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Abstract

In this paper, a particle filter (PF) based fault detection and diagnosis framework is proposed. A system
with possible faults is modeled as a group of hidden Markov models representing the system in fault-free
mode and different failure modes, and a first order Markov chain is modeling the system mode transitions.
A modified particle filter algorithm is developed to estimate the system states and mode. By doing this,
system faults are detected when estimating the system mode, and the size of the fault is diagnosed by
estimating the system state. A new resampling method is also developed for running the modified PF
efficiently.

Two introductory examples and a case study are given in detail. The introduction examples demon-
strate the manner to model a system with possible faults into hidden Markov model and Markov chain.
The case study considers a numerical model with common measurement failure modes. It focuses on the
verification of the proposed fault diagnosis and detection algorithm and shows the behavior of the particle
filter.
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1 Introduction

1.1 Fault Detection and Diagnosis

Due to the increasing requirements of safety, reliabil-
ity, and performance of control systems, a conventional
feedback control design for a sophisticated system may
result in an unsatisfactory performance, or even insta-
bility, in the event of failures in actuators, sensors, or
other system components. Thus, to maintain the per-
formance of the system, or to let the system work in
degraded but safe condition when failures occur is par-
ticularly important for safety-critical systems such as
aircrafts, submarines, nuclear power stations, chemical
plants, and so on. In such systems, the consequences
of a minor fault in a component or any loss of system
functionality can be catastrophic. Therefore, the de-
mand on reliability, safety, and fault tolerance is high.

Towards realizing a fault tolerant system, the first

step is to diagnose and detect faults. Hence, the con-
trol engineers and system designers started to add fault
diagnosis and detection (FDD) functions to the control
system. There are two approaches to achieve FDD,
analytical approach and heuristic approach. The an-
alytical approach further consists of two methods –
signal- processing-based and model-based (Isermann,
2006). Signal-processing- based method considers the
time domain (statistical) and frequency domain fea-
tures of output signals. Basically, the threshold, am-
plitude, mathematical expectation, variance, correla-
tion, and frequency spectrum ( Fourier analysis) must
be inspected in the signal-processing-based method.
In addition, advanced analytical methods such as
wavelet analysis, intelligent analysis (neural networks
and fuzzy logic), cluster analysis, and some other meth-
ods from pattern recognition may also be helpful.

Model-based analytical FDD method is discussed in
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detail in Blanke et al. (2006). A system model, usually
a state estimator such as a Kalman filter, is introduced
into this scheme. Then the system outputs is compared
with the estimated outputs from the observer. FDD
results can be deduced from the comparison residual.

This paper follows the model-based analytical FDD
idea, and it makes efforts to extend the existing model-
based methods into a more general framework by using
the advantages of particle filters.

Particle filter (PF), which is derived from Bayesian
estimation and Monte Carlo methods, has been studied
for about two decades. The idea of a particle filter was
first introduced by Gordon et al. (1993), then enriched
by Kitagawa (1996), Liu and Chen (1998), and many
other researchers. A good early tutorial is by Aru-
lampalam et al. (2002), and recently summarized by
Doucet and Johansen (2009). The PF has drawn great
attention since it was proposed because it is a powerful
tool to solve the optimal estimation problems in non-
linear non-Gaussian systems. The PF has been applied
in target tracking, computer vision, digital communica-
tions, speech recognition, machine learning, and other
areas; see Chen (2003) for more detail. The PF has
also shown its strong capability to solve state estima-
tion problem in nonlinear systems with non-Gaussian
noise. This article trends to extend the usage of PF to
solve FDD problems.

