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Abstract

This paper presents a method for optimizing the design of a multicopter unmanned aerial vehicle (UAV,
also called multirotor or drone). In practice a set of datasheets is available to the designer for the
various components such as battery pack, motor and propellers. The designer can not normally design
the parameters of the actuator system freely, but is constrained to pick components based on available
datasheets. The mixed-integer programming approach is well suited to design optimization in such cases
when only a discrete set of components is available. The paper also includes an experimental section where
the simulated dynamic responses of optimized designs are compared against the experimental results. The
paper demonstrates that mixed-integer programming is well suited to design optimization of multicopter
UAVs and that the modeling assumptions match well with the experimental validation.

Keywords: Multicopter, multirotor, drone, UAV, mathematical modeling, design optimization, experi-
mental validation.

Nomenclature

ω Speed: [rad/s]

ρ Density of air

Bi,Ah, Bi,V Battery i Ah and voltage

Cp Power coefficient

Ct Thrust coefficient

Di Diameter of propeller i

F, Freq Propeller thrust

g Gravity constant

im, τm Motor current and torque

J Total inertia

Jm,i Inertia of motor i

Jp,i Inertia of propeller i

Lf (D,Na) Length of frame as function of diameter
and number of actuators

mL Mass of payload

mb,i Mass of battery i

mm,i Mass of motor i

mp,i Mass of propeller i

n Speed: Revolutions per second

Na Number of actuators

Pb,i, Pm,i, Pp,i Price of battery, motor, propeller i

Ra,Ke,Kt Motor constants

T Actuator torque

Vi, Vm Supply and motor voltages

W Power
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1 Introduction

The interest in multicopters (also called multirotors or
drones) has increased significantly in recent years, both
in academic research and in commercial applications.
One example is the Prime Air multicopter by Amazon,
see Fig. 1 and Amazon (2015). Other examples are the
multicopters designed and developed to demonstrate
acrobatic abilities, see for example Hehn and D’Andrea
(2014) and the references therein. Despite the large
number of published works, very little is published on
design optimization of multicopters given an intended
application and desired performance specifications.

In Magnussen et al. (2014) a concept for design opti-
mization of a multicopter based on mixed-integer pro-
gramming was presented. In the current paper the
same concept is described in more detail giving all the
necessary information to allow a design engineer to re-
peat the design procedure. In normal practice, a set of
datasheets of components such as battery pack, motors
and propellers is available to the designer. Variables
such as thrust per propeller or motor torque can not
be designed freely, but must be chosen from a fixed set
of available datasheets. The mixed-integer program-
ming framework solves optimization problems that fall
within this category. Certain variables are constrained
to be discrete (for example a Boolean variable indi-
cating selection of a particular component represented
by a datasheet) while others are continuous variables
(for example total weight and flight time). As demon-
strated in the paper, the mixed-integer linear program-
ming framework also allows for approximation of non-
linear functions. A nonlinear function is approximated
by a set of discrete regions of the y-axis, each rep-
resented by a linear function. The accuracy of the
approximation can be adjusted by changing the total
number of linearized regions.

Numerical methods for nonlinear optimization nor-
mally suffer from drawbacks such as long computa-
tion times and the fact that the methods can end
up in undesirable sub-optimal local minima. Exam-
ples are Newton-Raphson gradient search methods and
evolutionary-based search methods, such as the Com-
plex method, see for example Whitney (1969) and
Tyapin and Hovland (2009) where the optimization
algorithm took several hours to converge towards an
acceptable but sub-optimal solution. A linear pro-
gram (LP) on the other hand, using the interior point
method, can be solved in polynomial time, see Kar-
markar (1984). The solution of an LP with a large
number of variables can be found quickly using com-
mercial solvers such as IBM CPLEX, see IBM (2015).
The solution of a mixed-integer linear program (MILP)
is built on an LP solver and techniques such as branch-
and-bound. The optimization solver formulated in this

Figure 1: Example of multirotor UAV design by Ama-
zon for transport and delivery of parcels.

way can handle nonlinear function approximations and
discrete design variables and returns a repeatable so-
lution in relatively short time compared to an itera-
tive nonlinear search algorithm where the solution can
vary from run to run, depending on the initial condi-
tions. It should be noted, however, that mixed-integer
optimization problems are NP-hard, see for example
Clausen (1999).

