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Abstract

Frequency-response measurements at high frequencies have been shown to provide a valuable design tool
in various fields of electronics. These measurements are often challenging when using most commercially
available measurement tools due to their relatively low maximum sampling frequency and long mea-
surement time. This effectively prevents frequency-response-based low-cost applications where fast and
reliable measurements are required. This paper proposes the use of a combined frequency mixer applied
with pseudo-random sequences. In this method, the applied pseudo-random excitation is upconverted to
high frequencies by the mixer, and once injected into the device being tested, the system response is down-
converted to lower frequencies. The method provides a low-cost solution that can be applied for rapid
high-frequency measurements by using only modest data-acquisition tools. Experimental results based
on a high-frequency resonator are presented and used to demonstrate the effectiveness of the proposed
methods.
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1 Introduction

Due to the ever-increasing complexity of electrical cir-
cuits and difficulties in forming analytical models, non-
parametric frequency-response-measurement methods
have become popular in various fields of electronics.
Power electronics present a good example of modern
applications where nonparametric frequency responses
provide a powerful tool in system analysis. The author
in (Suntio, 2009) showed that switched-mode power
supplies can be fully characterized and controlled by
a certain set of frequency responses. The authors in
(Meisser et al., 2012) applied impedance-spectra char-
acterization for obtaining the values of parasitic circuit
components from practical switched-mode power sup-
plies in order to avoid destructive resonances and to re-

duce electromagnetic radiation. The useful frequency
range varied from a few Hertz to up to 100 MHz. Other
modern examples where frequency-response measure-
ments at a wide bandwidth provide a valuable design
tool include the applications in sensor technology (Sal-
pavaara et al., 2011), in wireless power transfer (Martin
et al., 2013) and charging (Khan-ngern and Zenkner,
2014), in sustainable energy production (Roinila et al.,
2014), and in nano technology (Roinila et al., 2012).

The prevailing technique to obtain nonparametric
frequency responses is to use a network analyzer based
on sine sweeps. A set of sinusoidal signals is injected
into the device being tested, and the frequency re-
sponse is then computed by comparing the measured
response to the injection. This method usually yields
reliable responses but the technique suffers from many
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deficiencies of which the most vital one is the length
of time required for the measurement. In the case of a
single-sinusoid injection the transient period after each
frequency change has to be omitted. Depending on the
application, the cumulative time for the omitted data
may become minutes or even hours. The long mea-
surement time effectively prevents the use of most on-
line applications, such as adaptive control and quality
assessment, which often require rapid measurements.
In the case of a chirp signal (Paavle et al., 2008), or
other types of aperiodic broadband excitations such as
impulse (Schaefer, 1999) typically used in analyzers,
the accuracy is affected by the leakage or uncontrol-
lable spectral energy content of the excitation. An-
other main issue is that the bandwidth of most com-
mercially available low-cost data-acquisition devices is
typically limited to relatively low frequency (usually
up to 2 MHz). The option for higher bandwidth (up
to 100−200 MHz) significantly increases the price and
complexity of the analyzer.

In this paper, a combined frequency mixer is pro-
posed as a low-cost solution for rapid high-frequency
measurements. The mixer is a nonlinear circuit that
creates new frequencies from two signals that are ap-
plied to it. In the mixer, a maximum-length binary
sequence (MLBS) (Godfrey, 1991) is mixed by a high-
frequency carrier resulting in a high-frequency broad-
band excitation. The MLBS is a deterministic and
periodic signal, and hence, multiple injection periods
can be applied through spectral averaging thus increas-
ing the signal-to-noise ratio (SNR). Due to the binary
form, the sequence can be simply implemented. The
MLBS has the lowest possible peak factor, which means
that most of the signal elements are distributed near
the minimum and maximum values of the sequence; in
other words, the signal does not present large peaks.
Thus, the MLBS is well suited for sensitive systems
that require small-amplitude perturbation. This is par-
ticularly important in online applications where normal
system operation needs to be guaranteed during the in-
jection. The mixing procedure does not affect the fun-
damental properties of the MLBS thus allowing fast
and controllable injection into the device being tested.
The measured system response is downconverted to
lower frequencies by applying similar procedure. As a
result, the whole frequency-response-measurement pro-
cedure can be performed by a modest, low-frequency
data-acquisition unit.