1.2 An Introductory Idea - Fault Detection
and Diagnosis with Filter Bank

In Gustafsson (2001), a linear system with possible
faults can be modeled as a time varying linear system,
whose dynamic is described by1

xk+1 = Ak (δk)xk +Bu,k (δk)uk

+Bw,k (δk)wk (1)

yk = Ck (δk)xk +Du,k (δk)uk + vk (2)

wk ∼ N
(
µw,k (δk) ,Qk (δk)

)
(3)

vk ∼ N
(
µv,k (δk) ,Rk (δk)

)
. (4)

In this model, x is the state vector, y is the measure-
ment, A is the state transition matrix, Bu is the input
matrix,Bw is the noise input matrix, C is the measure-
ment matrix, Du is the direct input to measurement
transition matrix, and k always denotes the current
time instance. v and w are the measurement noise and
system noise vectors, respectively. These noise terms
are assumed to be white and Gaussian, but there can be
a DC component embedded. N (µ,σ) is a multivariate
Gaussian probability density function, and µ and σ is
the mean vector and covariance matrix, respectively.

1We modified the notations in Gustafsson (2001) in compliance
with this paper.

The sign “∼” denotes a random variable “subject to”
a probability density function (PDF). All the parame-
ter matrices can be time- varying and conditioned on
the system mode parameter δ.

The parameter δ 2 is important in this model. It is
called the system mode parameter because the system
switches its behavior as δ changes its value if the pa-
rameter matrices are depending on δ nontrivially. This
system mode parameter is used to distinguish the fault-
free and faulty behavior of the system in the following
FDD framework.

The model (1), (2) is linear Gaussian, so that it coin-
cides with most of the assumptions in a Kalman filter,
except for the system mode parameter δ. Then, the
Kalman filter is still valid in this case, if assuming that
δ is known. However, in FDD δ is the objective of
the detection and diagnosis, so it is unknown to us.
For these features of the model, a Kalman filter bank
based FDD scheme is given in Gustafsson (2001). In
this scheme, the FDD problem is reformed as an esti-
mating problem of the system mode δ1:k, to obtain the
maximum a posteriori (MAP) estimator{

δ̂1:k

}
MAP

= arg max
δ1:k

p (δ1:k |y1:k ) . (5)

However, this model has its limitations:

1. The model is linear, but the real systems are gener-
ally nonlinear. On the other hand, as shown in the
previous work by Zhao et al. (2012b), sometimes
we may have to think about nonlinear measure-
ment problem. So it is necessary to extend this
model to the nonlinear case.

2. The noise terms are assumed to be Gaussian in the
model, but it does not always fit the real world.
Also refer to Zhao et al. (2012a) and Zhao et al.
(2014), although we can whiten a colored noise
by state augmentation, we still have a Rice dis-
tributed measurement noise and a Gaussian mix-
ture driving noise.

Focusing on these limitations in the model (1), (2),
a generalized system model is defined as a combination
of a hidden Markov model and a Markov chain. Sev-
eral modeling examples are given in Section 3. Then
a modified particle filter algorithm is proposed to esti-
mate the system states and system mode in the gener-
alized model in Section 4. Two case studies in different
scenarios are given in Section 5 as validation of the pro-
posed algorithm. Finally the conclusion of this paper
is given.

2Regarding the notation in this paper, we use am:n representing
the sequence am, am+1, · · · , an. And a single a is a generic
reference to this time sequence, whose meaning can be un-
derstood from the context.
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2 A Generalized Model

In this paper, a system is described by a switching
mode hidden Markov model (HMM)

Xk+1 |(Xk = xk,uk, δk)

∼p (xk+1 |xk,uk, δk ) = fk (xk,uk, δk) (6)

Y k |(Xk = xk,uk, δk)

∼p (yk |xk,uk, δk ) = hk (xk,uk, δk) , (7)

where (6) is the system equation, defining how the
states propagate depending on the input, and system
mode. Moreover:

• X is the state vector, a random vector in RNx .

• xk+1 and xk are the realizations of the correspond-
ing state vectors.

• uk ∈ RNu is the known input to the system at
time k.

• δk =

[(
∆0
)> (

∆1
)> · · · (∆Nm

)>]>
is a discrete

parameter representing the system mode, where
∆i ∈ {0, 1} is a binary representation of the oc-

currence of a fault, such that δk ∈ {0, 1}Nm . The
detailed discussion about this system mode pa-
rameter is given in the next section.

