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Abstract

Directional control valves play a large role in most hydraulic systems. When modeling the hydraulic
systems, it is important that both the steady state and dynamic characteristics of the valves are modeled
correctly to reproduce the dynamic characteristics of the entire system. In this paper, a proportional valve
(Brevini HPV 41) is investigated to identify its dynamic and steady state characteristics. The steady state
characteristics are identified by experimental flow curves. The dynamics are determined through frequency
response analysis and identified using several transfer functions. The paper also presents a simulation
model of the valve describing both steady state and dynamic characteristics. The simulation results are
verified through several experiments.
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1 Introduction

Directional control valves (DCVs) are indispensable
components in nearly all hydraulic systems. They are
used to control the direction and rate of flow between
power sources and actuators. Their characteristics,
both steady-state and dynamic, directly influence the
behavior and performance of the system they are used
to control. DCVs are used for a wide range of appli-
cations and therefore exist in many different variations
which may be divided into different categories. One
category is servo valves and high-performance propor-
tional valves; either electrically actuated (proportional
valves) or electro-hydraulically actuated with one or
more pilot stages (both servo and proportional valves).
They all include some kind of closed loop spool po-
sition control and are used in applications where fast
response, high precision and repeatability are required.
Another category of DCVs is the so-called mobile pro-
portional valves (MPVs) used for mobile applications
such as, tractors, wheel loaders and truck mounted
cranes, i.e., open loop motion control systems where

an operator closes the control loop. They are nor-
mally pressure compensated, making them load inde-
pendent, and may be mechanically, hydraulically or
electro-hydraulically actuated. In the latter case they
usually include onboard electronics with closed loop
spool position control and dither function for elimi-
nation of static friction (stiction) between spool and
valve housing. MPVs with electro-hydraulic actua-
tion (EHA) are increasingly being used in closed loop
motion control systems and often replace servo valves
in systems with relatively low performance require-
ments. The main motivation for doing so is that MPVs
are much cheaper than servo valves. In addition, the
MPVs are more flexible and easier to integrate in a sys-
tem due to their modular design. However, in terms
of response and precision, MPVs cannot be compared
to servo valves. Therefore, to qualify the use of MPVs,
it is often necessary to carry out dynamic simulations
to analyze and verify the performance of the system
where the valves are being used. This requires accu-
rate valve models which usually need to be experimen-
tally verified, because the required model data often is
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insufficient or not existing.

In literature there are three ways of modeling a pro-
portional valve; using a black box model, gray box
model and a white box model. The black box model
consists of empirically determined functions that are
found by matching test data with some function. This
could be used to make a polynomial of the flow charac-
teristics or a transfer function to characterize the dy-
namics of the valve. Black box models do not con-
tain any reference to the physics of the plant. White
box models are made according to physical laws of the
plant and should therefore be an accurate model of
the system. The gray box model represents a mix of
both the black and the white box models. Valve dy-
namics are often modeled as second order systems as
it closely resembles the dynamics up to its eigenfre-
quency Tørdal and Klausen (2013); Bak and Hansen
(2012). Eryilmaz and Wilson (2006) developed a non-
linear mathematical model for a generic proportional
control valve which should be usable for a variety of dif-
ferent control valves if the geometry is known. Valdés
et al. (2008) made a CFD model of a ABS NO valve
in order to extract valve flow during different pressures
and openings. Further they created an analytic model
of the geometry of the valve and discovered that they
give comparable results during turbulent flow. Niksefat
and Sepehri (1999) made a hydraulic force controller by
using nonlinear Quantitative Feedback Theory (QFT).
For this purpose they had to make a complete nonlin-
ear mathematical model of the actuator system con-
sisting of a valve and a cylinder, and use the Golubev
method to derive a rational transfer function of the
system. Xu et al. (2014) modeled a large flow capac-
ity three-stage valve to be used in large scale hydraulic
systems by using white box analytic equations. Ami-
rante et al. (2013) made a CFD model of a valve and
optimized the design to reduce the flow forces acting
on the spool during a prescribed flow rate. Posa et al.
(2013) studied the flow through a 4/3-directional con-
trol valve using a CFD analysis during different open-
ings. They concluded that the axial forces (pressure
forces) on the spool was roughly proportional to the
pressure drop and the valve opening. Dasgupta and
Murrenhoff (2011) modeled the dynamics of a servo
valve using a bondgraph simulation technique based on
a white-box model of the inner geometry of the servo
valve.

