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Abstract

This paper shows how the recently developed formulation of conformal geometric algebra can be used
for analytic inverse kinematics of two six-link industrial manipulators with revolute joints. The paper
demonstrates that the solution of the inverse kinematics in this framework relies on the intersection
of geometric objects like lines, circles, planes and spheres, which provides the developer with valuable
geometric intuition about the problem. It is believed that this will be very useful for new robot geometries
and other mechanisms like cranes and topside drilling equipment. The paper extends previous results on
inverse kinematics using conformal geometric algebra by providing consistent solutions for the joint angles
for the different configurations depending on shoulder left or right, elbow up or down, and wrist flipped or
not. Moreover, it is shown how to relate the solution to the Denavit-Hartenberg parameters of the robot.
The solutions have been successfully implemented and tested extensively over the whole workspace of the
manipulators.
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1 Introduction

Analytical inverse kinematics is a well-developed prob-
lem in robotics. Solutions are available as text-book
material for revolute robots with a spherical wrist, or
with three consecutive parallel axes [Siciliano et al.
(2009); Spong et al. (2006)]. The solutions are given in
terms of trigonometric expressions, which are straight-
forward to find, although they can be somewhat in-
volved. The complexity of the equations is partly re-
lated to the book-keeping of the different solutions re-
lated to shoulder left or right, elbow up or down, and
wrist flipped or not.

The recently developed formulation of conformal ge-
ometric algebra as presented in [Dorst et al. (2009);
Hildenbrand (2013); Perwass (2009)] provides addi-
tional insight into the problem. This formulation has
very efficient tools to define geometric objects in the
form of lines, circles, planes and spheres, and includes

the geometric product, which is used to calculate in-
tersections of such geometric objects and the distance
between different objects. The formulation extends the
3-dimensional Euclidean space with 2 extra dimensions
resulting in a homogeneous space including the point at
infinity. In this formalism, the inverse kinematics has
been previously solved for a robot with 5 revolute joints
in terms of spheres, planes and lines, and the intersec-
tion of these geometric objects [Hildenbrand (2013);
Hildenbrand et al. (2005); Hildenbrand et al. (2006);
Zamora and Bayro-Corrochano (2004)]. These inverse
kinematic solutions have primarily been developed for
graphical rendering, as the focus has been on the link
configurations, whereas the joint angles are only given
in terms of the cosines of the angles, which means that
there is no systematic way of determining the right
quadrant of the joint angles. Still, this work clearly
demonstrates that the conformal geometric algebra is a
very powerful tool for inverse kinematics, which makes
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it interesting to explore this formulation more in de-
tail to investigate how it can be employed to solve and
implement a range of practical kinematic problems in
robotics. To do this we revisit the well-established in-
verse kinematic problem for robots to demonstrate how
conformal geometric algebra can be used in robotics.

In this work we extend the existing solutions for an-
alytic inverse kinematics based on conformal geometric
algebra to obtain a systematic way of calculating the
signs and quadrants of the joint angles. This includes
the calculation of consistent solutions corresponding to
shoulder left and right, elbow up or down and wrist
flipped or not. Moreover, it is shown how the rota-
tional direction of the joint angles are related to the
Denavit-Hartenberg parameters. It is also shown how
to describe links that have both a and d translations
in the Denavit-Hartenberg convention. The proposed
method is implemented for the Agilus R900 Sixx robot,
which is a 6 DOF robot with a spherical wrist, and the
UR5, which is a 6 DOF robot with parallel axes for
joints 2, 3 and 4. Also singularities are discussed, and
it is explained how the singularities appear in the so-
lution based on conformal geometric algebra.

The paper is organized as follows. First a brief pre-
sentation of manipulator kinematics is given. Then
the basics of conformal geometric algebra is presented,
which includes a discussion on how to determine the
sign of rotation in this formulation. Then the imple-
mentation of the analytic inverse kinematics is pre-
sented for the Agilus R900 Sixx and the UR5 robot.