• fk (·) : RNx × RNu × {0, 1}Nm 7→ R is the state
transition mapping, which maps the states, input,
and system mode at current time to the PDF of
the states at the next time instance. And p (·) is
a probability measure on RNx .

Equation (7) is the measurement equation . It defines
the relation from the current states, input, and system
mode to the observation, where:

• Y k ∈ RNx is a random vector, representing the
observation.

• yk ∈ RNy is the measurement at time instance k.

• hk (·) : RNx×RNu×{0, 1}Nm 7→ R is the measure-
ment mapping, which maps the states, input, and
system mode at current time to the PDF of the
measurement. This mapping corresponds to the
measurement equation in the state space model.
And p (·) is a probability measure on RNy .

This model is a generalization of (1), (2) since it can
describe a nonlinear system subject to non-Gaussian
noise conditions. For example, the model (1), (2) can

be written in the HMM form (6) and (7) according to

p (xk+1 |xk,uk, δk )

= N
(
Ak (δk)xk +Bu,k (δk)uk +Bw,k (δk)µw,k,

Bw,k (δk)wkB
>
w,k (δk)

)
(8)

p (yk |xk,uk, δk )

= N
(
Ck (δk)xk +Du,k (δk)uk +Bv,k (δk)µv,k,

Bv,k (δk)vkB
>
v,k (δk)

)
, (9)

The manner to solve the FDD problem by an HMM
is by estimating the system mode sequence δ. For in-
stance, assuming that the sequence δ is estimated, sup-
pose it is found that δi is nontrivial for i = k− l, · · · , k.
It can then be concluded that a fault has occurred, and
the fault happened between time instance k− l−1 and
k − l.

It should be highlighted that although this model is
very general, it is not universal. For instance, while (6)
and (7) are discrete, physical systems are continuous.
Discretization is necessary for the physical systems to
fit the model. The cost we then pay is the discretization
error.

It can be a problem that a system with its failure
modes may be modeled in different ways within this
framework. This implies that the model (6) and (7) is
too general and flexible and it loses its functionality to
be a canonical form. Hence, the model should be more
specialized. More discussion regarding the canonical
form will be given in the next section after some further
examples and analysis.

3 Modeling Examples and
Discussion

Modeling a system into the form (6) and (7) is not
difficult, because the knowledge and methods of mod-
eling a system into state space form can be directly
inherited. Regarding nonlinearity and non-Gaussian
noise, it is possible to inherit the nonlinearity of the
system directly rather than linearizing the system like
the extended Kalman filter, and also the general model
is compatible with non-Gaussian noise by manufactur-
ing the mappings. We give some examples to show
how system with their possible faults are modeled in
the HMM form. These examples are motivated by the
examples in (Gustafsson, 2001).
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3.1 Example 1: Detection in Changing
Mean Model

3.1.1 One-time Changing Mean Model

Consider the case of an unknown DC component em-
bedded in white noise. Suppose that we want to
test the hypothesis that the DC component has been
changed at some unknown time instant. We can then
model the signal by

yk = θ1 − σ (k − l + 1) θ1 + σ (k − l + 1) θ2 + vk (10)

where σ (·) is the step function, θ1 and θ2 are the DC
components embedded in the white noise before and af-
ter the change, l is the change time, and vk is the white
measurement noise. If all possible change instants are
to be considered, the variable l takes its value from the
set {0, 1, · · · , k − 1, k}, where l = k should be inter-
preted as no change.

We can rewrite (10) as

yk = ∆k

[
θ1
θ2

]
+ vk, (11)

where the system mode parameter ∆k =
[
∆1 ∆2

]
∈

{[0 1] , [1 0]}. This model is in the form of (7) in the
sense that

p (yk |∆k ) = ∆k

[
N (θ1,Var (vk))
N (θ2,Var (vk))

]
, (12)

where N (µ, σ) is the scalar Gaussian probability den-
sity function.