In this paper an MPV-type of DCV is analyzed and
it is shown that the dynamics can be more accurately
described with a third order system. An approach for
testing the valve and processing measured data in or-
der to visualize the valve dynamics and carry out sys-
tem identification is described. The approach is quite
elaborate but by comparing it with other approaches

to identify the valve dynamics it is shown that it is
the only one yielding accurate results. Finally a valve
model is proposed which is validated and verified with
experimental results.

2 Considered Valve

MPVs are widely used in both onshore (off-highway)
and offshore applications mainly for systems with vari-
able supply pressure (load sensing systems) but also
for systems with constant supply pressure. They are
available from manufacturers such as Danfoss, Brevini,
HAWE, Parker, Bosch Rexroth, HUSCO and others.
Common for nearly all MPVs is the modular design
which makes it possible to configure customized valve
groups for different applications with relatively lit-
tle effort. The considered valve is a Brevini HPV41,
schematically illustrated in Figure 1, consisting of the
following modules:

1. Supply module for constant supply pressure, con-
taining a pressure reducing valve and a pressure
relief valve.

2. Service module for actuator control, containing a
load sensing (LS) circuit, a pressure compensator
and a main spool with centering spring.

3. EHA module, MHPED, and handle for manual
actuation.

4. End module.
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Figure 1: Schematic overview of the considered valve.

The pressure reducing valve in the supply module
reduces the supply pressure to a level needed for the
pilot stage, which is integrated in the EHA module.
The pressure relief valve protects the pilot stage from
pressure peaks.

Via the main spool the load pressure, pA or pB ,
is transmitted through the LS circuit to the pressure
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compensator; a pressure reducing valve with a variable
pressure setting which is offset by a constant value cor-
responding to the pre-compression of the spring. Due
to this offset the pressure, pC , between the compen-
sator and the main spool is always reduced to give an
approximately constant pressure drop across the main
spool metering edge. Thereby the controlled flow is
independent of the load pressure and proportional to
the position of the main spool. For this reason pres-
sure compensated MPVs are also referred to as load
independent.

The main components of the EHA module, see Fig-
ure 2, are two proportional pressure reducing valves
(PRVs) controlled by an integrated electronic circuit
which includes a microprocessor and an LVDT for mea-
suring of the main spool position. Based on the devia-
tion between the actual spool position and the control
signal, a spool position reference, the two PRVs are
controlled to create an axial pressure difference on the
main spool, causing it to move. The details of the con-
trol scheme for the valve are, however, out of the scope
of this paper. Further information about the HPV41
and the EHA module (the MHPED) is given by Brevini
Fluid Power (2012).

Proportional PRVs

LVDT

Figure 2: EHA main components.

3 Frequency Response Analysis

The frequency response tests of the hydraulic valve
have been carried out in the Mechatronics laboratory
at the University of Agder. The testing procedure was
carried out in accordance with the British Standard
for hydraulic valve testing BS (2009). The MPV was
instrumented and mounted in a test bench as shown
in Figure 3. The pump connected to the P-port of
the valve delivers a constant pressure of 100 bar and a

maximum flow of 100 l/min.

Flow Sensor MHPED Control 
Module

24 V 
Supply

2.5‐7.5 V
Control Signal

Figure 3: Schematic illustration of the hydraulic test
setup.

A Parker SCQ-150 flow sensor Parker (2010) was
chosen to measure the flow through the valve. The
control signal is generated by a National Instruments
(NI) USB-6211 Digital Acquisition Board (DAQ) NI
(2009). The output signal from the Parker flow sensor
is measured using the NI-DAQ board. A computer
communicates with the DAQ board.

The testing procedure has been programmed us-
ing a LabVIEW program which easily communicates
with the DAQ board. The LabVIEW program gener-
ates a voltage signal which is controlling the modules
mounted on the valve. The valve was tested with three
different amplitudes, the amplitudes are 5%,10% and
20%. The test offsets are ±50%.

The valve has to be tested with an offset since the
valve is highly non-linear around the middle spool po-
sition. This non-linearity is caused by the deadband
characteristics in the spool opening geometry. The fre-
quency response analyses Nise (2011) is carried out
using traditional methods. The input signal is com-
pared with the output response of the system. The
phase lag and the magnitude difference between the
input and the output signal have been measured for
each single test frequency. The test frequencies ranged
in [0.1 · · · 4.9]Hz, and the step between each test was
chosen to be 0.2Hz. A simplified illustration of the
frequency response test is shown by Figure 4.