2 Manipulator kinematics

The Denavit-Hartenberg convention is commonly used
for describing robot kinematics. The convention de-
scribes the link transformation in terms the homoge-
neous link transformation matrix

T(i,i−1) = Rotz,θiTransz,diTransx,aiRotx,αi
(1)

This can be used to calculate the forward kinematics

T06 =

(
ne se ae pe
0 0 0 1

)
(2)

of a robot with six links as

T06 = T01T12T23T34T45T56 (3)

The Denavit-Hartenberg parameters for the Aguilus
robot are presented in Table 1 and Figure 2b, while
the Denavit-Hartenberg parameters for the UR5 robot
are shown Table 2 and Figure 6b.

Link θi[rad] di[mm] ai[mm] αi[rad]
1 θ1 -400 25 π

2
2 θ2 0 455 0
3 θ3 − π

2 0 35 π
2

4 θ4 + π
2 -420 0 −π2

5 θ5 − π
2 0 0 π

2
6 θ6 -80 0 π

Table 1: DH-table for the Agilus R900 sixx robot

Link θi[rad] di[mm] ai[mm] αi[rad]
1 θ1 89.2 0 π

2
2 θ2 0 -425 0
3 θ3 − π

2 0 -392.43 0
4 θ4 109.15 0 π

2
5 θ5 − π

2 94.65 0 −π2
6 θ6 82.3 0 0

Table 2: DH-table for the UR5 robot

3 Conformal Geometric Algebra

In this paper conformal geometric algebra is used for
the inverse kinematics of robots. The main difference
to the usual geometric formulation used in robotics is
the introduction of the geometric product, and the ex-
tension of the 3 dimensional Euclidean space with 2 ad-
ditional dimensions. This provides us with some very
efficient tools, in particular, the formulation makes it
very simple to define geometric objects in the form of
lines, planes, circles and spheres. In addition, it is easy
to calculate the occurrence of intersections between the
geometric objects, and the distance between objects.

The Euclidean space R
3 is described with the or-

thogonal unit vectors e1, e2, e3. The vectors a and b in
Euclidean space are given by a = a1e1 + a2e2 + a3e3
and b = b1e1 + b2e2 + b3e3. The geometric product is
defined as

ab = a · b + a ∧ b (4)

where a · b = a1b1 + a2b2 + a3b3 is the inner product,
which is a scalar, and

a ∧ b =(a1b2 − a2b1)e1e2 + (a2b3 − a3b2)e2e3 (5)

+ (a3b1 − a1b3)e3e1

is the outer product, which is a bivector, as it is the
sum of terms including the bivectors e2e3, e3e1 and
e1e2. It is noted that a · b = b ·a, and a∧ b = −b∧a,
and that

eiej = ei · ej + ei ∧ ej =

{
1, i = j

ei ∧ ej , i 6= j

where eiej = ei∧ej = −ej∧ei = −ejei whenever i 6= j.
It follows that a ∧ a = 0.
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The 5-dimensional conformal space is obtained by
extending the 3-dimensional Euclidean space with 2
orthogonal dimensions with basis vectors e+ and e− so
that e+ · e+ = 1 and e− · e− = −1. A change of basis is
done with e∞ = e−+e+ and e0 = (1/2)(e−−e+), which
implies that e∞ · e∞ = e0 · e0 = 0 and e∞ · e0 = −1.

3.1 Multivectors

A multivector a in Euclidean space is a linear combi-
nation of the basis elements

{1, e1, e2, e3, e2e3, e3e1, e1e2, e1e2e3}

A multivector A in conformal space is a linear combi-
nation of the basis elements

{1, e0, e1, e2, e3, e∞, e0e1, . . . , e0e1e2e3e∞}

The geometric product of two multivectors A and B
is given by

AB = A ·B + A ∧B

The outer product has the property that A ∧ A = 0
for any multivector A.