However, the new model (11) is not equivalent to
(10), because the system mode in (11) can switch mul-
tiple times between [1 0] and [0 1] , while it can change
only once in (10). So some restriction must be assigned
to the system mode parameter in (11), such that δ
can only change from [1 0] to [0 1], but never opposite.
This can mathematically be described by the following
Markov chain (see also Figure 1),

Pr (∆k = [1 0] |∆k−1 = [1 0] ) = p11 (13a)

Pr (∆k = [1 0] |∆k−1 = [0 1] ) = 0 (13b)

Pr (∆k = [0 1] |∆k−1 = [1 0] ) = p12 = 1− p11 (13c)

Pr (∆k = [0 1] |∆k−1 = [0 1] ) = 1, (13d)

where p11 is the probability that the value of the DC
component remains the same between the time steps,
while p12 is the probability that the value of the DC
component change from θ1 to θ2 between time steps.
The transition probabilities 0 and 1 are set according
to the assumption that the DC component can change
only once in the whole sequence.

The combined model of (11) and (13) is now almost
equivalent to the model (10). However, the model (11)

[1 0] [0 1]
11
p

12
p

1

0

Figure 1: The Markov chain of mode transition.

and (13) is more precise than (10). This is because the
combined model also defines the system mode transi-
tion probabilities, while in (10) the probability of the
mode switching is undefined, meaning that the a prior
information p11 and p12 cannot be used in the estima-
tion.

3.1.2 Segmentation in Changing Mean Model

We can extend the above scenario to a more general
case by relaxing the assumptions of previous knowledge
of the DC values and the number of changes. In this
case it is convenient to take the DC level as system
state, and thereby model the signal as

p (θk+1 |θk,∆k ) = ∆k

[
ρ (θk+1 − θk)
U (θinf , θsup)

]
(14)

p (yk |θk ) = N (θk,Var (vk)) , (15)

where ρ (·) is the Dirac measure, U (θinf , θsup) is the
uniform distribution U (θinf , θsup), and ∆k follows the
definition in the previous example. ∆k = [1 0] repre-
sents there is no change at time k, while ∆k = [0 1]
represents there is a change at time k.

The mode transition can be defined according to the
frequency of the mode change, such as{

Pr (∆k = [0 1]) = p1
Pr (∆k = [1 0]) = p2 = 1− p1.

(16)

3.2 Example 2: Decayed Input

In a control system, the output from actuators can be
less than the required value, typically due to actua-
tors’ aging problem. This input reduction may happen
suddenly, but changes mildly once occurred. We can
model this fault as

p (xk+1 |xk,αk,uk,∆k ) = f (xk,αk,uk) (17)

p (αk+1 |αk,∆k ) = ∆k

[
1

g (αk)

]
(18)

p (yk |xk,αk,uk ) = h (xk,αk,uk) , (19)
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where α is a vector, whose entries are between 0 and
1, indicating the reduction rate of each channel of the
system input. The dynamic of α is modeled in (18),
where g (αk) can be adjusted in a manner such that
the entries in αk+1 is less than or equal to the entries
in αk. ∆k =

[
∆1 ∆2

]
∈ {[0 1] , [1 0]}, where ∆k = [1 0]

represents that the input channels are fault-free, while
∆k = [0 1] represents that there is an input reduction.

3.3 Discussion of the General Model

We recall the general model

p (xk+1 |xk,uk, δk ) = fk (xk,uk, δk) (20)

p (yk |xk,uk, δk ) = hk (xk,uk, δk) . (21)

As shown in the previous examples, it is necessary
and beneficial to model the transition of the system
mode parameter to obtain a more accurate and more
informative model. On the other hand, in both exam-
ples mentioned above, we are considering single fail-
ure cases. In practice, however, we may encounter
multiple failure cases when different faults occurs at
the same time. For this sake, we can assign a state

∆f(i) ∈ {0, 1} denoting whether fault “f (i)” occurs in
the system, so that the combination of states ∆ =[
∆f(i)

∆f(2)

. . .∆f(Nm)
]
∈ {0, 1}Nm describes the fail-

ures in the whole system. Note that here we are using
capital characters ∆ and ∆ for the discrete random
vector/variable of the system mode, while their real-
izations will be denoted as δ and δ. The Markov chain