Figure 4 shows that the input and output are equal
at low frequencies. When the frequency is increased,
both a phase lag and a magnitude difference is intro-
duced. The input and output amplitude of each test
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Figure 4: Illustration of the frequency response test.
Tørdal and Klausen (2013)

frequency can be found and the magnitude M is cal-
culated using Equation 1.

M = 20 · log

(
A

A@0.1Hz

)
(1)

A is the measured amplitude at the given test fre-
quency. The initial amplitude A@0.1Hz is the sine am-
plitude of the first frequency. This will normalize the
Bode plot to begin at 0 dB.

The phase lag between the input and output signals
for each test frequency is needed in order to have a bode
plot representation of the linearised valve dynamics.
The phase lag φ is calculated using Equation 2.

φ = −360◦

Tp
· δt (2)

Tp is the period of the sine waves and δt is the time lag
between the input and measured response. By test-
ing the valve on several frequencies, the magnitude
and phase can be calculated for each respective test
frequency. The test results are stored in two vectors
which can be illustrated by Equation 3.

~M =


M@0.1Hz

M@0.3Hz

· · ·
· · ·

M@4.9Hz

 and ~φ =


φ@0.1Hz

φ@0.3Hz

· · ·
· · ·

φ@4.9Hz

 (3)

Where ~M is the magnitude vector in decibel [dB] and
~φ is the phase vector in degrees. The result of the fre-
quency response test can be represented using a bode
plot which illustrates the change in magnitude and
phase as the frequency increases.

4 Data Processing

The measured data from the flow sensor contains
noise. Such noise could be removed using a zero-phase
forward-backward lowpass filter, however the ampli-
tude and phase needs to be extracted afterwards. In-
stead of filtering, fitting a sine wave to the measure-
ments using an optimization algorithm will give sat-
isfying results. Fitting a sine wave is also less time
demanding since the fitted sine signal will describe the
amplitude, offset and phase lag immediately. The ap-
proximated measured flow Q̂ which is a close fit to the
actual measured flow is given by Equation 4.

Q̂ = B +A · sin(2π · f · t+ φ) (4)

B is the offset, A is the amplitude, f is the test fre-
quency and φ is the phase lag. These four parameters
are identified using an optimization algorithm. The
optimization algorithm tunes the four unknown pa-
rameters in order to minimize the error between the
measured flow Q and the approximated flow Q̂. The
absolute error vector between the approximation and
the measured data is given in Equation 5.

~E = abs



Q(0)− Q̂(0)

· · ·
· · ·

Q(t)− Q̂(t)


 (5)

This error should be minimized in order to have a close
fit between the measurements and the approximation.
The objective function which is used to minimize the
error is described by Equation 6.

O = ~ET · ~E (6)

The optimization is carried out for each single test fre-
quency and the four unknown parameters are used to
represent the approximated flow for further analysis.
The optimization algorithm is provided by Matlab’s
fmincon function Byrd et al. (1999). An illustration of
the result of using the optimization in Matlab is shown
in Figure 5.

Figure 5 shows that the approximated flow signal
(blue) represents the measured flow (red) in a satis-
factory way. The amplitude of the approximated flow
signal from Equation 4 is used to find the magnitude
of the response using Equation 1, and the phase of the
response is equal to the phase of the approximated flow
signal.

5 Lab Test Results

5.1 Steady State Flow Characteristics

In order to investigate the steady-state flow character-
istic of the valve, the flow is measured during a steady-
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Figure 5: Illustration of the approximated flow Q̂.

state operation with known reference signals. This in-
formation is used to plot the flow output at a certain
reference input. The main purpose of this test is to
identify the deadband of the valve and the actual max-
imum flow output. In order to describe the flow curve
mathematically, a ninth order polynomial is fitted on
top of the measured flow characteristics. The measured
and fitted flow characteristic curve are shown in Figure
6.
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Figure 6: Flow characteristics.

In Figure 6 the x-axis is the reference flow signal
sent to the valve, and the y-axis shows the measured
flow response. The red dots represents the measured
data and the blue line represents the fitted polyno-
mial function. This plot clearly shows a deadband in
the range Qref ∈ [−20l/min, 20l/min] and a maxi-
mum flow reaching ±70l/min at maximum opening.
The measured deadband is expected and the maxi-
mum flow is correct compared to the datasheet of the
valve,Brevini Fluid Power (2012).