The paper also contains a section presenting experi-
mental validation of the performance of the multicopter
actuators. Both the actuator rise-time constants and
the total flight time used in the design optimization
procedure are compared with the same parameters es-
timated from real measurements using the various com-
ponents available to the designer. The validation com-
pares the performance of four propellers and three mo-
tors against the simulation model in three different test
cases: I) Longest possible flight time, no payload, II)
Longest possible flying time, 1.5kg payload and III)
Fastest possible motor response, no payload. For the
three test cases, optimized solutions were calculated
for multicopters with 4, 6 and 8 actuators, giving a
total of 9 potentially different designs. The results
demonstrate that the simulation model matches well
with the experiments. The experimental validation in-
creases the reliability of the optimization results.

The paper is organized as follows: in Section 2 a
dynamic model of a multicopter actuator is presented.
Section 3 gives a detailed description of the design op-
timization procedure. Section 4 presents results from
the experimental validation based on three different
test cases. Discussion and conclusions are presented
in Section 5.
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2 Modeling

A Simulink model of the multicopter actuator is shown
in Fig. 2. The model generates the simulated thrust
response for the 9 different test cases used in this paper
(test cases I, II and III with 4, 6 and 8 actuators). The
propeller thrusts from the simulation model are later
compared with experiments (force measurements using
a load cell mounted underneath the actuator). The
propeller thrust is calculated from eq. (1):

F = Ct · ρ · n2 ·D4 (1)

where Ct is the thrust coefficient, ρ is the density of air,
n is the rotor speed (rev/sec) and D is the propeller
diameter. The actuator power W and torque T are
calculated from eqs. (2)-(3):

W = Cp · ρ · n3 ·D5 (2)

T =
W

ω
(3)

where Cp is the power coefficient and w = 2πn is the
rotor speed (rad/sec). The motor controller and actu-
ator dynamics are given by the equations below:

Vm = Vi −Keω (4)

im =
Vm
Ra

(5)

τm = Kt · im (6)

dω

dt
=

1

J
(τm − T ) (7)

where J is the total inertia, Vm, im, τm are the motor
voltage, current and torque, Ke, Kt and Ra are motor
parameters and Vi is the supply voltage from the mo-
tor controller. Mechanical friction is not included in
the dynamic model in eq. (7), since this information is
difficult to obtain from the manufacturer’s datasheets.
Eqs. (1)-(7) are implemented in the Simulink model in
Fig. 2.

By combining eqs. (2)-(7) and using the fact that for
DC motors the motor torque and back emf constants
are equal, that is, Kt = Ke, the following transfer func-
tion can be defined:

ω

Vi
(s) =

Kt(
JRa

K2
t +DωRa

)
s+ 1

(8)

where Dω = T
ω =

ρCpn
3D5

ω2 . Assuming constant pa-
rameters in eq. (8), the time-constant would be tr =

JRa

K2
t +DωRa

. Since Dω is a function of the propeller

speed, this time-constant is an estimation.

3 Design Optimization

A quadratic program is defined as follows:

min xTQx + gTx (9)

subject to : Ax ≤ b (10)

where x ∈ Rn is the state vector to be solved, Q ∈
Rn×n is a positive semi-definite penalty matrix, g ∈ Rn
is a penalty vector, A ∈ Rm×n is the constraint ma-
trix while b ∈ Rm is the constraint vector. When the
penalty matrix Q = 0, eqs. (9)-(10) reduce to a linear
program. When some elements xi where i ∈ [1, · · · , n]
are constrained to be integer variables, eqs. (9)-(10)
are called mixed integer quadratic program (MIQP) or,
when Q = 0, mixed integer linear program (MILP).

By constraining the integer variables further to ac-
cept only Boolean values (0 or 1), logical constraints
can be incorporated and linked with the continuous
variables in the optimization problem. The following
rules 1 and 4 are taken from Bemporad and Morari
(1999) and Mignone (2002). Rules 19a and 19b are
modified compared to Mignone (2002) (δ = 0 instead
of δ = 1). In the rule definitions below the following
notation is used:

m = min
x∈X

f(x)

M = max
x∈X

f(x)

ε denotes a small, real, positive constant,

typically the machine precision.

It should be noted that equality constraints of the type
ax = b must be converted to two inequality constraints
ax ≤ b and −ax ≤ −b to satisfy eq. (10). However,
the solver used (CPLEX) allows specification of both
equality and inequality constraints.