3.2 Duals and the pseudoscalar

The pseudoscalar in the Euclidean space R
3 is IE =

e1e2e3. The Euclidean dual of a multivector a is

a+ = aI−1E , I−1E = e3e2e1 (6)

The square of the Euclidean pseudoscalar is I2
E = −1,

and it follows that the dual of the Euclidean dual is
(a+)+ = −a.

The conformal pseudoscalar is Ic = e0IEe∞. The
conformal dual of a multivector A in conformal space
is

A∗ = AI−1c , I−1c = e0I
−1
E e∞ (7)

As in the Euclidean case, the square of the pseudoscalar
is I2

c = −1, and it follows that the dual of the dual is
(A∗)∗ = −A.

3.3 Conformal representation of Euclidean
objects

In this paper the representation of geometric objects
and their duals is based on the formulation in [Dorst
et al. (2009)]. It is noted that an alternative formu-
lation is presented in [Hildenbrand (2013)], where the
direct form of [Dorst et al. (2009)] is presented as the
dual form.

The Euclidean point p is represented in conformal
space by the multivector

P = C(p) = p +
1

2
p2e∞ + e0

Starting from the representation of a point in confor-
mal space the direct representation in conformal space
of several Euclidean geometric objects can be gener-
ated with the outer product.

Let PA, PB and PC be the conformal representation
of the points on a circle in Euclidean space. The direct
representation of the circle in conformal space is then

C = PA ∧ PB ∧ PC

A line in Euclidean space has the direct conformal rep-
resentation

L = PA ∧ PB ∧ e∞

where PA and PB are the conformal representation of
two points on the line. A sphere in Euclidean space
has the direct conformal representation

S = PA ∧ PB ∧ PC ∧ PD

where PA, PB , PC and PD are conformal representa-
tions of points on the sphere that are not all in the
same plane. A plane in Euclidean space has the direct
conformal representation

Π = PA ∧ PB ∧ PC ∧ e∞

where PA, PB and PC are conformal representations of
points on the plane that are not collinear. In addition,
the points PA and PB constitute a point pair

Q = PA ∧ PB

A sphere S has the dual form

S∗ = P − 1

2
ρ2e∞ (8)

where P center point and ρ is the radius of the sphere
in Euclidean space. A plane Π has the dual form

Π∗ = n + de∞ (9)

where n is the normal vector of the plane in Euclidean
space and d is the distance from the origin.

3.4 Intersections

The intersection or meet M of two geometric objects
A and B represented in the direct form in conformal
space is given in terms of the dual M∗ = A∗ ∧B∗, or,
equivalently, in the direct form as M = A∗ ·B. It is
noted that the intersection of two planes Π1 and Π2 is
the dual line L∗ = Π∗1∧Π∗2, the intersection of a plane
Π and a sphere S is the dual circle C∗ = Π∗∧S∗, and
the intersection of a plane Π and a circle C is a dual
point pair Q∗ = Π∗ ∧C∗.
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3.5 Distances

The distance between geometric objects is related to
the inner product in some cases. The Euclidean dis-
tance d from a point P to a plane Π is given by the
inner product in conformal space as d = −P ·Π∗ where
d is positive if the point is in the direction of the normal
vector. The Euclidean distance d between two points
represented by PA and PB is given by d2 = −2PA ·PB .

3.6 Horizon calculation

P2
P1

Qa

Qa

K

d

d

S

Figure 1: The point pair Qa are two points which are
d away from P2 and 90◦ between P1 and P2

Consider two points with conformal representations
P1 and P2. Suppose that the two points are connected
with a link with a 90◦ offset of length d. Then the offset
can be located with the horizon technique presented in
[Hildenbrand (2013)]. First the dual sphere S∗ = P2−
1
2d

2e∞ with center point P2 and radius d is defined.
Next, define the sphere K∗ = P1 − (P1 · S∗)e∞ with
center in P1. Then the intersection of the spheres S
and K will be the horizon defined by the circle

C∗ = K∗ ∧ S∗ (10)

This circle is the set of all points with a 90◦ offset of
length d. The intersection of this circle with a plane
Π that contains both P1 and P2 will give a point pair
Q = C∗ ·Π where the two points of the point pair are
on the tangent line from the point P1 with an offset d
from P2.