Pr
(
∆k+1 = δi

∣∣∆k = δj
)

= pji,k (22)

is suitable to model the characteristics of these faults.
It is not difficult to combine the Markov chain model

of the mode transition into the HMM of the states.
First we define the extended state vector, which con-
sists of the system state and the system mode param-
eter,

ξk =
[
x>k δ>k

]>
. (23)

Then the uniform system model can be obtained by
reforming equations (20), (21), and (22) as

p
(
ξk+1 |ξk,uk

)
=

[
p (xk+1 |ξk,uk )

Pr
(
∆k+1 = δi

∣∣∆k = δj
)]

=

[
fk (ξk,uk)

pji,k

]
(24)

p (yk |ξk,uk ) = hk (ξk,uk) , (25)

where i, j ∈ {1, · · · , Nm}. The model (24)) and (25)
will be used in the following derivation of the PF-based
FDD algorithm.

4 Particle Filter for Fault Detection
and Diagnosis

4.1 The Algorithm of the PF for FDD

The algorithm of the PF proposed here is adapted from
the sampling importance resampling (SIR) PF in Aru-
lampalam et al. (2002). Note, however, that different
Monte Carlo based Bayesian estimation algorithms can
be used to solve the estimation problem for (24) and
(25). The SIR PF presented here is our prototype.
Figure 2 shows the process of the PF algorithm.

4.1.1 Inherit from the Last Cycle

The PF works in a recursive manner. At time k, it in-
herits p

(
ξk−1|y1:k−1

)
, which is the posterior approxi-

mation of the distribution of the extended state vector
given the observation up to the previous time instance
k − 1. In this PF, because there are both continuous
and discrete states in the system, the posterior distri-
bution p

(
ξk−1|y1:k−1

)
is expressed by

p
(
ξk−1|y1:k−1

)
≈
Ns,k−1∑
i=1

w
(i)
k−1 · ρ

(
xk−1 − x(i)

k−1

)
·ρ
δk−1,δ

(i)
k−1

, (26)

where Ns,k−1 is the number of particles at time in-
stance k − 1, ρ (·) is the Dirac function, and ρi,j is the
Kronecker delta function. A conceptual illustration of
the posterior can be seen in Figure 2.

4.1.2 Time Update

The time update process is to obtain the prior estima-
tion of the states as p

(
ξk
∣∣y1:k−1

)
. In the PF context,

this process is done by draw samples from a so-called
importance density. The SIR PF uses the most conve-

nient importance density p
(
ξk

∣∣∣ξ(i)k−1) defined by (24)

to derive the prior density.

Since there is a dependence in (24), the time update
process has to be divided into two steps - the system
mode time update corresponding to Action 1 in Figure
2, and the system states time update as Action 2. Intu-
itively, the system mode should update first, and then
the system states are updated since they are mode-
dependent. That is, for each particle, we determine
its mode at current time instance by drawing sample
from the mode transition Markov Chain, and then we
determine the system states by drawing sample from

p
(
xk

∣∣∣ξ(i)k−1,uk ) = fk

(
ξ
(i)
k−1,uk

)
. The distribution
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Figure 2: One cycle of the PF, divided into 3 steps by chain lines. These steps correspond to the inherit, time
update, and measurement update, respectively. The resampling step is not included in this figure.

that we draw sample from is then equivalent to

p
(
ξk

∣∣∣ξ(i)k−1)
= p

(
[xk, δk]

>
∣∣∣∣[x(i)

k−1, δ
(i)
k−1

]>)
= p

(
xk

∣∣∣∣[x(i)
k−1, δ

(i)
k−1

]>)
· Pr

(
δk

∣∣∣∣[x(i)
k−1, δ

(i)
k−1

]>)
= p

(
xk

∣∣∣∣[x(i)
k−1, δ

(i)
k−1

]>)
· Pr

(
δk

∣∣∣δ(i)k−1) , (27)

where Pr

(
δk

∣∣∣∣[x(i)
k−1, δ

(i)
k−1

]>)
= Pr

(
δk

∣∣∣δ(i)k−1) , be-

cause δk is independent from xk . At the end of the
time update step, we obtain new positions of the par-

ticles ξ
(i)
k .
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4.1.3 Measurement Update

At this step the particle weights are updated according
to the observation at the current time instance k. The
weights are updated according to the Baye’s law, in

which case if one particle’s prior ξ
(i)
k is supported by

the observation then the weight of the particle should
increase, and vice versa.