Product of Boolean variable and function of
continuous variables.

z = δ · f(x)

or

IF [δ == 1] THEN z = f(x)

ELSE z = 0

is equivalent to

−Mδ + z ≤ 0

mδ − z ≤ 0

−mδ + z ≤ f(x)−m
Mδ − z ≤ −f(x) +M

Rule 1: Product of δ and f(x)
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Figure 2: Simulink implementation of multirotor actuator dynamics.

Product of several Boolean variables and func-
tion of continuous variables.

z =

(
n∧
i=1

δi

)
· f(x)

or

IF

[(
n∧
i=1

δi

)
== 1

]
THEN z = f(x)

ELSE z = 0

is equivalent to

z + M̃

(
n∑
i=1

δi

)
≤ f(x) + nM̃

z ≤ f(x) + M̃

−z − m̃

(
n∑
i=1

δi

)
≤ −f(x)− nm̃

−z ≤ −f(x)− m̃
z + m̃δ1 ≤ 0

...

z + m̃δn ≤ 0

−z − M̃δ1 ≤ 0
...

−z − M̃δn ≤ 0

where M̃ = max(0,−m), m̃ = min(0,−M).

Rule 4: Product of several δ’s and f(x)

The scalar y ≥ 0 equals the nonlinear function
g(·) of the scalar x ∈ [0, xmax]. The set z ap-
proximates g(x) by using a set of straight line
segments a ∈ {a1, · · · , aN}, k ∈ {k1, · · · , kN}.
Only one of the Boolean variables in the set
δ ∈ {δ1, · · · , δN} is true and specifies which
element in z ∈ {z1, · · · , zN} is used. M =
max(g(x)). The nonlinear function approxi-
mation builds on rules 1, 19a and 19b in the
equations below:

z1 = δ1(a1x+ k1)

...

zN = δN (aNx+ kN )

[z1 ≤ 0] → [δ1 = 0][
z1 ≥

M · 1
N

]
→ [δ1 = 0]

...[
zN ≤

M · (N − 1)

N

]
→ [δN = 0]

[zN ≥M ] → [δN = 0]
N∑
i=1

δi = 1

y =

N∑
i=1

zi

Nonlinear positive function: y = g(x)
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Implication.

[f(x) ≤ fL]→ [δ = 0]

is equivalent to

Mδ ≤ f(x)− fL +M + ε

Rule 19a: Implication of f(x) ≤ fL

Implication.

[f(x) ≥ fU ]→ [δ = 0]

is equivalent to

Mδ ≤ −f(x) + fU +M − ε

Rule 19b: Implication of f(x) ≥ fU

x 

y 

g(x) 

M 

12 

13 

14 

z1 = 12(a1x+k1) 

z2 = 13(a2x+k2) 

z3 = 14(a3x+k3) 

M2 
3 

M1 
3 

0 

Figure 3: Illustration of mixed-integer linear approxi-
mation of a nonlinear positive function g(x)
with three regions (δ12, δ13 and δ14).

Fig. 3 illustrates how a nonlinear function can be
approximated using a combination of discrete and con-
tinuous variables. In this example three regions δ12,
δ13 and δ14 are chosen to approximate the nonlinear
function g(x). The δ’s are chosen to represent an equal
spacing on the y-axis in the figure. In each region rep-
resented by δi a linear approximation zi = δi(aix+ ki)
is used.

The objective function gTx in eq. (9) can be de-
fined as shown in Table 1 depending on the applica-
tion’s requirement specifications. For payload transfer
and package delivery, for example, the longest possi-

Criterion Objective function
Min. Time-constant gTx = x16
Min. Power gTx = x17
Min. Price gTx = x3
Max. Flight-time gTx = x21
Min. Inertia Roll gTx = x13
Min. Inertia Pitch gTx = x14

Table 1: Different candidate objective functions to be
minimized/maximized depending on the re-
quirement specifications.

Variables Description
δ1 · · · δ4 Propeller 1-4 selection
δ5 · · · δ7 Motor 1-3 selection
δ8 · · · δ11 Battery 1-4 selection
δ12 · · · δi1 Used to calculate n3

δi1+1 · · · δi2 Used to calculate inertia (roll)
δi2+1 · · · δi3 Used to calculate inertia (pitch)

Table 2: Boolean decision variables. If δ = 1, then the
corresponding component/region is selected.
If δ = 0, the component/region is not selected.

ble flight time or smallest possible power consumption
may be desirable objectives. For acrobatics, on the
other hand, the designer may instead want to select
the solution giving the smallest possible time-constant
or smallest possible roll and pitch inertias.