5.2 Dynamic Characteristics

Several tests of the valve were carried out. The valve
was tested with three input signal amplitudes and in
both negative and positive offset configurations. The
first three tests represent the positive offset test con-
figuration. The results are given by the bode plot in
Figure 7
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Figure 7: Test results in 50% positive offset.

It can be seen that the results are quite similar
when looking at the phase plot. But the magnitude of
the three different test amplitudes deviates from each
other. This is probably caused by the friction non-
linearities introduced by the sliding spool inside the
valve housing. The valve has also been tested in a neg-
ative offset in order to compare the results with the
positive offset test configuration. The negative offset
test configuration is presented by the bode plot in Fig-
ure 8.
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Figure 8: Test results in 50% negative offset.

Figure 8 also indicates that the magnitude is more
dependent to the test input amplitude. When com-
paring the two test configurations, the test results are
not similar. The positive offset test indicates a faster
dynamic behavior in terms of phase lag and different
magnitudes at 5% and 10% sine amplitude input.
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6 System Identification

The system identification is performed using Matlab’s
System Identification Toolbox, Garnier et al. (2003);
Ljung (2009); Young and Jakeman (1980). The tool-
box has a useful graphical user interface (GUI) which
is used to import the frequency domain data from the
lab test results presented in Section 5.2. The toolbox
is used to estimate time continuous transfer functions
from bode frequency response data, which should char-
acterize the dynamics between the reference flow and
the measured flow response. An overview of the system
identification toolbox is shown in Figures 9 and 10.

Figure 9: System identification toolbox layout part 1.

Figure 10: System identification toolbox layout part 2.

Figures 9 and 10 show seven steps which are neces-
sary to produce an estimated transfer function using
the experimental test results. The seven steps are:

1. The data type is set to be frequency domain data.

2. The data format of the experimental data is given
as three vectors containing the magnitude M ,
phase φ and the frequency in rad/s.

3. Here the variable reference to the three vectors
stored in Matlab’s workspace is specified.

4. The sampling interval is set to 0 to estimate a
continuous Transfer Function. Since the sampling
interval of the experimental data is much faster
than the systems bandwidth, it should therefore
give satisfactory results.

5. Press this button to import the experimental fre-
quency domain data.

6. Choose ”Transfer Function Models” from the drop
down menu, then specify number of poles and ze-
ros in your estimated transfer function. In this
case 1 zero and 3 poles are used since this gives
the closest fit to the experimental data.

7. The information about the approximated transfer
function is found here.
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To illustrate the result of using the system identifica-
tion toolbox a bode plot of the estimated transfer func-
tion is compared with the input experimental data. A
test performed in a negative offset and 10% sine input
amplitude has been chosen to illustrate the fit between
an estimated transfer function and the experimental
data. The comparison is given by Figure 11.
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Figure 11: Example in 50% negative offset.

In Figure 11 the red dots show the experimental fre-
quency response and the blue line shows the estimated
transfer function. As the figure shows, the fit between
the estimated model and the experimental data is sat-
isfactory. The system identification process can be
repeated using the GUI, but the process could also
be implemented using Matlab functions in a Matlab
script. Such implementation would be favorable if large
amounts of experimental data is to be processed. The
resulting transfer function found by using the system
identification toolbox can be expressed using a general
form given by Equation 7.

G(s) =
Q

Q(ref)
(s) =

b1s+ b0
s3 + a2s+ a1s+ a0

(7)

Q is the valve flow and Q(ref) is the reference flow.
The coefficients [b1, b0] and [a2, a1, a0] are found from
the system identification process.

Three transfer functions are estimated from test data
sets at 50% positive offset, the results are illustrated in
Figure 12.
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Figure 12: Results at 50% positive offset.

The fitted transfer functions shown in Figure 12 rep-
resents the experimental test data given by Figure 7.
The coefficients describing Equation 7 which are found
using the system identification method are given in Ta-
ble 1.

Table 1: Positive offset coefficients.

Test b1 b0 a2 a1 a0 Fit
5 % -25.1 3730 32 969.4 3617 93.6 %
10 % -150.8 6361 31.7 1225 6345 92.3 %
20 % -187.3 8069 37.7 1308 7789 92.6 %

The fit to the experimental data is given in percent
to the right in the table. The negative offset tests is
also represented using three fitted transfer functions.
Figure 13 shows the bode diagrams of the three fitted
transfer functions.
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Figure 13: Results at 50% negative offset.

