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R. Jovanović 1 A. Sretenović 2
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Abstract

Feedforward neural network models are created for prediction of daily heating energy consumption of a
NTNU university campus Gløshaugen using actual measured data for training and testing. Improvement
of prediction accuracy is proposed by using neural network ensemble. Previously trained feed-forward
neural networks are first separated into clusters, using k-means algorithm, and then the best network
of each cluster is chosen as member of an ensemble. Two conventional averaging methods for obtaining
ensemble output are applied; simple and weighted. In order to achieve better prediction results, multistage
ensemble is investigated. As second level, adaptive neuro-fuzzy inference system with various clustering
and membership functions are used to aggregate the selected ensemble members. Feedforward neural
network in second stage is also analyzed. It is shown that using ensemble of neural networks can predict
heating energy consumption with better accuracy than the best trained single neural network, while the
best results are achieved with multistage ensemble.

Keywords: heating consumption prediction, multistage neural network ensemble, adaptive neuro-fuzzy
inference

1 Introduction

The study of the building energy demand has become
a topic of great importance, because of the significant
increase of interest in energy sustainability, especially
after the emanation of the EPB European Directive.
In Europe, buildings account for 40% of total energy
use and 36% of total CO2 emission Council. (2010).
According to Bergesen et al. (2013), 66% of the to-
tal energy consumption of residential buildings occurs
in the space heating sector of Norwegian residential
buildings. Therefore, the estimation or prediction of
building energy consumption has played very impor-
tant role in building energy management, since it can
help to indicate above-normal energy use and/or di-
agnose the possible causes, if there has been enough

historical data gathered. Scientists and engineers are
lately moving from calculating energy consumption to-
ward analyzing the real energy use of buildings. One
of the reasons is that, due to the complexity of the
building energy systems and behavior, non-calibrated
models cannot predict well building energy consump-
tion, so there is a need for real time image of energy
use (using measured and analyzed data).

The classic approach to estimate the building en-
ergy use is based on the application of a model with
known system structure and properties as well as forc-
ing variables (forward approach). Using different soft-
ware tools, such as EnergyPlus, TRNSYS, BLAST,
ESP-r, HAP, APACHE requires detailed knowledge of
the numerous building parameters (constructions, sys-
tems) and behavior, which are usually not available.
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Perera et al. (2014), developed continuous time math-
ematical heating model for a building unit based on the
first principles. The developed model was implemented
in a MATLAB environment, and mainly a theoretical
approach is used to validate it for a residential building
unit. Model is also validated using experimental data.

In recent years, considerable attention has been
given to a different approach for building energy anal-
ysis, which is based on the so called ”inverse” or data-
driven models Kusiak et al. (2010). In a data-driven
approach, it is required that the input and output vari-
ables are known and measured, and the development
of the ”inverse” model consists in determination of a
mathematical description of the relationship between
the independent variables and the dependent one. The
data-driven approach is useful when the building (or
a system) is already built, and actual consumption (or
performance) data are measured and available. For this
approach, different statistical methods can be used.
Artificial neural networks (ANN) are the most used
artificial intelligence models for different types of pre-
diction. The main advantages of an ANN model are its
self-learning capability and the fact that it can approx-
imate a nonlinear relationship between the input vari-
ables and the output of a complicated system. Feed-
forward neural networks are most widely used in en-
ergy consumption prediction. Ekici and Aksoy (2009)
proposed a backpropagation three-layered ANN for the
prediction of the heating energy requirements of differ-
ent building samples. Dombaycı (2010) used hourly
heating energy consumption for a model house calcu-
lated by degree-hour method for training and testing
the ANN model. In Ekonomou (2010) actual recorded
input and output data that influence Greek long-term
energy consumption were used in the training, vali-
dation and testing process. Li et al. (2011) proposed
the hybrid genetic algorithm-adaptive network-based
fuzzy inference system (ANFIS) which combined the
fuzzy if-then rules into the neural network-like struc-
ture for the prediction of energy consumption in the
library building. The calculated results indicated bet-
ter performance compared with ANN in terms of fore-
casting accuracy. An excellent review of the different
neural network models used for building energy use
prediction was done by Kumar et al. (2013). The en-
semble of neural networks is a very successful technique
where the outputs of a set of separately trained neural
networks are combined to form one unified prediction,
Zhou et al. (2002). Since an ensemble is often more ac-
curate than its members, such a paradigm has become
a hot topic in recent years and has already been suc-
cessfully applied to time series prediction Melin et al.
(2012), weather forecasting Taylor and Buizza (2002),
load prediction in a power system Siwek et al. (2009).