Given the observation at current time as yk, and

using the importance density p
(
ξk

∣∣∣ξ(i)k−1), this yields

w
(i)
k ∝ w

(i)
k−1 · p

(
yk

∣∣∣ξ(i)k ) , (28)

where p
(
yk

∣∣∣ξ(i)k ) is defined by (25). This corresponds

to Action 5 in Figure 2.

4.1.4 A Modified Resampling Algorithm

Degeneracy is a common problem in PFs, where after
a few iterations, all but one particle will have neg-
ligible weight (Arulampalam et al., 2002). Doucet
et al. (2000) shows that the variance of the importance
weights will increase over time, and thus it is impos-
sible to avoid the degeneracy phenomenon. It is com-
mon to employ a resample step in the PF algorithm to
counteract the degeneracy. Examples are the resample
methods proposed in multinomial resampling in Smith
and Gelfand (1992), residual resampling in Liu (1996),
and systematic resampling in Carpenter et al. (1999).

However, these resampling methods are not suitable
in our case. To understand the problem, consider (24)
and assume that one mode has the marginal mass

Pr
(

∆f(p)

k = 1
)

= 0.0001 (p ∈ {1, . . . , Nm}). Then

this mode rarely occurs in the system. To accu-
rately describe the distribution, it is common to use
more than O

(
101
)

particles. So, if using 10 parti-
cles, which is a very low value, to represent the density

p
(
xk

∣∣∣∆f(p)

k = 1
)

, then in average 10
0.0001 = 106 parti-

cles in total are needed to describe the entire density
p (ξk|y1:k). This large amount of particles is computa-
tionally infeasible.

A desired resampling algorithm should be able to
generate a suitable amount of particles for each system
mode. Since the probability of a fault to occur in a
system is generally low, the particles in these modes
will have light weights. With a standard resampling
method, these light-weighted particles are unlikely to
survive. Thus, the amount of particles regenerated by
the resampling algorithm should make sure that the
computational cost is not too high, at the same time as
the particles from the system modes that are unlikely
to happen will represent the conditional density of the
states in these system modes.

For these reasons, an adaptive resampling method
is proposed. This may give enough samples for the
modes with small marginal probability mass, and at
the same time it can restrict the total numbers of par-
ticles. Essentially this modified resampling algorithm
must adaptively determine the number of samples in
each system mode according to their significance, and
then make a compromise between the computational
complexity and the estimation performance.

At first, define N̆s as the minimum number of par-
ticles required for sufficiently representing a system
mode. Then there will be at least N̆sNm particles in
the PF. So, if there are too many modes in the system,
a large amount of particles cannot be avoided.

Consider those modes with significant marginal
probability mass. If a system mode has a signifi-
cant marginal probability mass, this means the sys-
tem is more likely to work well in this mode. These
modes are named significant modes. Define Ñs as
the number of particles suitable for estimation. Then
N̆s (Nm − 1) + Ñs should be an acceptable sample size
for computing, as explained at the end of this section.
Thus, we assign Ñs particles to each system mode ac-
cording to their marginal probability mass,

Ns,δ(p),k =
⌈
Pr
(
∆k = δ(p)|y1:k

)
· Ñs

⌉
,

where δ(p) goes through all elements in {0, 1}Nm ,
Ns,δ(p),k is the number of particles required in mode

δ(p) in the resampling step, and dae is the minimum
integer which is larger than a. For any Ns,δ(p),k ≤ N̆s

we compulsorily assign N̆s to Ns,δ(p),k.