The accompanying coefficients describing the three
bode plots shown in Figure 13 are given by Table 2.

Because b1 is negative in Tables 1 and 2, it gives that
the systems described by these coefficients have a zero
in the right-half-plane. A right-half-plane zero pro-
duces a +20dB/decade slope on the magnitude, while
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Table 2: Negative offset coefficients.

Test b1 b0 a2 a1 a0 Fit
5 % -176.4 6743 37.2 940.3 6881 94.8 %
10 % -115.5 3785 31.5 690.0 3730 96.6 %
20 % -308.2 8952 46.8 1139 8769 95.4 %

reducing the phase by 90◦. This behavior is most likely
produced by the transfer function estimator to create
a total of 360◦ phase lag while limiting the total mag-
nitude slope to -40dB/decade. However a right-half-
plane zero produces an unfavorable behavior in the
time domain which is easiest shown via a step-test.
A step-test of the system given in Equation 8 is shown
in Figure 14

G(s) =
−187.3s+ 8069

s3 + 37.7s2 + 1308s+ 7789
(8)
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Figure 14: Step test response of a system with a right-
half-plane zero.

The step response in Figure 14 shows a small dip at
the start, i.e. the response starts negative before it goes
positive and settles at a final value. This behavior is
due to the right-half-plane zero. On the valve system
this would result in a small negative opening in the
beginning of a step input, but this is not the case in
the real world. This is clearly a disadvantage of using
the transfer function estimator as it does not factor in
the time domain response.

7 Transfer Function Estimation
Comparison

To estimate a third order transfer function using Mat-
lab’s toolbox, the user has to perform a frequency re-
sponse test and analysis of the valve. This is a costly
and time consuming method, and one should know the

benefits of performing a frequency response analysis
compared to a simple step response test. A step re-
sponse should include the dynamic responses from all
frequency ranges and calculating a first or second or-
der transfer function from this response is faster than
performing a frequency response test. In this section
a first and second order transfer function are calcu-
lated from a step test and compared with a frequency
response analysis. A step test to 80% opening of the
valve with a measured flow response is shown in Figure
15.
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Figure 15: Step test with annotated settling and rise
time.

In Figure 15 the blue curve is the step signal sent
to the valve converted into reference flow, and the red
curve shows the measured flow response. The double
arrow annotated Tr shows the rise time which is be-
tween 10% and 90% of final value and Ts shows the
time where the flow signal is 98% of the final value.
The error between the step input and flow measure-
ments origins from the non-linear opening area of the
spool. The measured rise and settle times are given by
Equations 9 and 10:

Tr = 0.45s (9)

Ts = 1.225s (10)

From this information two first order transfer functions
are estimated. A first order transfer function is given
by:

G1st =
a

s+ a
(11)

The constant a is calculated with the following equa-
tions:

a1 =
2.2

Tr
=

2.2

0.45
= 4.89 (12)

a2 =
4

Ts
=

4

1.225
= 3.27 (13)
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Since the two constants calculated in Equations 12 and
13 are not equal, the resulting transfer functions may
not be accurate.

A better approximation of the system comes from
estimating a second order transfer function. A second
order system is given by:

G2nd =
ω2
n

s2 + 2ζωns+ ω2
n

(14)

where ωn is the natural frequency of the system and ζ
is the damping ratio. In order to determine these two
constants, the two Equations 15 and 16 are used:

Ts =
4

ζωn
(15)

Tr · ωn = 1.76ζ3 − 0.417ζ2 + 1.039ζ + 1 (16)

where Equation 16 is a polynomial approximation for
the normalized rise time for an underdamped second
order system Nise (2011) (page 181). These two equa-
tions are solved by substituting Equation 15 into Equa-
tion 16 and solving for ζ:

1.76ζ4 − 0.417ζ3 + 1.039ζ2 + ζ − Tr
4

Ts
= 0 (17)

The roots are solved numerically and the available val-
ues for ζ are shown in Table 3.