The main idea of this paper is to propose multistage
neural network ensemble for prediction of heating en-
ergy use. The ensemble members are chosen among 50
separately trained feedforward neural networks using
k-means clustering, and for combining their outputs
different ANFIS in second stage are used.

2 Feedforward neural network
(FFNN)

Artificial neural network (ANN) method is a computa-
tional intelligence technique, based on the information
processing system of the human brain and which may
be used as an alternative method in engineering anal-
ysis and prediction. ANNs work as a black-box model,
thus, it is not necessary to have detailed information
about the system. Instead, they learn the relationship
between input and output variables by means of his-
torical data, similar to the way a nonlinear regression
might perform Karatasou et al. (2006). The FFNN ar-
chitecture consists of an input layer, an output layer,
and one or more hidden layers of interconnected pro-
cessors called neurons. Each layer has a number of
neurons and each neuron is fully interconnected with
adaptable weighted connections to neurons in the sub-
sequent layer. Therefore, each neuron receives input
signals from other neurons or external stimuli, pro-
cesses it locally through an activation function and pro-
duces a transformed output signal to other neurons or
external outputs. The nonlinear activation functions
in the hidden layer neurons enable the neural network
to be a universal approximator. The process of train-
ing network is the adjustment of the weights, so that
the network can produce the desired response to the
given inputs. Different training algorithms could be
applied to minimize the error function, but the most
widely used are the backpropagation algorithm and the
algorithms derived from it. They use a gradient de-
scent technique to minimize the cost function which
is the mean square difference between the desired and
the actual network outputs. In this study, a multi-
layer feedforward network with single hidden layer and
backpropagation learning algorithm (BPNN) is used.
In BPNN the learning algorithm has two phases. First
a training input data set is presented to the network
input layer. The network then propagates the input
data set from layer to layer until the output data set
is generated by the output layer. If this data set is dif-
ferent from the desired output, an error is calculated
and then propagated backwards through the network
from the output layer to the input layer. The weights
are modified as the error is propagated.
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3 Artificial neural network
ensembles

Many engineering problems, especially in energy use
prediction, appeared to be too complex for a single
neural network. Researchers have shown that simply
combining the output of many neural networks can
generate more accurate predictions and significantly
improve generalization ability than that of any of the
individual networks Hansen and Salamon (1990). The-
oretical and empirical work showed that a good ensem-
ble is one where the individual networks have both ac-
curacy and diversity, namely the individual networks
make their errors on different parts of the input space
Qiang et al. (2005). An important problem is, then,
how to select the aggregate members in order to have
an optimal compromise between these two conflicting
conditions Granitto et al. (2005). The accuracy can be
described by the mean square error (or some other pre-
diction indicator) and achieved by proper training al-
gorithms of neural networks. Diverse individual predic-
tors (members) can be obtained in several ways. The
most widely used approaches Sharkey (1999), Zhang
et al. (2001) can be divided in three groups. The first
group of methods refers to training individuals on dif-
ferent adequately-chosen subsets of the data set. It in-
cludes elaborations of two important techniques: bag-
ging and boosting. Bagging is proposed by Breiman
(1996) based on bootstrap sampling. It creates sev-
eral training sets from the original training set and
then trains a component neural network from each of
those training sets. Boosting, proposed by Schapire
(1990), generates a series of component neural net-
works whose training sets are determined by the per-
formance of former ones. Training instances that are
wrongly predicted by former networks will play more
important roles in the training of later networks. The
second group uses variation of topologies, by varying
number of input and/or hidden nodes, initial weight
sets, training algorithms, or even networks with differ-
ent types. The third group is named selective approach
group where the diverse components are selected from
a number of accurately trained networks. Opitz and
Shavlik (1996) proposed a generic algorithm to search
for a highly diverse set of accurate networks. Other
used algorithms for selecting ensemble components are:
pruning algorithm to eliminate redundant classifiers
Lazarevic and Obradovic (2001), selective algorithm
based on bias/variance decomposition Navone et al.
(2000), genetic algorithm (GASEN) proposed by Zhou
et al. (2001) and PSO based approach proposed by Fu
et al. (2004). Clustering technology can be used to di-
vide all networks into some groups (clusters) according
to similarity of the networks. Then, one most accu-

rate individual in each group on the validation set is
selected, and finally, all selected individuals construct
the ensemble.

