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Abstract

In this paper the robustness of a class of learning control algorithms to state disturbances, output noise,
and errors in initial conditions is studied. We present a simple learning algorithm and exhibit, via a
concise proof, bounds on the asymptotic trajectory errors for the learned input and the corresponding
state and output trajectories. Furthermore, these bounds are continuous functions of the bounds on the
initial condition errors, state disturbance, and output noise, and the bounds are zero in the absence of
these disturbances.
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1 Introduction

Learning control is a name attributed to a class of self-
tuning processes whereby the system performance of
a specified task improves based on the previous per-
formances of identical tasks. This is an advantage
when controlling systems that cannot be modelled ac-
curately. The idea of a self-learning system is in itself
aesthetically appealing in that it represents a signif-
icant step in the development of an intelligent, fully
autonomous control system.

A block diagram of a basic learning system is illus-
trated in Fig. 1. uk(t) denotes an input trajectory.
The desired output trajectory from the plant is yd(t)
and the actual output due to uk(t) is yd(t). L(∗) is the
learning operator which compares yd(t) and yk(t) and
adds an update term to uk(t) to produce uk+1(t).

In this paper the term “learning control” means the off-
line learning in which all the signals are defined over the
finite time duration [0, T ] and the input modification
is defined as follows:

uk+1(t) = L(uk(t), yd(t), yk(t)) (1)

Figure 1: Basic learning system

where L(∗) is a learning operator, uk+1(t) is the input
at the k+1‘th trial stage, yk(t) and uk(t) are the output
and input at the k‘th trial stage, respectively, and yd(t)
is the desired trajectory. The learning operator will in
Section two also be a function of yk+1(t), but for now
Eq. (2) is considered.

The trajectories are taken to be functions of t ∈ [0, T ]
and the updates occur sequentially in time. The tra-
jectories are supported on finite intervals of the time
axis and the iteration from k to k + 1 occurs from one
interval to the next. In this way, learning control uses
practice to improve movement by altering the stored
data at the execution of the previous learning trial and
generating an optimal feedforward input to attain the
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desired motion. Advantageous features of learning con-
trol are that it is easy to implement and allows simple
models and control schemes to be used while compen-
sating for unmodelled dynamics and complex phenom-
ena such as stiction.

There has been a large number of efforts toward defin-
ing and analyzing learning control schemes, where sur-
veys and overviews of the area may be found in Bristow
et al. (2006); Ahn et al. (2007); Wang et al. (2009) and
Xu (2011). References related to the present work in-
clude Arimoto et al. (1984); Craig (1984); Togai and
Yamano (1985); Mita and Kato (1985); Kavli (1992);
Atkeson and McIntyre (1986); Hauser (1987); Bondi
et al. (1988); Heinzinger et al. (1989, 1992); Arimoto
(1990); Arimoto et al. (1991, 1990); Saab et al. (1993).
The basic strategy of the classical techniques is to use
an iteration of the form uk+1(t) = L(uk(t), yd(t) −
yk(t)), where the operator L(·, ·) remains to be spec-
ified. For time-invariant mechanical systems Arimoto
et al. (1984) and Craig (1984) present conditions on
the learning operator which guarantee system conver-
gence upon repeated application of the learning algo-
rithm. One shortcoming of these analyses is that they
are small signal analyses, which require the assump-
tion that the initial trajectory (and thus all subsequent
ones) lies in a neighbourhood of the desired trajec-
tory. Togai and Yamano (1985) consider the problem of
learning control for a discrete-time system by using gra-
dient methods to optimize the learning operator. The
approach of Mita and Kato (1985) and Kavli (1992)
consider the learning control problem in the frequency
domain. In model-based learning schemes Atkeson and
McIntyre (1986), the inputs corresponding to the de-
sired and actual trajectories are computed from esti-
mated system parameters and the resulting input er-
rors fed to the learning operator. In this scheme the
performance of the algorithm depends on the quality
of the parameter estimates, and the scheme is shown in
Hauser (1987) to be a special case of this more general
approach. All these techniques are for linear, time-
invariant systems. Other researchers have considered
the learning control problem for classes of non-linear
systems. Both Hauser (1987) and Bondi et al. (1988)
remove the assumption that the initial trajectory lies
in the neighbourhood of the desired one, by develop-
ing global analyses, proving convergence of the input
sequence uk(t) with any initial trajectory. Another ex-
tension of Hauser (1987) allows time-varying systems.
This is important because it is the wish to improve
the performance of the plant as much as possible using
conventional feedback control methods. The learned
input, uk(t), is a feed-forward term which further im-
proves the performance for a specific task. Thus, for
most applications we have the situation shown in Fig.