After assigning the number of samples Ns,δ(p),k, re-
sampling can be done mode-specifically with any stan-
dard method. Resulting from the adaptive resampling,
it obtains a group of particles with uneven weights

Pr
(
∆k = δ(p)|y1:k

)
/Ns,δ(p),k depending on the modes

δ(p) that the particles belong to.

One can then derive the lower boundary of the esti-
mated effective sample size (Doucet et al. (2000)) as

N̂eff

=
1∑Ns,k

i=1

(
w

(i)
k

)2 (29)

=
1∑2Nm

p=1

(
Pr
(
∆k = δ(p)|y1:k

)2
/Ns,δ(p),k

) ,

where Ns,k =
∑2Nm

p=1 Ns,δ(p),k is the number of particles
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at time k. Since Ns,δ(p),k ≥ Pr
(
∆k = δ(p)|y1:k

)
· Ñs,

Pr
(
∆k = δ(p)|y1:k

)2
Ns,δ(p),k

≤
Pr
(
∆k = δ(p)|y1:k

)
Ñs

, (30)

for each δ(p). Thereby, we get

2Nm∑
p=1

Pr
(
∆k = δ(p)|y1:k

)2
Ns,δ(p),k

≤ 1

Ñs

2Nm∑
p=1

Pr
(
∆k = δ(p)|y1:k

)
≤ 1

Ñs
. (31)

Substituting this into (29) yields

N̂eff ≥ Ñs. (32)

Thus, the proposed adaptive resampling method will
keep the effective sample size larger or equal to Ñs.

The least efficient case happens when one of the
modes has the posterior probability 1. For instance, if
there areNm = 24 modes in the system, Ñs = 1000 and
N̆s = 100. In worst case we still have N̆s (Nm − 1)+Ñs
particles in the system. However N̆s (Nm − 1) of these
have null weights. This gives the effective sample size
N̂eff = Ñs = 1000, and we waste computation on the

other N̆s (Nm − 1) = 2300 particles.

4.2 Fault Detection and Diagnosis with
Particle Filter

The system is working in mode ∆k = δ(p) when the

marginal probability mass Pr
(
∆k = δ(p) |y1:k

)
be-

comes significant. This probability mass is obtained
by marginalizing the distribution p (ξk|y1:k) along xk,
according to

Pr
(
∆k = δ(p) |y1:k

)
=

∫
p (ξk|y1:k) dx

≈
Ns,k∑
j=1

w
(j)
k ρ∆k,δ(p)

. (33)

We provide two methods to detect the failure mode.
One may define thresholds hδ(p) for each system mode.
Once the estimated marginal mass of a mode other
than the fault-free mode exceeds the threshold, then
hδ(p) is captured and the system is considered to suf-
fer the corresponding failure mode. That is, when

Pr
(
∆k = δ(p) |y1:k

)
≥ hδp it reports failure mode δ(p)

to occur between time instants k − 1 and k.
An alternative way is to simply draw the conclusion

by picking up the most significant mode δ(m), where

Pr
(
∆l = δ(m) |y1:l

)
≥ Pr

(
∆l = δ(p) |y1:l

)
, ∀δ(p),

p 6= m. Once observed that the most significant mode
δ(m) is other than the fault-free mode, the fault is de-
tected.

5 Case Study

5.1 Detection of Common Failure Modes
in Position-like Measurement

In industrial control systems typical failure modes in
measurements are

• bias - the measurement has a constant-like bias
relative to the true signal;

• drift - the measurement drifts off relative to the
true signal, either by a stochastic process (Wiener
process) or deterministically (ramp); and

• outliers - a sample from a measurement signal that
lies abnormally far away from the other values.

For safety and reliability, in industry applications, it
is commonly required for sensor redundancy. This is
to install multiple sensors to measure the same system
output or state. The fault detection and diagnosis in
this case should focus on monitoring and identifying
the conditions of sensors.

In this simulation, it is assumed that the true state
being measured is [0, 0], but it is embedded in zero
mean white Gaussian noise. The above listed three
failure modes will then occur, but it is assumed that
they do not occur simultaneously.