4 K-means for selecting ensemble
members

In Qiang et al. (2005) the clustering-based selective
neural network (using k-means) was compared with
two main ensemble approaches: Bagging and Boost-
ing. K-means clustering, proposed by MacQueen et al.
(1967) is a method commonly used to automatically
partition a data set into m groups. Even though k-
means was first proposed over 50 years ago, it is still
one of the most widely used algorithms for clustering.
Ease of implementation, simplicity, efficiency, and em-
pirical success are the main reasons for its popularity.
This technique is based on distance matrix, using Eu-
clidean distance as a criterion. It starts with m ini-
tial cluster centers and for all data, Euclidean distance
from each cluster center is calculated, after which the
data points are assigned to the closest cluster center.
This method is being repeated until the squared error
between the empirical mean of a cluster and the points
in the cluster is minimized. When using k-means for
selecting neural network ensemble members, the goal
is to divide prediction data achieved by individual net-
works y = {y1, . . . , yr} into m clusters, where number
of elements in each cluster is ni, and the center of clus-
ter is ci. So clustering can be achieved by finding ci
which makes

Je =

m∑
i=1

ni∑
j=1

‖y(i)j − ci‖2 (1)

minimized. Obviously, after clustering the diversity
between networks in different cluster groups is greater
than those within the same group. The diversity is
maintained by choosing the most accurate networks in
each group as a member of the ensemble. In k-means
algorithm, cluster number m must be determined in
advance. To select the best m value, the prediction in-
dices of the created ensemble can be compared. Linear
combination of the outputs of ensemble members is one
of the most popular approaches for combining selected
network outputs (simple or weighted). Different ap-
proach comprises using neural network for combining
selected ensemble members. Ilić et al. (2012) proposed
the system comprised of two ANNs assembled in a hi-
erarchical order. In this paper, for the second stage,
adaptive neuro-fuzzy inference system (ANFIS) is pro-
posed.
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5 Adaptive Neuro-Fuzzy Inference
System (ANFIS)

The process of fuzzy inference involves membership
functions, fuzzy logic operators, and if-then rules.
Fuzzy inference systems (FIS) have been successfully
applied in fields such as automatic control Skullestad
et al. (2001), monitoring and maintenance Cibulka
et al. (2012), data classification, decision analysis, ex-
pert systems,and computer vision. Overview of possi-
ble application of fuzzy logic in modeling, identifica-
tion and control can be found in Zadeh (1994). The
adaptive network-based fuzzy inference system (AN-
FIS) proposed by R. Jang Jang (1993) is one of the
most commonly used fuzzy inference systems, and its
architecture is obtained by embedding FIS into the
framework of adaptive networks.The generalization ca-
pability of the fuzzy logic is very poor because it uses
the heuristic algorithms for defuzzification, rule evolu-
tion and antecedent processing. The main disadvan-
tage of neural network is how to determine proper size
and optimal structure of the network. Also, the rela-
tionships of weight changes with input output behavior
during the training and use of trained system to gen-
erate correct output using the weights are very com-
plicated to understand, like a ”black box”. Combining
fuzzy logic and neural network is preeminent idea to
overcome the disadvantages of both techniques. Neu-
ral networks are used to tune the membership functions
of fuzzy systems even for complex systems, Singh et al.
(2012). The outstanding property of ANFIS is that it
compensates the disadvantage of FIS with the learn-
ing mechanism of NN. The architecture of the ANFIS
used in this study is based on the first-order Takagi-
Sugeno model Takagi and Sugeno (1985). For a simple
MISO system (multi-input, single-output), having two
inputs (x1, x2) and one output (y), typical rule set can
be expressed as:

Rule1 : If x1 is A1 and x2 is B1 (2)

then f1 = a1x1 + b1x2 + c1

Rule2 : If x1 is A2 and x2 is B2

then f2 = a2x1 + b2x2 + c2.

The ANFIS architecture is shown in Figure 1. It
is composed of five layers where each layer contains
several nodes described by the node function. Let Oj

i

denote the output of the i-th node in layer j.
Layer 1: In the first layer, all the nodes are adaptive

nodes. The outputs of layer 1 are the fuzzy membership
grades of the inputs, which are given by:

O1
i = µAi

(x1), i = 1, 2, (3)

O1
i = µBi−2(x2), i = 3, 4.
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Figure 1: ANFIS network architecture

where Ai and Bi are the linguistic labels and µAi

and µBi are the membership functions for Ai and Bi

linguistic labels, respectively. As node functions in this
layer any continuous and piecewise differentiable func-
tions, such as commonly used trapezoidal, triangular-
shaped, Gaussian or generalized bell membership func-
tions, can be used. Therefore, outputs of this layer
form the membership values of the premise part and
parameters contained in membership functions of fuzzy
sets called premise parameters.