Figure 2: Learning control application with a feedback
controller attached

2., and the learning algorithm operates on the system
between uk(t) and yk(t) which is time-varying.

Since learning control algorithms are iterative schemes,
the robustness of such algorithms is critical in the pres-
ence of disturbances, measurement noise and perturbed
errors of initialization. There have been a number of
efforts toward the robustness of learning algorithms.
In Heinzinger et al. (1989), Heinzinger et al. (1992)
the robustness problem for the non-linear system given
in Hauser (1987) is studied for a class of learning al-
gorithms, and it is proven without any linearization
that the learned input and the corresponding output
trajectories converge to neighbourhoods of their de-
sired trajectories. In Arimoto (1990); Arimoto et al.
(1991, 1990) robustness is proved based on the passi-
tivity analysis of robot dynamics. In Saab et al. (1993)
the same update law is used as in Arimoto (1990); Ari-
moto et al. (1991, 1990) but a broader class of systems
are considered.
The learning control schemes presented in this paper
are based on adaptively constructing a feedforward
input history to the actuator, which will cancel the
unknown repeatable portion of the dynamics. Since
the construction of this feedforward input signal is not
based on a model of any kind, the learned input may
reflect any unknown complex function.
The paper is structured as follows: Section two
presents a general robust discrete algorithm. Section
three presents application to hydraulic actuators, and
confirming the theoretical results some simulation re-
sults are given in Section four. Section five contains
conclusions.

2 Robust Discrete Time Learning
Controller (RDLC)

In this section a robust discrete learning algorithm for
a class of time-varying, non-linear systems is presented.
By robust is meant that, when state disturbances are
present or there are errors in the initial conditions,

216



Andersen et.al., “Discrete Learning Control with Application to Hydraulic Actuators”

the learning algorithm generates a sequence of inputs
such that the asymptotic trajectory errors for the in-
put, state, and output are bounded. In addition, these
bounds are continuous functions of the bounds on the
initial condition errors and the disturbances, and we
quantify the degradation due to each of these factors.
The description of the system and assumptions are sim-
ilar to those in Hauser (1987). The proof technique is
similar to many Hauser (1987); Heinzinger et al. (1989,
1992) in that it proceeds in a straightforward manner
showing that we have a “contraction” on the input se-
quence implying the convergence results.
The class of non-linear, time-varying systems consid-
ered is described by the following state-space equa-
tions:

ẋk(t) = f(xk(t), t) +B(xk(t), t)uk(t) + ωk(t)
yk(t) = g(xk(t), t)

(2)

where, for all t ∈ [0, T ], xk(t) ∈ <n, uk(t) ∈ <r,
yk(t) ∈ <m, and ωk(t) ∈ <n. The functions f :
<n × [0, T ] → <n and B : <n × [0, T ] → <n×r are
piecewise continuous in t and g : <n × [0, T ]→ <m is
differentiable in x and t, with partial derivatives gx(·, ·)
and gt(·, ·). The inputs considered, not necessarily con-
tinuous, are uk : [0, T ] → <r. Let Ω denote the map-
ping from (xk(0), uk(t), t ∈ [0, T ]) to xk(t), t ∈ [0, T ]
as determined by the differential equation (2) with
ωk(t) ≡ 0. Similarly, let Π denote the mapping from
(xk(0), uk(t), t ∈ [0, T ]) to yk(t), t ∈ [0, T ]. Thus, for
a given initial condition and control input on [0, T ],
xk(·) = Ω (uk(·), xk(0)) and yk(·) = Π (uk(·), xk(0)).
In addition, the following properties are assumed.

(A1) The mappings Ω and Π are one-to-one.

(A2) The disturbance ωi(·) is bounded by bω on
[0, T ], i.e. ‖ωi(·)‖ ≤ bω on the interval [0, T ].

(A3) The functions f(·, ·), B(·, ·), gx(·, ·) and
gt(·, ·) are uniformly globally Lipschitz in x on the
interval [0, T ]. That is, ‖h(x1, t)− h(x2, t)‖ ≤
kh ‖x1(t)− x2(t)‖ ∀t ∈ [0, T ] and some kh <
∞ ∈ R (h ∈ {f, B, gx, gt})

(A4) The operators B(·, ·) and gx(·, ·) are
bounded on Rn × [0, T ].

(A5) All functions are assumed to be measurable
and integrable.