The rest of the paper is organized as follows.
Section 2 reviews the theory behind the frequency-
response computation, maximum-length binary se-
quence (MLBS), and combined frequency mixer. Sec-
tion 3 presents experimental evidence based on a high-
frequency resonator. Finally, Section 4 draws conclu-

sions.

2 Methods

Consider a linear time-invariant system for small dis-
turbances. According to basic control theory, this type
of system can be fully characterized by its impulse re-
sponse, which can be transformed into frequency do-
main and presented by a frequency-response function
(Ljung, 1999).

Signal Generator

Device Under
Test

Excitation Response

Figure 1: Typical measurement setup.

Fig.1 shows a typical setup where the device being
tested, presented by an impulse-response function g(t),
is to be identified. The system is perturbed by exci-
tation x(t), which yields the corresponding output re-
sponse y(t). The measured signals are corrupted with
noise, as presented by e(t) and p(t). The measured ex-
citation and output response can now be denoted by
xe(t) and yp(t). The noises are assumed to resemble
white noise and are uncorrelated with x(t) and y(t). All
of the signals are assumed to be zero mean sequences.
The frequency-response function of the device under
test can be computed through logarithmic averaging
as

Glog(jω) =

(
R∏
k=1

Ypk(jω)

Xek(jω)

)1/R

(1)

where R denotes the number of injected excitation pe-
riods. In this method, the measurements from both in-
put and output sides are segmented and Fourier trans-
formed after which (1) is applied. The method tends
to cancel out the effect of uncorrelated noise both
from the input and output sides, and hence, provides
a good computation algorithm for practical measure-
ments (Pintelon and Schoukens, 2001).

2.1 Maximum-Length Binary Sequence

Pseudo-random binary sequence (PRBS) is a periodic
broadband signal based on a sequence of lengthN . The
most commonly used signals are based on maximum-
length sequences (maximum-length binary sequence
(MLBS)). Such sequences exist for N = 2n − 1, where
n is an integer. The reason for their popularity is that
they can be generated using feedback shift register cir-
cuits (Golomb, 1967).
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The power spectrum of an MLBS is given by

ΦMLBS(q) =
a2(N + 1)

N2

sin2(πq/N)

(πq/N)2
, q = ±1,±2, . . .

(2)
where q denotes the sequence number of the spectral
line, a is the signal amplitude, and N is the signal
length. Fig. 2 shows the form of the power spectrum
of an MLBS of length 24− 1 = 15, generated at 10 Hz.
The power spectrum has an envelope and drops to zero
at the generation frequency and its harmonics.
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Figure 2: Power spectrum of 15-bit-length MLBS gen-
erated at 10 kHz.

The MLBS x has the lowest possible peak factor
|x|peak/xrms = 1 regardless of its length. Hence, the se-
quence is well suited for sensitive systems which require
small-amplitude perturbation. Due to the determinis-
tic nature of the sequence, the signal can be repeated
and injected precisely and the SNR can be increased
by synchronous averaging of the response periods. The
most significant advantage of the MLBS compared to
other types of excitations is the binary form of the se-
quence. This binary form means that the injection can
be straightforwardly generated by using a low-cost ap-
plication, the output of which can only cope with a
small number of signal levels.

2.2 Combined Frequency Mixer

A frequency mixer is a nonlinear circuit that creates
new frequencies from two signals that are applied to
it. In its most common application, two signals (at
frequencies ω and α) are applied to a mixer, which then
produces new signals at the sum (α+ω) and difference
(α − ω) frequencies (Ling et al., 2009). This process
is commonly known as heterodyning. In this work,
a combined mixer is used to apply first upconversion
in order to produce high-frequency excitation into a
device under test. The response is then measured and
collected by applying downconversion.

The operation principle of the combined frequency
mixer is shown in Fig. 3. The excitation signal (with
a frequency of ω) is upconverted by the carrier signal
originating from a local oscillator of the mixer resulting
in the actual excitation u(t). The response signal from
the test device is downconverted by applying the same
carrier resulting in the output y(t) of the whole pro-
cess. Due to the upconversions and downconversions,
no sophisticated high-frequency data-acquisition meth-
ods are required. Thus, the mixer can be operated and
the system can be analyzed by a modest measurement
tool.