For the multirotor design optimization, the Boolean
decision variables δi are defined as shown in Table 2
and the continuous variables xi are defined as shown
in Table 3. The complete mixed-integer state vector x
introduced in eq. (9) is defined as follows:

x = [δ1 · · · δi3 , x1 · · ·xj12 ]
T

(11)

The indices i and j of discrete and continuous variables
are summarized in Table 4. Three different MILPs are
created. One with the number of actuators constrained
to Na = 4, one with Na = 6 and one with Na = 8.
The total number of discrete and continuous variables
varies between the three programs and is equal to 1795,
2444 and 3091, respectively. To avoid multiplication of
several free variables in the constraints, it was decided
to create three separate MILPs rather than creating
one optimization program with Na as a free variable.
To find the optimal solution, the three MILPs are run
separately and the solution with the lowest objective
function value is chosen.

In the following, the complete set of constraints used
in the multicopter design optimization is listed. The
constraints make use of the rules 1, 4, 19a, 19b and the

71



Modeling, Identification and Control

Variables Description
x1 Total weight
x2 Weight of actuator (motor+prop.)
x3 Total price
x4 Force to lift
x5 n2

x6 n3

x7 Length of frame
x8 Weight of frame
x9 Actuator roll inertia
x10 Actuator pitch inertia
x11 Frame roll inertia
x12 Frame pitch inertia
x13 Total roll inertia
x14 Total pitch inertia
x15 Actuator rotational inertia Jm + Jp
x16 Actuator rise-time constant
x17 Propeller power
x18 Current consumption
x19 Required Ah
x20 Battery Ah
x21 1 / Flight Time

x22 · · ·x25 n2 for each propeller type
x26 · · ·x28 Set of motor inertias Jm
x29 · · ·x32 Set of propeller inertias Jp
x33 · · ·x36 Set of battery Ah’s
x37 · · ·x40 Set of power values
x41 · · ·x44 Set of current values
x45 · · ·x48 Set of 1 / flight times
x49 · · ·x96 Set of time-constants
x97 · · ·xj1 Distance from cg perp. to roll axis
xj1+1 · · ·xj2 Distance from cg perp. to pitch axis
xj2+1 · · ·xj3 Distance2 from cg perp. to roll axis
xj3+1 · · ·xj4 Distance2 from cg perp. to pitch ax.
xj4+1 · · ·xj5 Set of actuator roll inertias
xj5+1 · · ·xj6 Set of actuator pitch inertias
xj6+1 · · ·xj7 Set of frame roll inertia
xj7+1 · · ·xj8 Set of frame pitch inertia
xj8+1 · · ·xj9 Set of frame lengths
xj9+1 · · ·xj10 Actuator Distance2 Roll z-set
xj10+1 · · ·xj11 Actuator Distance2 Pitch z-set
xj11+1 · · ·xj12 RPM z-set for n3, calc. from n2

Table 3: Continuous variables used in the design opti-
mization. ”cg perp. to” = ”center of gravity
perpendicular to”.

Index Na = 4 Na = 6 Na = 8
i1 241 241 241
i2 561 721 881
i3 881 1201 1521
j1 98 99 100
j2 100 102 104
j3 102 105 108
j4 104 108 112
j5 106 111 116
j6 108 114 120
j7 110 117 124
j8 112 120 128
j9 114 123 130
j10 274 283 290
j11 594 763 930
j12 914 1243 1570

Table 4: Optimization indices for Na = 4, 6 and 8 ac-
tuators.

nonlinear function approximation defined earlier in this
section.

Boolean variable constraints:

0 ≤ δi ≤ 1 (12)
4∑
i=1

δi = 1

7∑
i=5

δi = 1 (13)

11∑
i=8

δi = 1

i1∑
i=12

δi = 1 (14)

i2∑
i=i1+1

δi = 1

i3∑
i=i2+1

δi = 1 (15)

Total weight and price:

x2 = Na

(
4∑
i=1

(mp,iδi) +

7∑
i=5

(mm,iδi)

)
(16)

x1 = x2 + x8 +

11∑
i=8

(mb,iδi) (17)

x3 = Na

(
4∑
i=1

(Pp,iδi) +

7∑
i=5

(Pm,iδi)

)
+

11∑
i=8

(Pb,iδi)

(18)
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Individual propeller thrust and n2:

x4 = (x1 +mL) g (19)

x22 =
1

NaρCt,1D4
1

δ1x4 (20)