Assumption (A1) implies that given an achievable, de-
sired output trajectory (yd) and initial state (xd(0)),
there exists an unique input (ud) and state (xd) tra-
jectories corresponding to this output trajectory. As-
sumption (A4) on gx(·, ·) implies that g is uniformly
globally Lipschitz in x on [0, T ]. The function ωk(t)
represents both deterministic and random disturbances

of the system. It may be stiction, non-reproducible fric-
tion, modelling errors, etc. This is important to include
since these are present in physical systems. Assump-
tion (A2) restricts these disturbances to be bounded,
but they may be discontinuous (e.g. stiction in me-
chanical systems).
The discrete learning control strategy is inspired from
the works in Heinzinger et al. (1992); Arimoto (1990).
A motivation for the control strategy can be given by
considering a simple first order system

ẋP (t) = Γ−1(t)u(t)− Γ−1(t)ν(t) (3)

where u(t) is the input and xP (t) the output. The
term ν(t) is introduced as a modelling error, completely
unknown but upper bounded.
Denoting xP (t) in the k’ th work cycle by xk(t), and
defining φ(t) = −Γ−1(t)ν(t), the dynamic formulation
in Eq. (3) can be written, at the k’ th cycle as

ẋk(t) = Γ−1
k (t)uk(t) + φk(t) (4)

The function φ(t) represents the state disturbance,
which is assumed to bounded. By making use of Tay-
lor’s expansion, the output xk(t) at the time instant
t+ ∆t can be approximated by

xk(t+ ∆t) = xk(t) + ẋk(t)∆t

= xk(t) +
[
Γ−1
k (t)uk(t) + φk(t)

]
∆t (5)

and similarly at the k + 1’th work cycle as

xk+1(t+ ∆t) = xk+1(t) + ẋk+1(t)∆t

= xk+1(t) (6)

+
[
Γ−1
k+1(t)uk+1(t) + φk+1(t)

]
∆t

The input signal uk+1(t), which forces xk+1(t + ∆t)
to approach xd(t + ∆t), may be solved by replacing
xk+1(t + ∆t) by xd(t + ∆t) in Eq. (6), provided that
the function φ(t) is known, i.e.

xd(t+ ∆t) = xk+1(t) + ẋk+1(t)∆t

= xk+1(t) (7)

+
[
Γ−1
k+1(t)uk+1(t) + φk+1(t)

]
∆t

Ignoring the variation of the unknown function φ(t) in
two consecutive cycles, then φk+1(t), in Eq. (7), may
be eliminated by substituting φk(t) for φk+1(t). φk(t)
may be found from Eq. (5), thus Eq. (5) may be
written as

xd(t+ ∆t)− xk(t+ ∆t) = xk+1(t)− xk(t)

+ Γ−1
k+1(t)uk+1(t)∆t (8)

− Γ−1
k (t)uk(t)∆t
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Rearranging, and ignoring the variation of Γ between
the consecutive cycles, Eq. (8) may be turned into a
recursive learning control law given by

uk+1(t) = uk(t)

+ Γ [xd(t+ ∆t)− xk(t+ ∆t)] /∆t (9)

− Γ [xk+1(t)− xk(t)] /∆t

This learning law is similar in form to the one in Tso
and Ma (1993), derived for a robot manipulator. In
deriving the learning control law in Eq. (9) some as-
sumptions were made. Therefore, returning to the non-
linear, time-varying system in Eq. (2) the following
more general learning update law is proposed

uk+1(t) = (1− γ) · uk(t) + γ · u0(t) (10)

+ L(yk(t), t) · [yd(t+ ∆t)− yk(t+ ∆t)] /∆t

− L(yk(t), t) · [yk+1(t)− yk(t)] /∆t

for 0 ≤ γ < 1

where L : <m × [0, T ]→ <r×m is bounded.
Including γ allows the influence of a bias term, see
Heinzinger et al. (1992); Arimoto (1990). This may
prevent the input from wandering too much initially. In
addition, γ may be allowed to vary with the iteration to
further improve performance, but in this presentation
γ is fixed.
For clarification of the remaining discussion, func-
tion parameters will be shown in subscript notation
with the dependence on time implied unless otherwise
stated. In particular

gxk=̂
∂

∂x
g(x, t)

∣∣
x=xk(t) , gxd=̂

∂

∂x
g(x, t)

∣∣
x=xd(t) ,

gtk=̂
∂

∂t
g(x, t)

∣∣
x=xk(t) , gtd=̂

∂

∂t
g(x, t)

∣∣
x=xd(t) ,

fk=̂f(xk(t), t), fd=̂f(xd(t), t),

uk=̂uk(t), ud=̂ud(t),

ωk=̂ωk(t), Bk=̂B(xk(t), t),

Bd=̂B(xd(t), t), Lk=̂L(yk(t), t)

and kgx, kgt, kf , kB , and kg are Lipschitz constants for
gx(·, ·), gt(·, ·), f(·, ·), B(·, ·), and g(·, ·) respectively.
Now the main result of this section can be stated.