Upconverter
Excitation

Device Under
Test

Downconverter
Output Response

Carrier

Carrier

Figure 3: Operation principle of combined frequency
mixer.

The upconverted signal u(t) can be denoted as

u(t) = x(t)cos(αt) =
ejαt − e−jαt

2
x(t) (3)

where α is the frequency of the carrier. The signal can
be represented in the frequency domain as

U(ω) =
1

2
X(ω − α) +

1

2
X(ω + α) (4)

where X(ω) denotes the Fourier transform of x(t). Fig.
4 shows an example of the upconversion process. The
MLBS shown in Fig. 2 is mixed with a 50 Hz carrier.
As the figure shows, the upconverted sequence is di-
vided into two frequency bands, both having half of
the total energy from the original MLBS.

The downconverter of the mixer applies the same
carrier as the upconverter. Assuming there is no test
device at this point the output signal of the upcon-
verter u(t) can be used as an input signal of the down-
converter. The downconverted signal can be denoted
as

y(t) = u(t)cos(αt) = x(t)cos2(αt) (5)

Applying the Fourier transform, (5) can be represented
in the frequency domain as

Y (ω) =
1

2
F (ω) +

1

4
F (ω − 2α) +

1

4
F (ω + 2α) (6)
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Figure 4: MLBS with 50 Hz upconversion.

The equation shows that the translated signal under-
goes a 6 dB loss (a 50 percent reduction) at ω, and
12 dB loss (a 75 percent reduction) at the sideband
frequencies as dictated by the factors 1/2 and 1/4.

The input signal x(t) of the downconverter has the
sum and difference frequencies at ω + α and ω − α,
respectively. Because the same carrier is applied to
the downconverter, its output y(t) has the following
frequency components:

1) ω + α+ α = ω + 2α
2) ω + α− α = ω
3) ω − α− α = ω − 2α

Fig. 5 shows an example of the downconversion pro-
cess. The upconverted MLBS from Fig. 4 is mixed
with the same 50 Hz carrier. Now the downconverted
sequence is divided into three frequency bands, each
having energy content as stated by (6).
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Figure 5: MLBS with 50 Hz downconversion.

The form of the modulation is known as double side-
band modulation because the excitation is transformed

to a frequency range above and below the carrier sig-
nal. To eliminate either the upper or lower sideband,
another form of modulation known as quadrature mod-
ulation can be employed. A quadrature modulator
mixes the excitation with two mixing signals. Both
mixing signals operate at the same frequency, but are
shifted in phase by 90 degrees relative to one another.
The excitation also is modified so as to have two sep-
arate signals: the original one and a 90-degree phase-
shifted version.

For quadrature modulation, the two carriers can be
given by sine and cosine components as c1 = cos(αt)
and c2 = sin(αt). The excitation u(t) is formed by
mixing the original injection with the cosine compo-
nent and subtracting the mix of phase-shifted version
of the original injection and the sine component from
it. Hence, u(t) can be given as

u(t) = [cos(ωt)cos(αt)]− [sin(ωt)sin(αt)]

=

[
1

2
cos(ωt+ αt) +

1

2
cos(ωt− αt)

]
−
[

1

2
cos(ωt− αt)− 1

2
cos(ωt+ αt)

] (7)

Now, (7) reduces to cos(ωt + αt), the upper sideband
only. For the downconverter, the sign of the operator
on the left-hand side in (7) is changed, resulting in
cos(ωt− αt).

3 Experimental Measurements

3.1 System Setup

The presented methods are applied to an inductively
coupled passive resonance sensor based on an RLC res-
onance circuit shown in Fig. 6, where M1, M2 and
M3 denote the mutual inductances. The measurand
can be linked to the inductance or the capacitance of
the resonating circuit, thus altering the circuit’s reso-
nance frequency. Alternatively, the measurand can be
linked to the losses. The inductively coupled passive
resonance sensor has been tested in many applications.
The pressure sensors that utilize alternating capacitor
are one of the most common applications (Chen et al.,
2010). The measurement method can also be used for
detecting chemical (Potyrailo and Surman, 2013) and
biological variables (Mannoor et al., 2012). By using a
voltage-dependent capacitor, this concept can be mod-
ified to measure biopotential voltages (Riistama et al.,
2010) and pH (Horton et al., 2011). The resonance
frequency of the RLC circuit is often prone to other
environmental variables besides the measurand. This
can be partially compensated by having multiple sen-
sors that can measure more than one variable.
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Figure 6: RLC resonance circuit.

