)(Jω̇bn,r + D(x)ωbn,r + S(ωbn,b)Jω
b
n,b

− f(x)− kss− kqRb
wT>e eq) (40)

s =ωbn,b − ωbn,r (41)

ωbn,r =Rb
dω

d
n,d −Rb

wω
w
b,w −ΛRb

wT>e eq (42)

ω̇bn,r =Rb
dω̇

d
n,d − S(ωbn,b)R

b
dω

d
n,d −Rb

wω̇
w
b,w

−ΛRb
wS(ωwb,w)T>e eq −

1

2
ΛRb

wε̇d,w (43)

where kq > 0 and ks > 0, Λ = Λ> > 0, are uniformly
exponentially stable.

Proof 2 The proof is given in Appendix C.

As (eq±, s) → (0,0) it follows from eq. (41) and eq.
(42) that ωbd,w = ωbn,b − Rb

dω
d
n,d + Rb

wω
w
b,w → 0 and

thereby completing the control objective.

3.4. Translational Controller

The objective of the translational controller is to make
the airspeed tracking error go to zero, which can be
solved using the following proposition:

Proposition 2 Let Assumption 1 hold. Given a de-
sired speed profile defined by Vd, V̇d ∈ L∞, then the
origin Ṽ = 0 of the dynamics from eq. (16) in closed
loop with the controller

T =
mVa
u

(
V̇d − kpṼ

− (vbr)
>

Va
(

1

m
Rb
wfwaero + Rb

nfng )

)
, (44)

where kp > 0, is uniformly exponentially stable.

Proof 3 The proof is given in Appendix D.

By using the proposed decoupling method, the control
structure can be presented as shown in Figure 3. Note
that even though the translational and rotational dy-
namics are strongly coupled, the fixed-wing uav can
be easily controlled with these two control laws.
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Rotational Controller

Translational Controller

Flight Dynamics

Filter

qn,d

ωdn,d
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w
b,w qn,b ωbn,b

α

β

qn,b

ωbn,b

α β

u

T

Figure 3: Resulting control structure.

4. Simulation

The uav model that is employed is the YF-22 uav
from Campa et al. (2007) where the stabilizer is treated
as an elevator. The parameters are reproduced in
Appendix A. The uav has the thrust constrained as
0 ≤ T ≤ 250 N, and the deflection angles are bounded
as −0.3491 ≤ δa, δe, δr ≤ 0.3491 radians. Let the initial

states be given as qn,b(0) =
[
0 0 0 1

]>
, ωbn,b(0) =

[
0.1 −0.2 0

]>
rad/s, pn(0) =

[
0 0 −100

]>
m,

vb(0) =
[
25 0 0

]>
, vnwind =

[
10 0 0

]>
m/s. The

gains are chosen as kq = 10, ks = 10, Λ = 2I,
kp = 2. With the initial orientation, the uav is point-
ing along the negative xn axis, such that by defining

qn,d =
[
1 0 0 0

]>
, the objective is to perform a ro-

tation of π radians such that the wind frame becomes
aligned with the ned frame resulting in leveled flight.
The desired angular velocity and acceleration are set
equal to zero and the desired airspeed to Vd = 40 m/s.

Figure 4 shows the the attitude error, eq, angular

velocity error, ωbd,w :=
[
ω1 ω2 ω3

]>
, and deflection

angles, u. The attitude error goes quickly to zero, and
the same applies to the angular velocity. Note that
there are some oscillations of the angular velocity er-
ror which is due to the actuator constraints as shown
in bottom plot. Performing an attitude maneuver of
π radians makes the rudder go into saturation, which
affects the angular velocity error. As the attitude and
angular velocity error converge to zero, the deflection
angles go to constant values. The airspeed error and
thrust are shown in Figure 5. The airspeed error expo-
nentially converges to zero, and the thrust converges to
a constant value maintaining the desired airspeed. The
position of the uav is shown in Figure 6. Remember
that the objective is simply to align wind frame with
the ned frame such that the uav moves along the xn

axis which is apparent from Figure 6. Also note that
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Figure 4: Rotational dynamics of the uav.

the z component converges to a constant such that the
uav obtains leveled flight. To better visualize the
results, let the orientation of the body relative to the
ned frame be defined through the roll (φ), pitch (θ) and
yaw (ψ) angles. This is visualized in Figure 7 where
the initial yaw angle is π radians which converges close
to zero. In fact it is only the roll angle that goes to
zero. When the roll angle is zero, there exists a simple
relation between the yaw angle and the heading angle
as χ = ψ+β, and between the pitch angle and the flight
path angle as γ = θ − α (cf. Stengel (2004)). Figure 7
shows that the pitch and yaw angle do not go to zero,
but to the angle of attack and the negative sideslip.
This is highlighted in the bottom plot, where it is seen
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Figure 6: Position of the uav.

that the roll, flight path and heading angle all go to
zero. The plot in the middle shows the angle of attack
and sideslip during the maneuver, where it is seen that
the sideslip is as large as about 0.42 radians while the
uav performs its maneuver to change its orientation.
Also note that the angle of attack does not go to zero,
but converges to about 0.0617 radians which produces
enough lift to compensate for the gravity.