Theorem 1 (RDLC). Let the system described by Eq.
(2) satisfy assumptions (A1)-(A5) and use the update
law Eq. (10). Given an attainable yd(·), if

1 > ρ

≥

∥∥∥∥∥∥(1− γ)I − Lk(g(x(t), t))

∆t

t+∆tˆ

t

gx(x, t)B(x, t)dτ

∥∥∥∥∥∥
; ∀(x, t) ∈ <n × [0, T ]

and the initial state error is bounded
(‖xd(0)− xk(0)‖ ≤ bx0)), then as k → ∞ the er-
ror between uk and ud is bounded. In addition, the
state and output asymptotic errors are bounded. These
bounds depend continuously on the bound on the initial
state error, bound on the state disturbance, and γ. As
bx0, bω and γ tend to zero, these bounds also tend to
zero.

Remark: If ∆t is chosen sufficiently small, the condi-
tion in Theorem 1 is equivalent to:

‖(1− γ)I − Lk(g(x(t), t))gx(x, t)B(x, t)‖ ≤ ρ < 1

; ∀(x, t) ∈ <n × [0, T ]

Proof. From the system equation (2) and the update
law in Eq. (10), the error for the iterate k + 1 can be
written as

ud − uk+1 = ud − (1− γ)uk − γu0 (11)

− Lk [yd(t+ ∆t)− yk(t+ ∆t)] /∆t

+ Lk [yk+1(t)− yk(t)] /∆t

= (1− γ)(ud − uk) + γ(ud − u0)

− Lk [yd(t+ ∆t)− yk(t+ ∆t)] /∆t

+ Lk [yk+1(t)− yk(t)] /∆t

Using that

yd(t+ ∆t) (12)

−yk(t+ ∆t) = yd(t)− yk(t)

+

ˆ t+∆t

t

[gxd(fd +Bdud) + gtd

− gxk(fk +Bkuk + ωk)− gtk] dτ

Eq. (11) may be written as follows by inserting Eq.
(12)

ud − uk+1 = (1− γ)(ud − uk) + γ(ud − u0) (13)

− Lk

{
[yd − yk+1] +

ˆ t+∆t

t

[gxd(fd +Bdud)

+ gtd − gxk(fk +Bkuk + ωk)− gtk] dτ} /∆t
= (1− γ)(ud − uk) + γ(ud − u0)

− Lk {[yd − yk+1] +

ˆ t+∆t

t

[gxkBk(ud − uk)

+ gxd(fd +Bdud) + gtd − gtk
− gxk(fk +Bkuk + ωk)] dτ} /∆t

Recognizing that for the discrete version update
scheme uk remains unchanged between the consecu-
tive sampling instants, (i.e. uk(z) = uk(t) for any
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z ∈ [t, t+ ∆t]), therefore, the following Eq. (14) is
equivalent to Eq. (13)

ud − uk+1 = (1− γ)I(ud − uk) (14)

−

(
Lk

ˆ t+∆t

t

gxkBkdτ/∆t

)
(ud − uk)

+ γ(ud − u0)− Lk(yd − yk+1)/∆t

− Lk

{ˆ t+∆t

t

[(gxd − gxk)(fd +Bdud)

+ gxk(fd − fk) + gxk(Bd −Bk)ud

− gxkωk + gtd − gtk] dτ} /∆t

Taking norms, and using the bounds yields

‖ud − uk+1‖ ≤

∥∥∥∥∥∥(1− γ)I − Lk
∆t

t+∆tˆ

t

gxkBkdτ

∥∥∥∥∥∥ (15)

· ‖ud − uk‖+ γ ‖ud − u0‖

+ ‖Lk‖ · ‖yd − yk+1‖ ·
∥∥∥∥ 1

∆t

∥∥∥∥
+ ‖Lk‖ · {‖gxd − gxk‖ · ‖fd +Bdud‖
+ ‖gxk‖ · (‖fd − fk‖+ ‖Bd −Bk‖
+ ‖ωk‖) + ‖gtd − gtk‖}

Let bL and bgx be the norm bounds for L(·, ·) and
gx(·, ·), respectively and define∥∥∥(1− γ)I − Lk 1

∆t

´ t+∆t

t
gxkBkdτ

∥∥∥ = ρ

for bd = sup
t∈[0, T ]