Table 3: ζ roots from Equation 17

ζ1 ζ2 ζ3 ζ4
0.69 −0.91 0.23 + 1.13i 0.23− 1.13i

From Table 3 it is clear that ζ cannot be negative,
nor contain imaginary parts, therefore ζ1 = 0.69 is cho-
sen as the damping ratio. The natural frequency of the
system is calculated using Equation 15:

ωn =
4

ζ · Ts
=

4

0.69 · 1.225
= 4.73rad/s (18)

From the previous results, three transfer functions are
generated:

G1st,1 =
a1

s+ a1
=

4.89

s+ 4.89
(19)

G1st,2 =
a2

s+ a2
=

3.27

s+ 3.27
(20)

G2nd =
w2

n

s2 + 2ζ1ωns+ ω2
n

=
22.37

s2 + 6.53s+ 22.37
(21)

These three transfer functions are finally compared
with a measured frequency response. The frequency
response was carried out on the valve at +50% offset

and 10% amplitude, and a fitted transfer function of
this test is given by:

G3rd =
−150.8s+ 6361

s3 + 31.7s2 + 1225s+ 6345
(22)

The four transfer functions and the actual frequency
response is shown in the bode plot in Figure 16.
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Figure 16: Comparison of different estimated transfer
functions.

In Figure 16, the red and blue curve show the two
first order transfer functions given in Equations 19 and
20. Compared with the test data shown as red dots,
these two first order systems are close on the magni-
tude and phase up to 1 Hz, but diverge from the test
data thereafter. The green curve, which shows an es-
timated second order transfer function which is given
in Equation 21, manages to get a larger phase on the
system at higher frequencies, but it is not a good fit
with the test data. On the magnitude it is a good fit
up to roughly 1Hz, but on the phase plot it diverges
from the test data quite quickly at roughly 0.3Hz. The
best approximation of the test data comes from an es-
timated third order transfer function which is shown
as a cyan-colored curve. It is practically equal to the
test data set on all the tested frequencies.

The four shown transfer functions have different ac-
curacies when compared to a measured frequency re-
sponse, but the time needed to acquire the necessary
information and to calculate a transfer function is of-
ten the inverse of the accuracy. In this case, the first
order transfer function approximated from a step re-
sponse is a fine approximation up to 1Hz and the time
required is small compared to performing a frequency
response analysis. However the performance of an esti-
mated transfer function is much better when fitted to a
frequency response rather than a step response. There-
fore the user should decide which accuracy is required
of the transfer function in his model before spending
too much time on tests.
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8 Modeling, Simulation and
Verification

In this section the valve is modeled and simulated in
Matlab, and the time response is compared with a mea-
sured flow response from the experimental setup. The
model structure is shown in Figure 17.

( )MG s
( )refQ Q

Flow Curve

Figure 17: Model structure.

Figure 17 introduces a mean transfer function GM (s)
describing the dynamics of the valve. It is identified by
calculating a mean phase and gain from the six exper-
imental tests shown in Figures 7 and 8. The mean
transfer function is fitted using the system identifica-
tion toolbox described in Section 6. The flow curve is
extracted from Figure 6 and implemented using a look
up table.

The first verification test is carried out by testing the
valve with a sine input flow reference Q(ref) with an
amplitude of 70l/min and a frequency of 0.1Hz. The
result is shown in Figure 18.
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Figure 18: Comparison of simulated and measured
valve flow at 0.1 Hz.

The measured flow signal (blue) and the simulated
flow signal (red) match satisfactory. Also the valves
dead band is included in the simulation results. Two
additional tests have been carried out at both 0.3Hz
and 0.5Hz in order to validate the model further. The
results are shown in Figures 19 and 20.
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Figure 19: Comparison of simulated and measured
valve flow at 0.3 Hz.
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Figure 20: Comparison of simulated and measured
valve flow at 0.5 Hz.

The results from testing the valve at both 0.3Hz
and 0.5Hz also state the model gives a quite accurate
description of both the steady-state and the dynamics.

Conclusion

In this paper a mobile type of directional control valve
(DCV) - a Brevini HPV41 - has been investigated and
a method for analyzing it’s dynamic behavior has been
presented. The model was identified by measuring the
steady state and dynamic characteristics of the flow
generated by movements of the spool position. The
flow curves in Section 5.1 describe how much flow the
spool lets through at a certain opening, e.g. the steady
state characteristics. The dynamic characteristics were
identified by performing a frequency response analysis
of the flow response shown in Section 5.2. The dynamic
characteristics were described as continuous transfer
functions by using a system identification toolbox in
Matlab as described in Section 6. These transfer func-
tions had a fit percentage of roughly 90% which is a
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good fit. Finally a complete black box model of the
valve with an MHPED module was simulated in Sec-
tion 8. The comparison figures in this section show
that the black box model almost matches the measured
flow data and therefore the model is verified. We have
with this result shown that the presented methods are
effective of making a black box model of a hydraulic
valve.
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