...

x25 =
1

NaρCt,4D4
4

δ4x4 (21)

x5 =

25∑
i=22

xi (22)

Frame length and weight:

xj8+1 = Lf (D,Na)δ1 (23)

...

xj9 = Lf (D,Na)δ4 (24)

x7 =

j9∑
i=j8+1

xi (25)

x8 = mFNax7 (26)

Rotational inertia of motors and propellers:

x26 = Jm,1δ5 (27)

...

x28 = Jm,3δ7 (28)

x29 = Jp,1δ1 (29)

...

x32 = Jp,4δ4 (30)

x15 =

32∑
i=26

xi (31)

Time constants:

Freq = (Na(mp,1 +mm,1) +mb,1 +mL)
g

Na
(32)

n =

√
Freq

Ct,1ρD4
1

(33)

Dω =
ρCp,1n

3D5
1

(2πn)2
(34)

x49 = δ1δ5δ8

(
Ra,1(Jm,1 + Jp,1)

Ra,1Dω +K2
t,1

)
(35)

...

Freq = (Na(mp,4 +mm,3) +mb,4 +mL)
g

Na
(36)

n =

√
Freq

Ct,4ρD4
4

(37)

Dω =
ρCp,4n

3D5
4

(2πn)2
(38)

x96 = δ4δ7δ11

(
Ra,3(Jm,3 + Jp,4)

Ra,3Dω +K2
t,3

)
(39)

x16 =

96∑
i=49

xi (40)

x16 ≤ τmax (41)

It should be noted here that the time-constants calcu-
lated in eqs. (35) and (39) are estimates based on the
linear transfer function in eq. (8). If real measurements
of the time-constants were available for each combi-
nation of battery, motor and propeller, these time-
constants would be used in x49 · · ·x96 instead of the
estimates based on the datasheet information.

Calculate square of roll & pitch lengths: These
constraints use the nonlinear function approxima-
tion rules. The corresponding Boolean variables are
{δi1+1, · · · δi2} and {δi2+1, · · · δi3}. The corresponding
z-value sets are {xj9+1, · · ·xj10} and {xj10+1, · · ·xj11}.

xj2+1 = x297 (42)

...

xj3 = x2j1 (43)

xj3+1 = x2j1+1 (44)

...

xj4 = x2j2 (45)

Actuator Roll Inertia (m · R2): The factor 2 in
eq. (48), (51), (54) and (57) is used because there are
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two actuators per frame arm.

xj4+1 = δ1δ5(mp,1 +mm,1)xj2+1 (46)

...

xj5 = δ4δ7(mp,4 +mm,3)xj3 (47)

x9 = 2

j5∑
i=j4+1

xi (48)

Actuator Pitch Inertia (m ·R2):

xj5+1 = δ1δ5(mp,1 +mm,1)xj3+1 (49)

...

xj6 = δ4δ7(mp,4 +mm,3)xj4 (50)

x10 = 2

j6∑
i=j5+1

xi (51)

Frame Roll Inertia:

xj6+1 =
1

3
Lf (D1, Na)mF δ1xj2+1 (52)

...

xj7 =
1

3
Lf (D4, Na)mF δ4xj3 (53)

x11 = 2

j7∑
i=j6+1

xi (54)

Frame Pitch Inertia:

xj7+1 = Lf (D1, Na)mF δ1xj3+1 (55)

...

xj8 = Lf (D4, Na)mF δ4xj4 (56)

x12 = 2

j8∑
i=j7+1

xi (57)

Total Roll & Pitch Inertias:

x13 = x9 + x11 (58)

x14 = x10 + x12 (59)

Calculation of n3: This constraint uses the nonlin-
ear function approximation rules. The corresponding
Boolean variables are {δ12, · · · δi1}. The corresponding
z-value set is {xj11+1, · · ·xj12}.

x6 = x1.55 (60)

Propeller Power:

x37 = CpρD
5
1δ1x6 (61)

...

x40 = CpρD
5
4δ4x6 (62)

x17 =

40∑
i=37

xi (63)

Battery Ah:

x33 = B1,Ahδ8 (64)

...

x36 = B4,Ahδ11 (65)

x20 =

36∑
i=33

xi (66)

Current Consumption:

x41 =
Na
B1,V

δ8x17 (67)

...

x44 =
Na
B4,V

δ11x17 (68)

x18 =

44∑
i=41

xi (69)