‖fd +Bdud‖ (16)

Now, using the Lipschitz conditions yields

‖ud − uk+1‖ ≤ ρ ‖ud − uk‖+ γ ‖ud − u0‖+ bLbgxbω

+ ‖Lk‖ ·
∥∥∥∥ 1

∆t

∥∥∥∥ kg ‖xd − xk+1‖ (17)

+ bL (kgx ‖xd − xk‖ bd + kgt ‖xd − xk‖)
+ bLbgx (kf ‖xd − xk‖+ kB ‖xd − xk‖)

Defining k1=̂ ‖Lk‖·
∥∥ 1

∆t

∥∥ kg and k2=̂bL(kgxbd+bgx(kf+
kB + bω) + kgt) Eq. (17) simplifies to

‖ud − uk+1‖ ≤ ρ ‖ud − uk‖+ γ ‖ud − u0‖+ bLbgxbω

+ k1 ‖xd − xk+1‖+ k2 ‖xd − xk‖ (18)

Now writing the integral expression for x(t), obtained
from equation (2), with the quantities in the integral

being functions of τ , and taking norms we obtain

‖xd − xi‖ = ‖xd(0)− xi(0)+ (19)

+

ˆ t

0

((fd +Bdud)− (fi +Biui + ωi))dτ

∥∥∥∥
≤ ‖xd(0)− xi(0)‖+

ˆ t

0

(‖fd − fi‖+ ‖ωi‖

+ ‖Bd −Bi‖ · ‖ud‖+ ‖Bi‖ · ‖ud − ui‖)dτ

≤ ‖xd(0)− xi(0)‖+

ˆ t

0

bB ‖ud − ui‖

+ (kf + kBbud) · ‖xd − xi‖+ bω)dτ

= ‖xd(0)− xi(0)‖+

ˆ t

0

(k3 ‖xd − xi‖

+ bB ‖ud − ui‖+ bω)dτ

where bB is the norm bound on B(·, ·), and bud, k3 are
defined as

k3=̂(kf + kBbud) ; bud=̂ sup
t∈[0, T ]

‖ud‖ (20)

Now, the problem is to gain an explicit bound on the
right hand side of Eq. (19). For this purpose, using the
Bellman-Gronwall Lemma, Eq. (19) may be rewritten
as

‖xd − xk‖ ≤ ‖xd(0)− xk(0)‖ · ek3·t (21)

+

ˆ t

0

ek3(t−τ)(bB ‖ud(τ)− uk(τ)‖+ bω)dτ

and from Eq. (21)

‖xd − xk+1‖ ≤ ‖xd(0)− xk+1(0)‖ · ek3·t (22)

+

tˆ

0

ek3(t−τ)(bB ‖ud(τ)− uk+1(τ)‖+ bω)dτ

Combining the Eq. (21), (22) and Eq. (18) yields

‖ud − uk+1‖ ≤ ρ ‖ud − uk‖+ γ ‖ud − u0‖ (23)

+ k1 ‖xd(0)− xk+1(0)‖ ek3t

+ k2 ‖xd(0)− xk(0)‖ ek3t + bLbgxbω

+ k1

ˆ t

0

ek3(t−τ)

· (bB ‖ud(τ)− uk+1(τ) + bω‖)dτ

+ k3

ˆ t

0

ek3(t−τ)

· (bB ‖ud(τ)− uk(τ) + bω‖)dτ

219



Modeling, Identification and Control

‖ud − uk+1‖ ≤ ρ ‖ud − uk‖+ γ ‖ud − u0‖ (24)

+ k1bω

ˆ t

0

ek3(t−τ)dτ

+ k1bω

ˆ t

0

ek3(t−τ)dτ

+ k1 ‖xd(0)− xk+1(0)‖ ek3t

+ k2 ‖xd(0)− xk(0)‖ ek3t + bLbgxbω

+ k1bB

ˆ t

0

ek3(t−τ) ‖ud(τ)− uk+1(τ)‖ dτ

+ k3bB

ˆ t

0

ek3(t−τ) ‖ud(τ)− uk(τ)‖)dτ

Multiplying Eq. (24) by e−λt, defining
k=̂ max {k1bω, k2bω, k3}, and assuming λ > k
gives

e−λt ‖ud − uk+1‖ (25)

≤ ρe−λt ‖ud − uk‖+ γe−λt ‖ud − u0‖
+ k1 ‖xd(0)− xk+1(0)‖ e(k3−λ)t

+ k2 ‖xd(0)− xk(0)‖ e(k3−λ)t

+ k

ˆ t

0

e−λτ ‖ud(τ)− uk+1(τ)‖ e(k−λ)(t−τ)dτ

+ k

ˆ t

0

e−λτ ‖ud(τ)− uk(τ)‖ e(k−λ)(t−τ)dτ

+ k1bω

ˆ t

0

e−λτe(k3−λ)(t−τ)dτ

+ k2bω

ˆ t

0

e−λτe(k3−λ)(t−τ)dτ + bLbgxbωe
−λt

The following norm (26) is used to simplify the expres-
sion of the result.