The resonance circuit is inductively sensed by mea-
suring a reader coil. Making a frequency sweep over
the expected resonance frequency is one of the most
common ways to make the actual measurement; this
can be done with an impedance analyzer or with an-
other device that measures the reflected parameters of
the reader coil by doing frequency sweeps. The speed
and frequency range of the sweep can limit the possi-
ble applications. The ability to perform fast frequency
sweeps at different frequency ranges is important par-
ticularly if multiple passive resonance sensors are si-
multaneously used as an array or matrix.

The objective of the experiment is to measure
the frequency response from input voltage to output
voltage of a prototype resonance circuit conceptually
shown in Fig. 6. The actual set-up for the measure-
ment is shown in Fig. 7. The MLBS perturbation is
generated by a signal generator, after which the injec-
tion is upconverted by the mixer. The output response
of the target is downconverted, after which the data is
sampled by a data-acquisition unit. The data is then
processed, and the frequency response is computed.

Upconverter
MLBS Device

under test

Downconverter
Response

PC
Signal

generator

MIXER

Data
acquisition

TARGET

Figure 7: Measurement setup.

The implemented mixer consists of a quadrature up-
converter, quadrature downconverter and the associ-
ated local oscillators, filters and control electronics.
These initially allow shifting the MLBS injection to the
frequency range of interest (center frequency 0 − 200
MHz) and then back to baseband so that relatively
cheap MLBS hardware can be used. The upconverter
output has 50 Ω impedance, while the downconverter
has a high-impedance input with roughly 16 pF capac-
itance. Instead of the normal square wave mixers, the
mixers are implemented as analog multipliers in order

to simplify the resulting spectrum.

3.2 Experimental Results

The applied MLBS was produced by a 10-bit-length
shift register, and generated at 5 MHz. The resonance
frequency of the target circuit was known to be ap-
proximately 48 MHz. Hence, the carriers of the mixer
were set to 46 MHz resulting in a good spectral energy
content around the frequency band of interest. In the
case of unknown circuit elements, the frequencies of the
carriers can be swept over a large frequency range for
obtaining a specific frequency range for the actual iden-
tification. Fig. 8 shows a sample of the applied MLBS
injection before upconversion in the time domain (±0.5
V), and its normalized spectral energy.
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Figure 8: Sample of the applied MLBS injection in the
time domain, and the spectral energy content
of the sequence.

The MLBS was injected with four periods through
the mixer and applied as input voltage to the reso-
nance circuit. The sensed output voltage was down-
converted and sampled at 100 kHz. The data was then
segmented according to the period length of the MLBS
and Fourier transformed (the first period was neglected
due to transient), after which (1) was applied. Fig. 9
shows a sample of the computed Bode plot of the res-
onance circuit. The frequency response was also mea-
sured by sine sweeps for comparison (reference). As
the figure shows, the curves obtained by the MLBS
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very accurately follow the reference in a wide range of
frequencies, showing only a few degrees of error below
the resonance frequency (47.52 MHz). The measure-
ment time using the MLBS was less than one second.
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Figure 9: Output impedance of the resonator using
MLBS and sine sweep (reference).

4 Conclusions

This paper has presented a nonparametric frequency-
response-measurement method for high frequencies (30
MHZ and above) based on a combined frequency mixer
and maximum-length binary sequence (MLBS). In this
method, the applied perturbation is upconverted to
higher frequencies, injected into device under test, and
the system response is then downconverted into lower
frequencies. Due to mixing procedures, the measure-
ment can be performed by applying only modest mea-
surement tools operating at a low sampling frequency.
With the exception of the locations of the frequency
harmonics and the level of spectral energy, the proper-
ties of the MLBS are not affected by the mixing pro-
cedures. Due to low peak factor of the MLBS, the
amplitude of the injection can be kept relatively small
compared to other types of excitations, thus guarantee-
ing normal system operation during the identification.
The method can be used in various fields of electronics,
and it is particularly well suited for online applications
such as adaptive control and quality assessment, where
rapid measurements are required.
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