Calculate Ah:

x19 =

(
TF
60

)
x18 (70)

x20 = x19 (71)

Calculate the Inverse of Flight Time = A / Ah:

x45 =
x18
B1,Ah

δ8 (72)

...

x48 =
x18
B4,Ah

δ11 (73)

x21 =

48∑
i=45

xi (74)

4 Experimental Results

The purpose of the experiments presented in this sec-
tion is to validate the models and assumptions used in
the mixed-integer optimization presented in section 3.
The experimental setup is shown in Fig. 4. The valida-
tion presented in this paper has chosen both the 63%
rise time of the actuator thrust as well as the total
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flight time as the parameters to compare against the
simulation model in Fig. 2. The rise times are mea-
sured directly from step responses in thrust, while the
total flight time is estimated via the measured current
when the step responses have reached steady-state.

Figure 4: Experimental setup for validation. A: Digi-
tal/analog IO card, B: Load cell amplifier, C:
Current sensor, D: Battery pack, E: Motor
controller, F: Propeller, G: Motor, H: Load
cell.

Three different optimization test cases were studied,
as summarized below:

• I: Longest possible flying time, no payload

• II: Longest possible flying time, 1.5kg payload

• III: Fastest possible motor response, no payload

The design optimization was constrained to use ei-
ther 4, 6 or 8 actuators in the multicopter. Sec-
tion 4.1 contains a summary of the different compo-
nents (datasheets) available for the design optimiza-
tion. The experimental results for each test case are
summarized in sections 4.2, 4.3 and 4.4.

4.1 Summary of Datasheets

The available datasheets are summarized in Table 5, 6
and 7. In total three motors (see Fig. 5), four propellers
(see Fig. 6) and four batteries were available (the same
as in the design optimization procedure in section 3,
Table 2). Since all the batteries have a supply voltage
of 11.1V and the experiments focused on validation of
the 63% rise-time constant and flight time estimated
via the measured current, the same battery could be
used in all the tests, see Fig. 7. The selection of bat-
tery in the experiments did not have an impact on the
estimated time-constants and total flight time.

Figure 5: Three different motors used in the design op-
timization and validation tests.

Figure 6: Four different propellers used in the design
optimization and validation tests.

Figure 7: Battery used in the design validation tests.
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Motor [#] 1 2 3
Model 4108-380KV Turnigy 4108-480KV Turnigy 4108-600KV Turnigy
Kt,i 380 480 600
Ra,i (Ω) 0.222 0.148 0.123
mm,i (g) 111 111 111
imax,i (A) 17 22 26
Pmax,i (W) 360 380 400
Dm,i (m) 0.047 0.047 0.047
Sl,i (m) 0.012 0.012 0.012
Sw,i (m) 0.004 0.004 0.004
ρm,i (kg/m3) 6800 6800 6800
Pm,i ($) 31.36 31.36 31.36

Table 5: Datasheets: Motors. mm,i is the motor weight, Dm,i is the motor diameter, Sl,i,Sw,i are the shaft
length and width, ρm,i is the material density of the motor and Pm,i is the motor price.

Battery [#] 1 2 3 4
mb,i (g) 309 618 1236 308
Bi,Ah (mAh) 4000 8000 16000 3300
Bi,V (V) 11.1 11.1 11.1 11.1
Bi,imax (A) 100 200 400 105
Pb,i ($) 25.5 51.0 102.0 26.7

Table 6: Datasheets: Batteries. mb is the weight of the battery, while Pb is the price.

4.2 Test Case I

In this test case the design was optimized for the
longest possible flying time and no payload. As seen
in Table 8, propeller 4 was chosen when the design was
constrained to use 4 and 8 actuators, while propeller 3
was chosen with 6 actuators. Motor 3 was chosen with
4 and 6 actuators, while motor 2 was chosen with 8 ac-
tuators. Battery 3 was chosen regardless of the number
of actuators being 4, 6 or 8. Battery 3 has the high-
est capacity (16000 mAh), but also the highest weight.
The selection of the battery with the highest capacity
is not obvious. The solution with 4 actuators has both
the longest flight time and the lowest price, so it is the
prefered design in Test Case I.