An example of this can be seen in Figure 1.

3.7 Calculation of angles

In this section it is shown how to calculate the angle
of rotation between two vectors a and b, and how to

define the sign of the angle according to a defined di-
rection of rotation. The corresponding unit vectors are
given by â = a/‖a‖ and b̂ = b/‖b‖. The geometric
product of â and b̂ is

âb̂ = â · b̂ + â ∧ b̂ (11)

The inner product of the two Euclidean unit vectors â
and b̂ is the usual scalar product, which means that

â · b̂ = cos θ (12)

where θ is the angle between the vectors. The outer
product is

â ∧ b̂ = sin θN̂ (13)

where

N̂ = ± â ∧ b̂∥∥∥â ∧ b̂
∥∥∥ (14)

is a unit bivector that defines the plane of rotation from
â to b̂. The plus applies if the rotation from â to b̂ is
counter-clockwise in the plane defined by N̂ , while the
minus applies if the rotation in clockwise.

Equations 13 and 14 give the following expressions
for the sine and cosine of the angle:

cos θ =
a · b
‖a‖ ‖b‖

sin θ =
a ∧ b

‖a‖ ‖b‖
N̂−1

(15)

where

N̂−1 = ± b̂ ∧ â∥∥∥b̂ ∧ â
∥∥∥ (16)

is the inverse of N̂ , which is equal to the reverse bivec-
tor.

It follows that the angle θ can be computed from

θ = Atan2
[
(a ∧ b) N̂−1,a · b

]
(17)

This approach ensures that the angle is calculated with
the right sign.

In the inverse kinematics problem the two vectors a
and b will typically be directional vectors of a line, or
the normal vector of a plane. The directional vector of
a line L is computed from

(L · e0) · e∞ (18)

while the normal vector of a plane Π is computed from

− (Π∗ ∧ e∞) · e0 (19)

The rotation plane perpendicular to a line L is found
from

N̂ = − (L∗ ∧ e∞) · e0
‖(L∗ ∧ e∞) · e0‖

(20)
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while the rotation plane parallel to a plane Π can be
calculated from

N̂ = − (Π · e0) · e∞
‖(Π · e0) · e∞‖

(21)

Note that the sign of the rotation plane N̂ for a robot
joint must be selected so that the sign of the rotation
is correct. This will be the case if the rotation axis z
of the Denavit-Hartenberg convention is the Euclidean
dual of the rotation plane, that is,

N̂∗ = z (22)

4 Inverse Kinematics of the Agilus
sixx R900 robot

The input parameters to the inverse kinematics are the
position vector pe, the approach vector ae, the slide
vector se and the normal vector ne of the end-effector.
Then the conformal representations of pe and the wrist
position pe + d6ae are given by

Pe = C(pe) (23)

Pw = C(pe + d6ae) (24)

where d6 is the distance between the end-effector and
the wrist, which for the Agilus is 80 mm, as shown in
Table 1.

The vertical plane Πc, which is the cross section of
the robot through the wrist point, is then defined by

Πc = e0 ∧ e3 ∧ Pw ∧ e∞ (25)

We define three configurations: Front/Back, which
defines if it is the front or back of the robot that faces
the end-effector; Elbow up/Elbow down, which defines
if the elbow joint is up or down; and Flip/No Flip,
which defines if the wrist joint is flipped or not.