Layer 2: In contrast to layer 1 the nodes in this
layer are fixed. The output O2

i of the node i can be
computed as:

O2
i = wi = µAi

(x1) · µBi
(x2), i = 1, 2. (4)

where wi represents a firing strength of a rule.
Layer 3: In this layer where the normalization pro-

cess is performed, the nodes are fixed. The ratio of
the i-th rules firing strength to the sum of all rules fir-
ing strengths is calculated for the corresponding node
and thus the outputs of this layer are called normalized
firing strengths:

O3
i = wi =

wi

w1 + w2
, i = 1, 2. (5)

Layer 4: The fourth layer deals with the consequent
part of the fuzzy rule. Every node i in this layer is an
adaptive node and it calculates the contribution of i-
th rule in the model output function which is defined
based on the first-order Takagi-Sugeno method as:

O4
i = wifi = wi(aix1 + bix2 + ci), i = 1, 2. (6)

where {ai, bi, ci} is the parameter set. Parameters in
this layer are referred to as consequent parameters.

Layer 5: This is the summation layer, which con-
sists of a single fixed node. It sums up all the incoming
signals and produces the output:

O5
i = y =

∑
i

wifi =

∑
i wifi∑
i wi.

(7)

From the proposed ANFIS architecture, it is ob-
served that given the values of premise parameters,
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the overall output can be expressed as a linear combi-
nations of the consequent parameters. More precisely,
the output y can be rewritten as:

y =
w1

w1 + w2
f1 +

w2

w1 + w2
f2 = w1f1 + w2f2 (8)

= (w1x1)a1 + (w1x2)b1 + w1c1

+ (w2x1)a2 + (w2x2)b2 + w1c2.

In the training process, the least squares method
(forward pass) is used to optimize the consequent pa-
rameters with the premise parameters fixed. Once the
optimal consequent parameters are found, the back-
ward pass starts immediately. The gradient descent
method (backward pass) is used to adjust optimally
the premise parameters corresponding to the fuzzy sets
in the input domain. The output of the ANFIS is cal-
culated by employing the consequent parameters found
in the forward pass. The output error is used to adapt
the premise parameters by means of a standard back
propagation algorithm.

6 Case study

According to Bergesen et al. (2013), 66% of the to-
tal energy consumption of residential buildings occurs
in the space heating sector of Norwegian residential
buildings. University campuses are specific groups
of diverse buildings, with significant energy consump-
tion, Sretenovic (2013). They consist of many differ-
ent buildings, representing small-scale town for itself.
Therefore, they provide an excellent testbed to char-
acterize and understand energy consumption of group
of mixed use buildings. Norwegian University of Sci-
ence and Technology (NTNU) campus Gløshaugen con-
sists of 35 buildings, with total area of approximately
300,000 m2. Building and Energy Management Sys-
tem (BEMS) and web-based Energy Monitoring Sys-
tem (Energy Remote Monitoring-ERM) are available
at NTNU. The Schneider ERM system is an Auto-
matic Monitoring and Targeting system with advanced
analysis features, which receives main meter and sub-
meter consumption data and provides system energy
reporting, alarming, monitoring and analysis. There
are 46 heating meters installed in campus. Hourly
heat and electricity consumption from all meters can be
collected on ERM (EnergyRemoteMonitoring (2014)).
District heating net is organized in form of the ring,
while the main heat exchanger is installed in Old elec-
tric building (Figure 2). The Main meter is installed
by the district heating supplier, so it was taken as rele-
vant. Daily heating energy consumption was analyzed
in this paper. Creating a model of energy use helps in
future building planning; it can provide useful infor-
mation about most probable energy consumption for

similar buildings, or predict energy use in different con-
ditions. Also these models can be used to show impacts
of possible energy savings measures and help in finding
optimal way of reducing energy costs. It is also very
important to have correct and reliable measured data.
If a part of a building is leased to other users (which
is the case in campus Gløshaugen), there is necessity
for calculating bills for each tenant. There is increased
interest in data error analysis and developing meth-
ods that can point out possible meters malfunction.
Also, without correct measured data it is not possible
to monitor and prove benefits of applying energy saving
measures for increasing energy efficiency. Creating rep-
resentative model of heating energy consumption can
also indicate errors in measured data.