Definition 1. The λ-norm for a function h :
[0, T ]→ Rk is defined by

‖h(·)‖λ =̂ sup
t∈[0, T ]

e−λ·t ‖h(t)‖ (26)

Remark: From this definition it is seen that
‖h‖λ ≤ ‖h‖∞ ≤ eλt ‖h‖λ for λ > 0 (where
‖h‖∞ =̂ sup

t∈[0, T ]

‖h(t)‖), implying that these two norms

are equivalent.

Using the λ-norm, and noticing that the integrals are
strictly increasing, the inequality equation (25) can be

rewritten as

‖ud − uk+1‖λ

[
1− k

λ− k
(1− e(k−λ)T )

]
(27)

≤
[
ρ+

k

λ− k
(1− e(k−λ)T )

]
· ‖ud − uk‖λ

+ bLbgxbω + k1 ‖xd(0)− xk+1(0)‖
+ k2 ‖xd(0)− xk(0)‖+ γ ‖ud − u0‖λ

+
(k1 + k2)bω
λ− k3

(1− e(k3−λ)T )

Defining

ρ̄ =
ρ+ k

λ−k (1− e(k−λ)T )

1− k
λ−k (1− e(k−λ)T )

k4=̂bLbgx +
k1 + k2

λ− k3
(1− e(k3−λ)T )

Eq. (27) reduces to

‖ud − uki+1‖λ ≤ ρ̄ ‖ud − uk‖λ + k4bω (28)

+ k1 ‖xd(0)− xk+1(0)‖
+ k2 ‖xd(0)− xk(0)‖+ γ ‖ud − u0‖λ

‖ud − ui+1‖λ ≤ ρ̄ ‖ud − ui‖λ + ε (29)

Where ε combines the norms bounds of the initial state
errors, state disturbances, and bias contribution. Since
ρ < 1, it is possible to find a λ > k which makes ρ̄ < 1.

Lemma 1. If {ai}∞i=0 is a sequence of real numbers
such that

|ai+1| ≤ ρ |ai|+ ε 0 ≤ ρ < 1 (30)

then

lim sup
i→∞

|ai| ≤
(

1

1− ρ

)
· ε

Proof.

Iterating Eq. (30) we obtain

|a1| ≤ ρ |a0|+ ε

|a2| ≤ ρ2 |a0|+ (1 + ρ)ε

...

|ai| ≤ ρi |a0|+
i−1∑
j=0

ρjε = ρi |a0|+
(

1− ρi

1− ρ

)
· ε

So as i → ∞, ρi → 0 implying that lim sup
i→∞

|ai| ≤(
1

1−ρ

)
· ε.
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By using Lemma 1, it is seen that uk converges to
the neighbourhood of ud of radius (1/(1− ρ̄)) ε with
respect to the λ- norm. Thus

lim sup
k→∞

‖ud − uk‖λ ≤
(

1

1− ρ̄

)
ε (31)

Using Eq. (21), and similar manipulations, the bound
for the state error may be obtained as

‖xd − xk‖λ ≤ ‖xd(0)− xk(0)‖ (32)

+

ˆ t

0

e(k3−λ)(t−τ) ‖ud − uk‖λ dτ

≤ ‖xd(0)− xk(0)‖

+
1

λ− k3
(1− e(k3−λ)T ) ‖ud − ui‖λ

So lim sup
k→∞

‖xd − xk‖λ ≤ ‖xd(0)− xk(0)‖ + 1
λ−k3 (1 −

e(k3−λ)T )
(

1
1−ρ̄

)
ε.

The result for yk is obtained by using the fact that g is
Lipschitz in x. Thus, with ‖xd − xk‖λ being bounded
as above, ‖yd − yk‖λ ≤ kg ‖xd − xk‖λ.
Eq. (28) clearly illustrates the influence of the initial
state error, state disturbance, and bias term in degrad-
ing the bound on the asymptotic errors. It is seen that
this bound on the degradation is continuous in these
factors. Furthermore, in the absence of these terms
ε = 0, and the state converges to the desired trajecto-
ries.