Fig. 8 illustrates the experimental results from Test
Case I. The black curves show the simulated thrust re-
sponse when using the Simulink model in Fig. 2 with
either 4, 6 or 8 actuators. The red curves show the
measured thrust response under acceleration, while the
green curves show the measured curves under deceler-
ation. Note that the green curves are inverted about
the steady-state value for easier comparison with the
acceleration and the simulated response. The circles
in the figure represent the values at the 63% rise time.
The experimental results confirm that a linear model
assumption is appropriate for the multicopter actuator,
consisting of battery pack, controller, motor and pro-
peller as shown in Fig. 4. Tables 11 and 12 summarize

Propeller [#] 1 2 3 4
mp,i (g) 12 14 18 25
Dp,i (m) 0.254 0.2794 0.3048 0.3556
Ct,i (m) 4.7 4.7 4.7 4.7
Cp,i (m) 0.1222 0.1156 0.1146 0.1027
pi (deg) 10 11 12 14
Pp,i($) 4.7 5.0 5.6 7.8

Table 7: Datasheets: Propellers. mp,i is the weight of the propeller, pi is the pitch angle of the blade and Pp,i is
the propeller price.
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Figure 8: Thrust response per propeller, Test Case I.
Top: 4 Actuators, Middle: 6 Actuators, Bot-
tom: 8 Actuators. Blue: Input, Red: Accel-
eration, Green: Deceleration, Black: Simula-
tion model. The circles represent the thrust
at the 63% rise time.

the three different rise times (simulation, acceleration,
deceleration). For Test Case I the simulated rise times
are slightly faster than the measured values, ranging
from 30 to 42ms faster.

Number of Actuators 4 6 8
Propeller chosen [#] 4 3 4
Motor chosen [#] 3 3 2
Battery chosen [#] 3 3 3
Time constant (ms) 161 165 134
Flight time (min) 62.5 60.0 55.5
Price 227.4 290.2 352.9

Table 8: Optimization Results: Test Case I.

4.3 Test Case II

In Test Case II the design was optimized for the longest
possible flying time with a 1.5kg payload. As seen in
Table 9, propeller 4 and battery 3 were chosen regard-
less of the number of actuators being 4,6 or 8. Motor 3
was chosen when the design was constrained to 4 and
6 actuators, while motor 1 was chosen with 8 actua-
tors. The solution with 8 actuators has the longest
flight time. However, the price with 8 actuators is sig-
nificantly higher than the price for the solutions with
4 and 6 actuators.

Number of Actuators 4 6 8
Propeller chosen [#] 4 4 4
Motor chosen [#] 3 3 1
Battery chosen [#] 3 3 3
Time constant (ms) 150 156 123
Flight time (min) 25.4 27.1 27.3
Price 227.4 290.2 352.9

Table 9: Optimization Results: Test Case II.
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Figure 9: Thrust response per propeller, Test Case II.
Top: 4 Actuators, Middle: 6 Actuators, Bot-
tom: 8 Actuators. Blue: Input, Red: Accel-
eration, Green: Deceleration, Black: Simula-
tion model. The circles represent the thrust
at the 63% rise time.

Fig. 9 illustrates the experimental results from Test
Case II. The results for Test Case II are better than
for Test Case I. Tables 11 and 12 summarize the three
different rise times (simulation, acceleration, deceler-
ation). For Test Case II the simulated rise times are
slightly faster than the measured values, ranging from
10 to 15ms faster. Overall, the match between the sim-
ulation model and the experiments is good.

4.4 Test Case III

In Test Case III the design was optimized for the fastest
possible motor response and no payload. As seen in Ta-
ble 10 propeller 1, motor 1 and battery 1 were chosen
regardless of the number of actuators being 4,6 or 8.
Since the time-constant (39ms) is the same for 4, 6
and 8 actuators, the natural choice is to use the solu-
tion with 4 actuators since the flight time is the highest
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Figure 10: Thrust response per propeller, Test Case
III. Top: 4 Actuators, Middle: 6 Actuators,
Bottom: 8 Actuators. Blue: Input, Red:
Acceleration, Green: Deceleration, Black:
Simulation model. The circles represent the
thrust at the 63% rise time.

and the price is the lowest for this choice. Fig. 10 illus-

Number of Actuators 4 6 8
Propeller chosen [#] 1 1 1
Motor chosen [#] 1 1 1
Battery chosen [#] 1 1 1
Time constant (ms) 39 39 39
Flight time (min) 37.2 29.4 23.8
Price 150.9 213.65 276.4

Table 10: Optimization Results: Test Case III.

trates the experimental results from Test Case III. The
results for Test Case III are similar to Test Case II. Ta-
bles 11 and 12 summarize the three different rise times
(simulation, acceleration, deceleration). For Test Case
III the simulated rise times differ from the measured
values by -21ms to +8ms.