The Old Electric 
      Building

Figure 2: University campus Gløshaugen

6.1 Data pre-processing

All weather data were gathered from the local meteo-
rological station Skjetlein AgroMetbase (2014). Heat-
ing season in Trondheim area lasts around 251 to 280
days, Tveito (2002). The heating season is defined as
the period from the day the mean daily temperature
falls below 11◦C during the autumn and until the day it
rises above 9◦C during the spring Johannessen (1956).
Based on the analysis for the period 1961-1990, the
beginning of the heating season in Trondheim is usu-
ally between 29/08-17/09, and the end of the heating
season 10/05-29/05 Tveito (2002). Considering that
the outside temperature has the biggest influence on
heating energy consumption, mean daily outside tem-
peratures for years 2006 until 2014 were investigated
in order to determine optimal number of neural net-
works. The average mean daily temperatures for the
last 8 years is shown in Figure 4. The bars show the
maximum and minimum mean daily temperature for
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Figure 3: Heating season in Norway Tveito (2002)

the specific date in the same period (years 2006-2014).
After the analysis, database is divided as follows:

• Cold period from January 1st until March 31st

and from November 1st until December 31st

• Mild period From April 1st until June 15th and
from September 16th until October 31st

• Warm period (outside of heating season) - June
15th until September 15th is excluded from the
analysis

It implicates that better prediction results can be ob-
tained using separate network models for each period
compared to using one network for all year. In this pa-
per, only the cold period (with biggest heating energy
consumption) is analyzed.

The daily heating consumption is analyzed in terms
of the type of the day. The correlation with mean daily
outside temperature for each day of the week for the
year 2012 is shown in Figure 5. Analysis showed that
there is no specific difference between the working days
(heating consumptions for Monday to Friday have sim-
ilar trendlines), while the regression lines for Saturday
and Sunday are below them, as expected. In NTNU
campus Gløshaugen, heating is not switched off during
the weekends, only the design set-point is lowered, so
the heating consumption on Monday is not significantly
different than the other working days. The analysis of
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Figure 5: Correlation of the daily heating energy con-
sumption with mean daily outside tempera-
ture for the year 2012

the daily heating consumption also showed that dur-
ing the holidays and exam periods, heating operation
is at the same level as for the working days (heating
is maintained at the designed set-point). These con-
clusions implicate that there should be two separate
networks created: one for the working days, and other
for the weekend. In this paper, the network for the
working days is analyzed.

7 ANN models development

The most important task in building an ANN predic-
tion model is the selection of input variables. Many
different studies dealing with impact of various vari-
ables on energy consumption can be found in literature.
Empirical research of the influence of hourly values of
solar radiation and wind speed on heating demands
of building complex heated by district heating system
was conducted in Wojdyga (2008). The research re-
sults confirmed the influence of increasing heat demand
in case of higher wind speeds and decreasing heat de-
mand in cases of sunny days occurring during the heat-
ing season. All input variables for the neural network
model, that are considered in this study, are: mean
daily outside temperature [◦C], mean daily wind speed
[m/s], total daily solar radiation [Wh/m2], minimum
daily temperature [◦C], maximum daily temperature
[◦C], relative humidity [%], day of the week, month of
the year and heating consumption of the previous day.
Partial autocorrelation, which measures how a series
is correlated with itself at different lags, indicate that
the heating consumption of the previous day has the
biggest influence on the heating consumption of the
observed day (Figure 6). Therefore, the heating con-
sumption of the previous day is selected as additional
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input variable. In that way, the prediction is always
done for one day ahead. For long-term forecast it is
necessary to use this model to perform prediction day
by day. However, in that case, the prediction error is
accumulated. But, even in the case of static model,
where the values of inputs and/or outputs variables of
the model for the previous day are not used, for the
prediction for longer period in advance it is necessary
to have input variables (temperature, wind speed, etc.)
for that period. One way is to develop models to sepa-
rately predict these input variables and then use them
to predict consumption, which would again result in
error being accumulated at the end.
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Figure 6: Partial autocorrelation function