The following lemma gives an extension of the learning
update law.

Lemma 2. If the learning law in Eq. (10) is replaced
by

uk+1(t) = (1− γ) · uk(t) + γ · u0(t) (33)

+ L(yk(t), t) · {[yd(t+ ∆t)− yk(t+ ∆t)]

− [yk+1(t)− yk(t)]} /∆t
+K(yk(t), t) · [yd(t)− yk(t)]

with K(·, ·) bounded, then Theorem 1 still holds.

Proof. The proof proceeds as in the proof of Theorem
1. Let bK denote the norm bound of K(·, ·). Using
the fact that g(·, ·) is Lipschitz in x(t) it follows that
‖Kk(yd − yk)‖ ≤ bKkg ‖xd − xk‖. Thus k2 in Eq. (18)
is modified by adding bkkg.

3 Application to Hydraulic
Actuators

In this section the learning algorithm is applied to the
dynamics of a hydraulic actuator. The plant consid-
ered is limited to the class of valve controlled hydraulic
cylinder plants, as shown in Fig. 3.

Figure 3: Schematic diagram of the electro-hydraulic
plant considered.

A servo valve controls the position of the hydraulic
cylinder. The load is represented by a variable mass-
spring-damper combination. The system shown in Fig.
3 is characterized by the highly non-linear nature of the
servo valve pressure-flow curves and friction effects, a
very low damping ratio, and dynamics that strongly
depends on the operating point and the physical pa-
rameters describing the system. If the non-linear equa-
tions describing the system are linearized around an
operating point (xV 0, xP0, PL0) the transfer function
relating the spool position to the piston position, may
be written as

XP (s)

XV (s)
= GP (s) =

ω2
P γP

s(s2 + 2ωP ξP s+ ω2
P )

(34)

where

ωP =
√
ψ0(KQP fFP +A2

P )/MP

KQP =
χ̃dxV 0

2
√
PS − PL0

γP =
KQAP

KQP fFP +A2
P

KQ = χ̃d
√
PS − PL0

ξP =
MPKQPψ0 + fFP

2
√
ψ0MP (KQP fFP +A2

P )

ψ0 = βE

(
1

V1
+

1

V2

)
The coefficients in the transfer function (34) indicate
the relation between the hydraulic natural frequency,
damping, loop gain and the parameters defining the
plant. The approximate dynamics of the overall system
consisting of the servo valve, cylinder, and load system,
is obtained as

GA(s) = GS(s)GP (s)GL(s) (35)

where

XV (s)

U(s)
= GS(s) =

kGω
2
S

s2 + 2ωSξSs+ ω2
S

YL(s)

XP (s)
= GL(s) =

ω2
L + γLs

s2 + 2ωLξLs+ ω2
L

221



Modeling, Identification and Control

ωL =
√
K/ML ; ξL =

BP + fFL

2
√
KML

; γL = BP /ML

In general, the operating frequencies of the electro-
hydraulic servo actuator are much lower than the nat-
ural frequency of the servo valve, so that the dynamics
of the servo valve can be neglected in the further anal-
ysis. From Eq. (34) and Eq. (35) it is then seen that
a pure integrator and two sets of complex conjugate
poles dominate the dynamics. That means we consider
spring type loads with high stiffness and the transfer
function from the input voltage to the load position
can be written as
XP (s)

U(s)
= GP (s) =

ω2
PΓP

s(s2 + 2ωP ξP s+ ω2
P )

; ΓP =̂kGγP

(36)
The most important characteristics of the model analy-
sis are summarized below. The system dynamics, may
for each operating point, be sufficiently described by
Eq. (36). The open loop gain is a non-linear function
of the accelerated inertia load, friction and external
force disturbances. The parameter variations in the
valve-cylinder transfer function causes large variations
in the damping and natural frequency, as the operating
point is changed.
From the above, being fundamental to the hydraulic
servo design, it may be concluded that if the loop gain
in the control design is chosen with care, the dynamic
model used for controller design may be reduced to

XP (s)

U(s)
= GP (s) =

ΓP
s

(37)

The model used for control design is the one in Eq.
(37), rewritten in the following form:

Γ(t) ẋP (t) + ν(t) = u(t) (38)

where Γ(t)=̂1/ΓP (PS , PL). The term ν(t) is intro-
duced as a modelling error, completely unknown but
upper bounded.
In Section one a class of non-linear, time-varying sys-
tems were considered. As mentioned before, this is sig-
nificant because the result may be applied to a plant
and feedback configuration as shown in Fig. 2. If the
feedback controller is robust, then the system should
have reasonable performance for every trial and will
converge to the desired trajectory. If the control law is
chosen as u = Γ̂(t) · (ẋd(t) − kP · (xd(t) − x(t))) + uL,
where Γ̂ represents the estimate of Γ and uL represents
the learning term, then to formulate a system as Eq.
(2) we substitute the above control law into Eq. (38),
and define the new system as