5. Conclusion and Discussion

This paper has presented a solution to the problem of
flight control for fixed-wing uavs by decoupling the ro-
tational and translational subsystems using a simple
filter. It enables the controllers to be derived indepen-
dently of each other and greatly simplifies the overall
control design. The proposed method was validated by
tracking a desired orientation and airspeed, and shows
promising results. The generality of the control laws
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enables any guidance method to be applied through
the desired orientation, angular velocity and acceler-
ation as well as airspeed. To perform guidance rela-
tive to the ground, the desired direction of the ground
speed and its magnitude must be mapped to a desired
airspeed and a desired orientation.
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B. Proof of Lemma 1

Expanding the terms it can be written as

e>q±TeT
>
e eq± =

1

4
ε>d,wεd,w

≥ 1

8

(
(1∓ ηd,w)2 + ε>d,wεd,w

)

=
1

8
e>q±eq± (45)

where the inequality in eq. (45) is found by

1

8

(
(1∓ ηd,w)2 + ε>d,wεd,w

)
≤ 1

4
ε>d,wεd,w

(1∓ ηd,w)2 ≤ ε>d,wεd,w = 1− η2
d,w

1∓ 2ηd,w + η2
d,w ≤ 1− η2

d,w

∓2ηd,w ≤ 0, (46)

and it follows that the inequality holds for eq+ ∀ 0 ≤
ηd,w ≤ 1 and eq− ∀ − 1 ≤ ηd,w ≤ 0.

C. Proof of Proposition 1

Without loss of generality, consider the positive equi-
librium point and let eq := eq+ and Te := Te(eq+).
The sliding variable is defined as

s = ωbn,b − ωbn,r (47)

ωbn,r = Rb
dω

d
n,d −Rb

wω
w
b,w −ΛRb

wT>e eq (48)

where Λ = λI with λ > 0, enabling the angular velocity
error to be written as

ωbd,w = s−ΛRb
wT>e eq, (49)

and the sliding variable can be differentiated using eq.
(18), (19) and (47) as

Jṡ =− S(ωbn,b)Jω
b
n,b + f(x)−D(x)s

−D(x)ωbn,r + G(x)u− Jω̇bn,r. (50)

Let the error vector be defined as xe :=
[
e>q s>

]>
and a positive, radially unbounded Lyapunov function
candidate as

V1(xe) :=
kq
2

e>q eq +
1

2
s>Js > 0 ∀ xe 6= 0 (51)

where kq > 0 is a scalar gain. Equation (51) can be
differentiated using eq. (35) and eq. (50) as

V̇1(xe) =− kqΛe>q TeT
>
e eq + kqe

>
q TeR

w
b s

+ s>(−S(ωbn,b)Jω
b
n,b + f(x)−D(x)s

−D(x)ωbn,r + G(x)u− Jω̇bn,r) (52)

and by inserting the control law from eq. (40) into eq.
(52) it results in

V̇1(xe) = −kqΛe>q TeT
>
e eq − s>(ksI + D(x))s

≤ −kqλ
8
||eq||2 − (ks + βD)||s||2 (53)

where Lemma 1 has been used. The damping ma-
trix D(x) is positive definite as long as Va > 0 and
can be lower bounded using Assumption 1 as βD ≤
λmin(D(xmin)) where λmin(D(xmin)) is the small-
est eigenvalue of the damping matrix where xmin =[
βv 0 0

]>
. The origin (xe = 0) can now be shown to

be exponentially stable by applying Theorem 4.10 from
Khalil (2002). The inertia matrix is assumed to be con-
stants, such that c1 = λmin(J) ≤ ||J|| ≤ λmax(J) = c2
where c1, c2 are two positive constants. This enables
the Lyapunov function in eq. (51) to be bounded as

c3(||eq||2 + ||s||2) ≤ V1(xe) ≤ c4(||eq||2 + ||s||2) (54)

where c3 := 1
2 min{kq, c1}, c4 := 1

2 max{kq, c2} such

that V̇1(xe) = − c5c4V1(xe) where c5 := min{kqλ8 , ks +
βD}. By using the comparison lemma (cf. Khalil
(2002)) it follows that

||xe(t)|| ≤
√
c4
c3
||xe(t0)||e−

c5
2c4

(t−t0) (55)

indicating that the origin is exponentially stable. Note
that all the positive constants c3, c4, c5 are independent
of the initial conditions. As emphasized in Loŕıa and
Panteley (2002), a system is uniformly exponentially
stable if and only if the constants in eq. (55) are in-
dependent of the initial conditions. Hence, it follows
that the origin xe = (eq, s) = (0,0) is uniformly expo-
nentially stable. A similar proof can be done for the
negative equilibrium point by defining eq := eq− and
Te := Te(eq−).

D. Proof of Proposition 2

Let a radially unbounded, positive Lyapunov function
candidate be chosen as V2 = 1

2 Ṽ
2 > 0 ∀ Ṽ 6= 0, which

can be differentiated using eq. (38) as

V̇2 = Ṽ (
u

mVa
T+

(vbr)
>

Va
(

1

m
Rb
wfwaero+Rb

nfng )−V̇d) (56)

and by inserting eq. (44), the Lyapunov derivative be-
comes V̇2 = −kpṼ 2, which is negative definite. Given

Vd, V̇d ∈ L∞ and by applying similar arguments as for
Proposition 1, it follows that the origin (Ṽ = 0) is
uniformly exponentially stable.
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