The ANN architecture used in this study is a three-
layer FFNN composed of one input layer, one output
layer and one hidden layer, with LevenbergMarquardt
learning algorithm. In the hidden layer and output
layer tansig (sigmoidal) and linear (purelin) activation
functions are used. During the application study many
different values of hidden neurons were examined us-
ing trial and error method, and the best results are
achieved with one hidden layer with 10 neurons. For

training the models, data for the working days in the
cold period (from January 1st until March 31st and
from November 1st until December 31st) for years 2009,
2010 and 2011 were used (318 samples in total), and for
testing 2012 (100 samples). Data with obvious errors
and heat meter malfunctions were removed from the
dataset. To ensure that no special factor is dominant
over the others, all inputs and outputs are normalized
to the interval (0, 1) by a linear scaling function. The
prediction accuracy of all proposed models is measured
by the coefficient of determination (R2), root mean
square error (RMSE) and mean absolute percentage
error (MAPE).

7.1 Neural network ensemble

Possible improvement of the prediction accuracy by us-
ing network ensemble is examined. The application of
an ensemble technique is divided into two steps. As
the first step, after training numerous FFNNs, 50 net-
works with satisfying accuracy are selected for possible
members. The second step is the adequate combina-
tion of outputs of the ensemble members to produce
the most appropriate output. In order to improve en-
semble efficiency, we need to ensure both accuracy of
networks and diversity between individuals. The diver-
sity is achieved by appropriate selection of members
from many previously trained networks. Considering
the difficulty of selecting diversity and accuracy at the
same time, we can apply an easier method to gradually
achieve both goals. First, we employ clustering tech-
nology to divide all networks into some groups (clus-
ters) according to similarity of the networks. Then,
one most accurate individual in each group on the val-
idation set is selected. Finally, all selected individuals
construct the ensemble, as it can be seen in Figure 7.

There are different methods for combining the out-
puts. The conventional approach is to use averaging:
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Figure 7: Proposed neural network ensemble

simple or weighted. The other method, multistage ap-
proach, which is expected to give an even better im-
provement in accuracy, would be to use another neu-
ral network as an integrator of the individual classi-
fiers. Two different network architectures are proposed
in second stage: FFNN and ANFIS. Generally, struc-
ture identification in fuzzy modelling involves several
tasks: selecting input variables, input space partition-
ing, choosing the number and types of membership
function for inputs, creating fuzzy rules an selecting
initial parameters for membership function. In this
paper, different ANFIS models are constructed using
three different identification methods: grid partition-
ing, subtractive clustering and fuzzy C-means cluster-
ing. In the grid partitioning method, the domain of
each antecedent variable is partitioned into equidistant
and identically shaped membership functions, which
are previously defined. To demonstrate the effect of
choice of MF on the model performance three different
functions are tested: the triangular MF (trimf), the
generalized bell MF (gbellmf) and the Gaussian MF
(gaussmf). The number of MFs for each of the input
of ANFIS is set to 2. Fuzzy C-means (FCM), devel-
oped by Dunn (1973) and improved by Bezdek (1981),
clusters the data by minimizing the total distance of
each data point to the cluster centers, wherein each
data point belongs to a cluster to some degree that is
specified by a membership grade. Subtractive cluster-
ing is one of the automated data-driven based methods
for constructing the primary fuzzy models proposed by
Chiu (1994). It is a fast, one-pass algorithm for esti-
mating the number of clusters and the cluster centers
in a set of data, based on the density of data points
in input space. As a results, fuzzy model with mini-
mum number of rules is obtained. In the second stage,
FFNN with the same architecture as in the first stage
is used. All proposed ensembles that are analyzed and
compared with the best trained single FFNN:

1. Conventional ensemble:

• simple average

• weighted average

2. ANFIS multistage:

• ANFIS trimf

• ANFIS gbellmf

• ANFIS gaussmf

• ANFIS FCM

• ANFIS SUB

3. FFNN multistage

8 Results and discussion

Most critical task in selection of user-specified param-
eters required by k-means algorithm is the choice of
number of clusters. Since there is no perfect mathe-
matical criterion, numerous heuristics and index meth-
ods are available in literature. The other way is to run
k-means independently for different cluster numbers,
and select the one where ensemble prediction achieves
best results. The grid partitioning is only suitable for
cases with small number of input variables, because the
number of fuzzy rules increases exponentially when the
number of fuzzy rules increases (curse of dimensional-
ity problem). In this study, number of input variables
for second stage neural network is defined by the num-
ber of clusters used in k-means clustering. Due to the
mentioned curse of dimensionality problem, number of
clusters is varied from 2 to 6, so different multistage
ANFIS methods can be equally compared.