Table 13 shows the differences between the time-
constants found from the experiments and the esti-
mates based on the transfer function in eq. (8) and
also used in the optimization, eqs. (35), (39). The re-
sults are satisfactory with differences in the range -41
to +25ms. One error source is the time-constant as-
sumption made in eq. (8) for a linear system.

The actual flight times can be estimated by dividing
the battery capacity (Ah) by the measured current (A)
when the step-responses have reached steady-state and

Test Ta,4 Td,4 Ta,6 Td,6 Ta,8 Td,8
I 172 200 118 130 147 167
II 146 129 156 146 123 133
III 52 72 48 58 43 48

Table 11: Measured rise times (63%, in ms) for the dif-
ferent test cases and number of propellers.
Ta is for acceleration, Td is for deceleration.

Test T4 ∆T4 T6 ∆T6 T8 ∆T8
I 144 -42 92 -32 127 -30
II 128 -10 136 -15 114 -14
III 41 -21 41 -12 53 8

Table 12: Simulated rise times (63%, in ms) for the
different test cases and number of propellers.
Ti is the rise time with i propellers. ∆Ti is
the time difference between Ti and the aver-
age of Ta,i and Td,i.

by the number of actuators (Na). Table 14 shows the
estimated flight times vs. the (inverted) flight times
calculated in eqs. (72)-(74). The standard deviation
between measured and estimated flight times in Ta-
ble 14 is 12.8%. Note that the battery voltage as stated
in the datasheets is 11.1V, while the voltage when the
battery is fully charged is more than 12V. In addi-
tion, the battery is not capable of keeping the voltage
higher than 11.1V when discharged. Hence, both the
estimated flight times and the ones found from experi-
ments in Table 14 probably overstate the actual flight
times slightly.

5 Conclusions

This paper has presented an optimization framework
for multirotors based on mixed-integer programming.
The framework allows for efficient selection of optimal

Test T4 ∆T4 T6 ∆T6 T8 ∆T8
I 186 25 124 -41 157 23
II 138 -12 151 -5 128 -5
III 62 23 53 14 46 7

Table 13: Time-constants found from experiments
(mean value of Ta,i and Td,i in Table 11) for
the different test cases and number of pro-
pellers. ∆Ti is the time difference (in ms)
between Ti and the time-constant estimates
based on eq. (8).
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Test Te,4 To,4 Te,6 To,6 Te,8 To,8
I 66.6 62.5 57.5 60.0 62.0 55.5
II 29.4 25.4 28.5 27.1 33.2 27.3
III 33.9 37.2 25.3 29.4 20.5 23.8

Table 14: Estimated flight times in minutes from the
experiments Te,i vs. flight times calculated
in the optimization To,i for test cases I, II
and III and 4, 6 and 8 actuators.

combinations of components from a set of available
datasheets. Nonlinear functions can be approximated
by using a combination of discrete and continuous vari-
ables. The designs can be optimized towards a set of
different criteria, such as flight time, power consump-
tion or dynamic performance, depending on the de-
signer’s preferences. Optimized designs with 4, 6 and
8 propellers are presented using real components avail-
able at, for example, HobbyKing (2015).

A simulation model of a multirotor actuator is pre-
sented and this model has been validated against ex-
periments in three different test cases (longest possible
flying time with or without payload, as well as fastest
motor response). The experiments have used a step in-
put in thrust and compared the 63% rise-time against
the simulation model. The results are good with step-
time differences between simulation and experiments
in the range -21 to +42ms. The relatively small dif-
ferences may be caused by unmodelled effects, such
as motor friction and measurement delay. The differ-
ence between the estimated time-constants used in the
design optimization and the time-constants estimated
from the experiments have also been evaluated. The
results are good with differences in the range -42 to
+25ms. The total flight times have also been validated
and have a standard deviation of 12.8% compared to
the modeled flight times.

Overall, the results presented in this paper demon-
strate that mixed-integer programming provides both
a relatively accurate and efficient approach to multiro-
tor design optimization from available datasheets. On
an Intel i7-4770S 3.1GHz processor the different op-
timization problems were solved in typically 5-25 sec-
onds using the IBM CPLEX solver. The experimen-
tal validation confirms that the modelling assumptions
made in the design optimization formulation are rea-
sonable and hence increase the confidence that the opti-
mized designs actually meet the intended application’s
requirement specifications.
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