ẋP (t) = Γ−1(t) ·
[
Γ̂(t) · (ẋd(t) + kP · e(t)) + uL

]
(39)

− Γ−1(t) · ν(t)

= Γ−1(t) · Γ̂(t) · (ẋd(t) + kP · e(t))
+ Γ−1(t) · uL+Γ−1(t) · ν(t)

Figure 4: Sketch of the hydraulic driven two link robot,
which is used as test facility.

or written in the more general form
ẋ(t) = f(x(t), t) +B(t) · u(t) + ω(t)
y(t) = x(t)

(40)

The update law examined is

uLk+1(t) = uLk (t) + L(t) · {[xd(t+ ∆t)− xk(t+ ∆t)]

− [xk+1(t)− xk(t)]} /∆t (41)

For the system in Eq. (39) and Eq. (40) assumption
(A1) is clearly satisfied. Assuming (A2), (A4), and
(A5), also (A3) is satisfied while the functions involved
then are bounded.
Theorem 1 implies that given a desired trajectory the
input will converge, even in the presence of distur-
bances, to a neighbourhood of the desired input trajec-

tory providing that
∥∥∥1− L 1

∆t

´ t+∆t

t
gxBdτ

∥∥∥ ≤ ρ < 1.

Assuming ∆t small, we see that the condition becomes∥∥1− L · Γ−1
∥∥ ≤ ρ < 1 which gives a condition on the

accuracy of the dynamical model of Γ that is necessary.

4 Simulation Results

In this section a simulation study is performed to inves-
tigate the performance of the learning control schemes.
A hydraulically driven two-link robot is used as test fa-
cility. A sketch of this robot is shown in Fig. 4. The
results of these simulations are seen in Figs. 5-8.

Looking at the tracking error plots, Fig. (5) and
(7), the error shown in the first trial, i.e. the first 3
seconds, is without the influence of the learning term.
After the first trial the learned feedforward signal is
added, cf. Fig. (6) and (8), and as may be seen the
rate of convergence for the learning controller is very
fast. At the end of the second trial the tracking er-
ror is significantly decreased. The rate of convergence
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Figure 5: Tracking error - lower axis

Figure 6: Learned feedforward signal - lower axis

depends on the chosen design parameters in a linear
fashion, so that increasing the gains makes the track-
ing error decrease. Of course, choosing too large gains
will lead to divergent results.

Theoretically, according to the results of Theorem
1, the convergence rate could be increased by sim-
ply reducing the sampling interval ∆t. However, the
computation delay associated with a particular hard-
ware tends to violate the theoretical basis for deriving
the learning control algorithm, and will hence militate
against the use of too small a sampling interval in prac-
tice.

Most learning controllers that decrease the magnitude
of the error at the beginning of the learning process
eventually results in error accumulation, so in practice
it is desirable to stop the process in a finite time, with
the error being as small as possible at this time. For
the robust learning controller (RDLC), the bias term
may be helpful, and varying the update operator as the
iterations progress may further improve performance.
The bias term, as discussed in Heinzinger et al. (1992),
is initially useful to keep the input from wandering ex-
cessively, but with time it might be advantageous to
decrease its influence be decreasing γ. Once the input
has converged fairly well, decreasing the learning gain
(the size of L) to cause the input to average out random
disturbances, may improve the accuracy of the input.

Figure 7: Tracking error - upper axis

Figure 8: Learned feedforward signal - upper axis

It is easily seen that these modifications do not change
the result of Theorem 1, provided that the condition
on the update law is satisfied for all Lk and γk.

5 Conclusions

The learning update law presented in this paper im-
plies that; as the iteration number approaches infinity,
the trajectory errors are less than certain bounds, pro-
vided certain conditions are met. One major advantage
of the presented learning algorithm is the fast conver-
gence, which means that the learning process can be
stopped or decreased before error accumulation makes
the system unstable.

Learning control itself cannot be used to stabilize a
system or to change its performance for a general tra-
jectory. Therefore, in applications it is desirable to use
a robust feedback controller to improve the system per-
formance (the motivation for considering time-varying
systems). Learning control iteratively updates a feed-
forward term to provide a finer and finer “open loop”
performance along a specific trajectory, thus it is not
intended to make up for a poor feedback controller de-
sign.
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