These configurations are selected with the following
parameters:

kfb =

{
1 if front

−1 if back
(26)

kud =

{
1 if elbow up

−1 if elbow down
(27)

kfn =

{
1 if flip

−1 if no flip
(28)

4.1 Finding P1

The position of joint 1 is represented by P1. The
Denavit-Hartenberg parameters for link 1 has non-zero

a and d parameters, which means that there is an off-
set from the rotational axis of joint 1, which is seen
in Figure 2b. This point is on the point pair Q1 that
is found by intersecting a sphere with two planes as
follows:

S∗0 = e0 −
1

2
ρ2e∞, ρ2 = d21 + a21

Π∗1x = e3 + d1e∞

Q1 = (S∗0 ∧Π∗1x) ·Πc

(29)

This point pair consists of the two possible solutions
for P1. One solution corresponds to robot facing to-
wards the end-effector, while the other corresponds to
the robot facing away from the end-effector. The solu-
tion for P1 is selected according to

P1± =
Q1 ±

√
Q2

1

−e∞ ·Q1
(30)

P1 =

{
P1+ if kfb(P1+ · Pe) > kfb(P1− · Pe)
P1− otherwise

(31)

Figure 6 shows the geometric objects in Equation 29
and the selected P1.

4.2 Finding P2

P2 will be on the circle C2, which is the intersection of
the two spheres

S∗1 = P1 −
1

2
a22e∞

S∗w = Pw −
1

2
(d24 + a23)e∞

(32)

where S1 has center point P1, and Sw is centered in
Pw. Then the intersection of C2 with the vertical plane
Πc will give a point pair Q2, according to

C∗2 = S∗1 ∧ S∗w

Q2 = C∗2 ·Πc

(33)

This is shown in Figure 4. The points in Q2 are the two
possible solutions for P2, and the solution is selected
depending on the parameter elbow up or elbow down,
and is given by

P2 =
Q2 − kud

√
Q2

2

−e∞ ·Q2
(34)

Both configurations are shown in Figure 4a and Fig-
ure 4b.
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,
(a) The Agilus KR6 R900 sixx robot.

Image taken from www.kuka-
robotics.com

θ1

θ2

θ3

θ4

θ5

θ6

d1

a1 a2

d6

a3

d4

P1x

Pwx

P1

P2

Pe

Pw

(b) The joint frames of the Agilus robot. The joint
position is q = [0,−π

2
, π
2
, 0, 0, 0]T.

Figure 2: Overview of the Agilus KR6 R900 sixx robot.

(a) A overview image of the robot and the geometric objects
used to find P1

(b) A closer view of finding P1

Figure 3: The red sphere is S0, the blue plane is Π1x, the green circle is generated from S0 ∧Πc, and the red
point pair is Q1, where one is picked to be P1.
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(a) The robot and the geometric objects used to find P2. The
robot is configured with elbow up

(b) The robot and the geometric objects used to find P2.
The robot is configured with elbow down

Figure 4: The red spheres are S1 and Sw, the yellow plane is Π1x, the green circle is generated from C2, and
the blue point pair is Q2, where one is picked to be P2.

Figure 5: The robot and the geometric objects used to
find Pwx. The red spheres are S2 and Sw,
the yellow plane is Π1x, the green circle is
generated from Cwx, and the blue point pair
is Qwx, where one is picked to be Pwx.

4.3 Calculating the remaining kinematics

The Agilus has an offset a3 from the joint position P2

to the offset point Pwx, as shown in Table 1. The
point Pwx is found using the horizon technique from
Section 3.6, which gives

S∗2 = P2 −
1

2
a23e∞

K∗w = Pw − (P2 · S∗2)e∞

C∗wx = K∗w ∧ S∗w

Qwx = C∗wx ·Πc

(35)

Here the solutions for Pwx are the points of the point
pair Qwx, and the solution is selected according to the
arm geometry from the calculations

Π2wc = P2 ∧ Pw ∧Π∗c ∧ e∞

Pwx =

{
Pwx+ if kfbPwx+ ·Π∗2wc > 0

Pwx− otherwise

(36)

where

Pwx± =
Qwx ±

√
Q2
wx

−e∞ ·Qwx
(37)

Equation 35 and Pwx are shown in in Figure 5.