The number of networks in the ensemble is equal
to cluster number because one best network in each
cluster is selected to join the ensemble. In Table 1 and
Table 2 prediction indices for training and testing the
models, respectively, are presented.

The presented results show that all neural network
models can predict heating consumption with satisfy-
ing accuracy. Even the single best trained FFNN gives
satisfactory values of 0.9773 for R2 and 6.3049% for
MAPE in testing period. Both conventional methods
for creating ensemble show improvement in accuracy,
with weighted average for 6 clusters (ensemble mem-
bers) R2 raised to 0.9818, while MAPE is 5.6270%.
Further enhancement can be achieved by second layer
network used to combine the outputs of the individ-
ual ensemble members, both FFNN and ANFIS. The
main idea of this paper is not to specify the best sec-
ond stage NN architecture, optimal membership func-
tion, or ANFIS clustering type, but to show the general
ability of various multistage ensembles to successfully
predict heating consumption. The best result for R2

is 0.9829, achieved with multistage FFNN with 6 clus-
ter, and lowest MAPE is 5.3383%, using ANFIS-FCM
multistage. In all models, ensemble has proven its pre-
eminence comparing to the best trained single FFNN.
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Table 1: Prediction indices for training networks

Number of clusters 2 3 4 5 6

R2

[−]

Best FFNN 0.9850 0.9850 0.9850 0.9850 0.9850
Ensemble SAV 0.9866 0.9863 0.9863 0.9866 0.9866
Ensemble WAV 0.9866 0.9863 0.9865 0.9870 0.9870
MS ANFIS-trimf 0.9869 0.9878 0.9883 0.9893 0.9899
MS ANFIS-gbellmf 0.9873 0.9874 0.9882 0.9897 0.9907
MS ANFIS-gaussmf 0.9872 0.9875 0.9880 0.9899 0.9904
MS ANFIS-FCM 0.9868 0.9869 0.9869 0.9880 0.9883
MS ANFIS-SUB 0.9871 0.9872 0.9867 0.9875 0.9875
MS ANFIS-FFNN 0.9870 0.9864 0.9867 0.9875 0.9874

RMSE
[kWh]

Best FFNN 6942.4 6942.4 6942.4 6942.4 6942.4
Ensemble SAV 6445.8 6648.0 6524.1 6417.6 6407.0
Ensemble WAV 6447.2 6550.4 6440.4 6312.2 6294.6
MS ANFIS-trimf 6309.7 6097.1 5974.1 5710.8 5543.0
MS ANFIS-gbellmf 6216.2 6188.3 5999.3 5584.7 5314.8
MS ANFIS-gaussmf 6233.9 6167.6 6038.1 5550.6 5393.8
MS ANFIS-FCM 6331.7 6322.3 6310.3 6029.4 5961.2
MS ANFIS-SUB 6275.7 6246.1 6352.4 6174.2 6163.2
MS ANFIS-FFNN 6378.9 6508.1 6357.5 6173.5 6273.3

MAPE
[%]

Best FFNN 3.5614 3.5614 3.5614 3.5614 3.5614
Ensemble SAV 3.3706 3.3524 3.2418 3.2276 3.2403
Ensemble WAV 3.3654 3.3193 3.2169 3.2278 3.2329
MS ANFIS-trimf 3.2178 3.0928 3.0103 2.8664 2.8095
MS ANFIS-gbellmf 3.1658 3.1239 3.0692 2.8454 2.7584
MS ANFIS-gaussmf 3.1765 3.1088 3.0536 2.8347 2.7766
MS ANFIS-FCM 3.3056 3.1718 3.1570 2.9960 2.9922
MS ANFIS-SUB 3.2882 3.1196 3.1711 3.0835 3.0892
MS ANFIS-FFNN 3.2621 3.2684 3.1456 3.1479 3.2779
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Figure 8: Prediction results of multistage ensemble ANFIS FCM with 5 clusters for training period
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Table 2: Prediction indices for testing networks

Number of clusters 2 3 4 5 6

R2

[−]