4.4 Finding the joint angles

The link configurations have now been determined
from the end-effector configuration, and as remarked
by [Dorst et al. (2009)], this is sufficient for graphical
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rendering. The next step is to determine the joint an-
gles. In previous works this has typically been done by
calculating the cosine of the joint angle. This will not
give consistent signs for the joint angles correspond-
ing to the different solution for the arm. This problem
is solved here, and it is shown how to determine the
quadrant of the angle, and also to keep track of the
different solutions.

To do this it is necessary to define the rotation plane
of each joint, and the vectors defining the rotation of
the joint. The point P1x = C(d1e3) and the following
lines are defined:

L1x1 = P1x ∧ P1 ∧ e∞
L12 = P1 ∧ P2 ∧ e∞

Lwxw = Pwx ∧ Pw ∧ e∞
Lwe = Pw ∧ Pe ∧ e∞

(38)

The rotation plane of θ1 is N̂θ1 = e1∧e2, which is the
horizontal base plane, while the rotation plane for θ2
and θ3 is found from the Πc using Equation 21. Next,
the rotation plane for θ4 it is found from Lwxw using
Equation 20, while for θ5 the rotation plane is parallel
to the plane Lwxw ∧ Pe, and its rotation depends on
if it is flipped, i.e. kfn. Finally, −a+

e is the rotation
plane for θ6. The joint angles can then be found from
Equation 17 using the parameters given in Table 3.

4.5 Singularities for the Agilus

There are two singularities in the given model, which
correspond to the physical singularities of the robot.

In the wrist singularity, Pe will be on the line Lwxw.
Then the the rotation plane N̂−1θ5 becomes undefined
since Lwxw ∧ Pe = 0.

In the shoulder singularity the point Pw will be on
the vertical line defined by e3, and the plane Πc be-
comes undefined since e0 ∧ e3 ∧ Pw ∧ e∞ = 0.

5 Inverse Kinematics for the UR5

The input to the inverse kinematics of the UR5 robot
is pe, ne, se and ae as for the Agilus robot. The con-
formal representation of the end effector position and
the position of joint 5 is found from

Pe = C(pe)

P5 = C(pe − d6ae)
(39)

The configuration parameters are defined as

kud =

{
1 if elbow up

−1 if elbow down
(40)

klr =

{
1 if shoulder right

−1 if shoulder left
(41)

kfn =

{
1 if wrist is not flipped

−1 if wrist is flipped
(42)

First the vertical plane Πc through joints 1, 2, 3 and
4 is found. This is done by finding the point Pc with
an offset d4 from P5. The calculation is done with the
horizon technique to find the circle C5k according to

S∗c = P5 −
1

2
d24e∞

K∗0 = e0 − (S∗c · e0)e∞

C∗5k = S∗c ∧K∗0

(43)

Then the point pair Qc with the two solutions for Pc
is found by intersection C5k with the horizontal plane
through P5:

Qc = C∗5k · (P5 ∧ e1 ∧ e2 ∧ e∞) (44)

The solution for Pc is selected depending on the pa-
rameter for shoulder right or shoulder left using

Pc =
Qc + klr

√
Q2
c

−e∞ ·Qc
(45)

When the solution for Pc has been selected the vertical
plane Πc is found from

Πc = e0 ∧ e3 ∧ Pc ∧ e∞ (46)

Figure 7 shows the geometric objects in Equation 43
and the point pair Qc.

5.1 Finding P3 and P4

Figure 8: The green planes is Πc⊥ and the red plane is
Πc‖ and the blue line is L45
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θi aθi bθi Nθi offset
1 kfbΠ

∗
c −e2 e1 ∧ e2 0

2 (L1x1 · e0) · e∞ (L12 · e0) · e∞ kfb(Πc · e0) · e∞ 0
3 (L12 · e0) · e∞ (Lwxw · e0) · e∞ kfb(Πc · e0) · e∞ −π2
4 −Π∗c −kfbkfn

(
(Lwxw ∧ Pe)

∗ ∧ e0
)
· e∞ (L∗wxw ∧ e0) · e∞ 0

5 (Lwe · e0) · e∞ (Lwxw · e0) · e∞ kfn ((Lwxw ∧ Pe) · e0) · e∞ 0
6

(
(Lwxw ∧ Pe)

∗ ∧ e0
)
· e∞ −se −a+

e 0

Table 3: Joint angle parameters for the Agilus robot. It can be verified that the dual of N̂θi is the rotational axis
zi−1 of the Denavit-Hartenberg convention. Note that the table shows the non-normalized bivectors
Nθi .

,
(a) The UR5 robot. Image taken from

www.universal-robots.com

θ1

θ2

θ3

θ4θ5

θ6
d1

a1

−a2

d6

−a3

d4

d5

Pe

P5

P4
P3

P2

P1

(b) The joint frames of the UR5 robot. The joint
position is q = [0,−π

2
,−π

2
,−π

2
, π
2
, 0]T

Figure 6: Overview of the UR5 robot.
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(a) Overview of the UR5 robot, Qc and Πc (b) Closer view of the UR5 robot and Qc

Figure 7: The red spheres are Sc and K0, the green circle is C5k, Qc is the blue point pair, and Πc is the yellow
plane.

The plane Πc‖ is defined as the plane that is parallel
to Πc and that contains the points P4 and P5. This
plane is found in the dual form with a distance P5 ·Πc

from Πc according to

Π∗c‖ = Π∗c + (P5 ·Π∗c)e∞ (47)

The next step is to calculate the line through P4 and
P5 from

Π56⊥ = (P5 ∧ P6)∗ ∧ e∞

n̂56⊥ = − (Π56⊥ · e0) · e∞
‖(Π56⊥ · e0) · e∞‖

Πc⊥ = P5 ∧ n̂56⊥ ∧ e∞
L∗45 = Π∗c‖ ∧Π∗c⊥

(48)

where Πc⊥ is a plane containing P4 and P5 and which
normal is perpendicular to the normal of Πc. It is
noted that n̂56⊥ = a+

e = se ∧ ne.
The solutions for P4 are then given by the point pair

Q4, which is the intersection of the line L45 and the
sphere S5 with center point in P5 and radius d5. This
is calculated from

S∗5 = P5 −
1

2
d25e∞

Q4 = L45 · S∗5

P4 =
Q4 + kfn

√
Q2

4

−e∞ ·Q4

(49)

Next, the solutions for P3 are given by the point pair
Q3, which is the intersection of the line L34 and the

sphere S4 with center point in P4 and radius d4. This
is calculated from

S∗4 = P4 −
1

2
d24e∞

L34 = P5 ∧Π∗c ∧ e∞
Q3 = S∗4 ·L34

P3 =
Q3 − klr

√
Q2

3

−e∞ ·Q3

(50)

5.2 Finding P1 and P2

P1 is computed from

P1 = C(d1e3) (51)

The solutions for the point P2 are then given by the
point pair Q2, which is found as the intersection of
the two spheres S1 and S3 and the vertical plane Πc,
which is calculated from

S∗1 = P1 −
1

2
a22e∞

S∗3 = P3 −
1

2
a23e∞

C∗2 = S∗1 ∧ S∗3

Q2 = C∗2 ·Πc

(52)

The solution is selected depending on the the parame-
ter for elbow up or down according to

P2 =
Q2 − kud

√
Q2

2

−e∞ ·Q2
(53)
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(a) The blue line is L45, the red sphere is S5 and the green
point pair is Q4

(b) The blue line is L34, the red sphere is S4 and the green
point pair is Q3

Figure 9: Figures showing the process of finding P3 and P4

θi aθi bθi Nθi offset
1 e2 −klrΠ∗c e1 ∧ e2 0
2 (L01 · e0) · e∞ (L12 · e0) · e∞ −klr(Πc · e0) · e∞ −π2
3 (L12 · e0) · e∞ (L23 · e0) · e∞ −klr(Πc · e0) · e∞ 0
4 (L23 · e0) · e∞ (L45 · e0) · e∞ −klr(Πc · e0) · e∞ −π2
5 klrΠ

∗
c −ae (−L∗45 ∧ e0) · e∞ 0

6 (L45 · e0) · e∞ −se −a+
e 0

Table 4: Joint angle parameters for the UR5 robot. It can be verified that the dual of N̂θi is the rotational axis
zi−1 of the Denavit-Hartenberg convention. Note that the table shows the non-normalized bivectors
Nθi .