Best FFNN 0.9773 0.9773 0.9773 0.9773 0.9773
Ensemble SAV 0.9806 0.9804 0.9803 0.9811 0.9816
Ensemble WAV 0.9806 0.9801 0.9801 0.9814 0.9818
MS ANFIS-trimf 0.9802 0.9803 0.9804 0.9803 0.9803
MS ANFIS-gbellmf 0.9809 0.9814 0.9808 0.9796 0.9792
MS ANFIS-gaussmf 0.9803 0.9814 0.9808 0.9806 0.9814
MS ANFIS-FCM 0.9810 0.9813 0.9802 0.9814 0.9811
MS ANFIS-SUB 0.9815 0.9813 0.9801 0.9818 0.9818
MS ANFIS-FFNN 0.9807 0.9811 0.9807 0.9810 0.9829

RMSE
[kWh]

Best FFNN 9829.7 9829.7 9829.7 9829.7 9829.7
Ensemble SAV 9101.2 9466.1 9044.5 8877.1 8710.5
Ensemble WAV 9065.5 9228.0 8902.9 8720.5 8644.3
MS ANFIS-trimf 8556.0 8757.7 8658.3 8510.9 8510.6
MS ANFIS-gbellmf 8405.1 8460.1 8666.9 8604.8 8583.9
MS ANFIS-gaussmf 8476.3 8572.5 8564.6 8608.8 8334.5
MS ANFIS-FCM 8674.8 8650.7 8618.7 8221.2 8237.6
MS ANFIS-SUB 8584.1 8609.2 8715.2 8402.6 8375.3
MS ANFIS-FFNN 8639.6 9101.1 8884.2 8544.3 8813.3

MAPE
[%]

Best FFNN 6.3049 6.3049 6.3049 6.3049 6.3049
Ensemble SAV 5.8460 6.2800 6.0255 5.8500 5.7336
Ensemble WAV 5.8198 6.0304 5.9122 5.6944 5.6270
MS ANFIS-trimf 5.5213 5.6406 5.7413 5.6930 5.6309
MS ANFIS-gbellmf 5.3742 5.4347 5.6460 5.5810 5.6839
MS ANFIS-gaussmf 5.4119 5.5030 5.5998 5.5332 5.3887
MS ANFIS-FCM 5.5972 5.5766 5.6459 5.3810 5.3883
MS ANFIS-SUB 5.5521 5.4382 5.7044 5.4872 5.5686
MS ANFIS-FFNN 5.6625 5.8751 5.7089 5.6053 5.7987
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Figure 13: Prediction results of multistage ensemble ANFIS FCM with 5 clusters for testing period
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Figure 9: R2 for different cluster number for training
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Figure 10: R2 for different cluster number for testing
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Figure 11: MAPE for different cluster number for
training

The accuracy of the proposed models in terms of co-
efficient of determination (R2), while varying ensemble
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Figure 12: MAPE for different cluster number for
testing

members can be seen in Figure 9 (training) and Fig-
ure 10 (testing). MAPE for different cluster numbers
for training and testing period are shown in Figure 11
and Figure 12, respectively. Figure 8 and Figure 13
present the comparison of the prediction results using
multistage ensemble ANFIS FCM of 5 neural networks
with the actual measured heating energy consumption
data for the training and test period, respectively.

9 Conclusion

For the prediction of heating energy consumption in
NTNU campus Gløshaugen, 50 different FFNNs are
trained based on the coldest period in years 2009, 2010
and 2011 (318 samples), and tested for year 2012 (100
samples). Improvement in prediction accuracy using
neural network ensemble is investigated. The main
task in this method is achieving both accuracy and
diversity of ensemble members. The accuracy is ob-
tained by using adequate training algorithm and se-
lecting number of neurons in hidden layer by trial and
error method. K-means, as one of the most used clus-
tering technique is used for separating trained networks
into groups (clusters), and the best network in each
cluster is selected for the ensemble member. Members
are then aggregated into ensemble using various tech-
niques: conventional methods (simple and weighted av-
eraging) and multistage. Averaging the predictions of
these networks resulted in an improvement in accu-
racy over the predictions of the best trained individual
FFNN. Further improvement is obtained by training
new neural network to combine the predictions of the
original networks. In second level two different neural
networks are analyzed: FFNN and ANFIS. Different
ANFIS models are constructed using various identifi-
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cation methods: different membership functions (trimf,
gbellmf, gaussmf), fuzzy C-means clustering (FCM)
and subtractive clustering (SUB). All ensembles are
trained and tested for various number of clusters. Mul-
tistage model, using ANFIS in second level is proven
to be most effective. In this paper we have demon-
strated that multistage ensembles, where the adaptive
properties of a second layer network are used to com-
bine the outputs of the individual ensemble members,
offer enhanced performance over conventional combin-
ing methods and best trained single network.
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