(a) The UR5 robot with the elbow up configuration (b) The UR5 robot with the elbow down configuration

Figure 10: The two red spheres are S1 and S3, the blue circle is C2 and the green point pair is Q2
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5.3 Finding the joint angles

Expression for calculating the configuration have now
been established. The next step is to find expres-
sions for the calculation of the joint angles using Equa-
tion 17.

The following lines are defined

L01 = e0 ∧ e3 ∧ e∞
L12 = P1 ∧ P2 ∧ e∞
L23 = P2 ∧ P3 ∧ e∞

(54)

The rotation planes for θ1 and θ6 of the UR5 are the
same as for the Agilus: e1 ∧ e2 and −a+

e respectively.
The angles θ2, θ3 and θ4 have the same rotation

plane, which is parallel to Πc, while the angle θ5 ro-
tates around the line L45. Then Equation 21 and Equa-
tion 20 can be used, and the rotation planes are found
as shown in Table 4.

Table 4 shows the parameters used in Equation 17
to calculate the joint angle for the UR5.

5.3.1 Singularities for the UR5

There are two singularity in this mathematical model,
which are the same as the singularities of the robot.

The shoulder singularity occurs when Pc =
αe3, ∀α, which means that Pc is on the rotational
axis of joint 1. Then Πc in Equation 46 becomes un-
defined as e0 ∧ e3 ∧ Pc ∧ e∞ = 0.

The wrist singularity occurs when Π∗c‖ ∧Π∗c⊥ = 0,
which will be the case when θ5 = ±π2 . Then the line
L45 in Equation 48 becomes undefined.

6 Results

Analytic inverse kinematic solutions for the KUKA
Agilus robot and the UR5 robot were implemented
in the CluCalc software for calculation and display
of geometric algebra. The files can be downloaded
from https://github.com/ipk-ntnu/inverse kinematics
using cga. The solutions were extensively tested in

simulations by interactively moving the robots over the
whole workspace for different solutions of the type el-
bow up and down, shoulder left and right, and wrist
flipped or not. The solutions were in particular tested
close to the manipulator singularities.

The accuracy of the inverse kinematic solution was
validated by calculating the homogeneous transforma-
tion matrix according to Equation 3 and comparing
the result with the input parameters ne, se, ae and
pe. The results were correct with accuracy close to
machine precision over the whole workspace.

The programming of the solutions is focused on
the intersection of geometric objects like lines, circles,

planes and spheres that are readily displayed during
programming, and this gave valuable intuitive support
in the development of the calculations. Moreover, ex-
tensive testing over the workspace was facilitated by
the 3D graphics.

7 Conclusion

Conformal geometric algebra has been used to develop
analytical inverse kinematic solutions for the KUKA
Agilus robot and the UR5 robot. The inverse kine-
matic solutions gave consistent signs for the angles for
the different solutions of the robots. Compared to ear-
lier work in conformal geometric algebra the proposed
method handles link offsets and gives correct joint an-
gles over the whole workspace for the different solutions
related to shoulder left and right, elbow up and down
and wrist flipped or not. The software solution can be
ported to standard software like C or C++ for imple-
mentation in robot controllers. The method is fairly
intuitive and easy to program once the machinery of
conformal geometric algebra is mastered, and it pro-
vides a powerful tool for developing solutions for new
robot geometries and other mechanisms like cranes and
automatic topside drilling equipment.
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