It needs to be clear that the above proposed change
detection on a zero mean white noise sequence is not
trivial. A two dimensional zero mean white noise se-
quence can be interpreted as the residual of comparing
homogeneous measurements from two sensors of the
same two dimensional state, for instance the position
of a surface vessel. Thus, this detection and diagno-
sis problem can easily be extended to a wide range of
applications.

5.2 System Modeling

To model the signal with the above mentioned fail-
ure modes into (24) and (25), we first construct the
state vector x, consisting of the trivial position and
the possible bias and drifting terms. So, we assign

xk =
[
p>k b>k d>k

]>
, where pk ≡

[
0 0

]>
is just as

the zero mean assumption, bk ∈ R2 is the bias term,
and dk ∈ R2 is the drifting term. According to the
different failure modes, we may define the dynamics of
the system and measurement as in Table 1. Here, pm,k
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System
mode

System Measurement

∆0

Fault-
free

pk+1

bk+1

dk+1

 =

0
0
0

 pm,k
= pk + vk

∆1 Bias
fault

pk+1

bk+1

dk+1

 =

 0

b0

0

 pm,k
= pk + bk + vk

∆2

Drifting
fault

pk+1

bk+1

dk+1

 = 0
0

dk +wd
k


pm,k
= pk + dk + vk

∆3

Outliers
fault

pk+1

bk+1

dk+1

 =

0
0
0

 pm,k
= pk + v′k

Table 1: System equations and measurement equations
in each system mode.

denotes the measurement, vk is the measurement noise
in fault-free condition, and v′k is the measurement noise
in outliers failure mode. The measurement noise terms
will be discussed in detail later. Correspondingly, ∆0

to ∆3 are assigned to the four system modes, b0 is the
bias, that subjects to the prior probability p (b), and
wd
k is driving noise for the drift.
The measurement noise vk in mode ∆0, ∆1, and

∆2 are assumed to be white, subject to N (0, I2×2).
System mode ∆1 represents the bias fault. The bias is
modeled as a step sequence

bk =

{
0 0 < k ≤ l
b0 k > l

, (34)

where l is the time when the bias fault occurs, and b0

is uniformly distributed in the region
(
bin\bout

)
⊂ R2

3. Here, bin covers the region where the bias should
be, and the exclusion bout is used to distinguish the
fault-free mode and the bias mode. System mode ∆2

represents the drift failure mode. The drifting term
dk is modeled as a random walking, such that dk+1 =
dk +wd

k, where
{
wd
k

}
is a step sequence

wd
k =

{
0 0 < k ≤ l
wd,0 k > l

, (35)

where l is the time when the drift fault occurs, andwd,0

is uniformly distributed in the region
(
wd,in\wd,out

)
⊂

R2, similar to the bias case. The outliers can concep-
tually be seen as measurements with unusually large

3A\B is the complement of B in A.

m
∆1 0 1 0 0
∆2 0 0 1 0

Prmn ∆3 0 0 0 1
∆1 ∆2 ∆3 - - - - -
0 0 0 - 0.7 0.1 0.05 0.99

n 1 0 0 - 0.1 0.9 0 0
0 1 0 - 0.1 0 0.95 0
0 0 1 - 0.1 0 0 0.01

Table 2: The Markov chain for the transition of com-
bined mode

[
∆1 ∆2

]>
.

measurement noise. Hence, we can use v′k belonging
to a distribution with much larger variance than vk
to model this phenomenon. To simplify the calcula-
tion in the particle filter, when updating the weights

of particles, the weights are assigned as w
(i)
k+1 = 0.05 if∥∥pm,k∥∥2 > τ , where τ is a threshold, that is

p (v′k) =

{
0 ‖v′k‖ ≤ τ

0.05 ‖v′k‖ > τ.
(36)

This simplification loses the probability nature since∫
R2 p (v′k) dv′k is infinite. However, it reflects the char-

acteristics of outliers where the measurement shows a
significant jump, and this is easier to calculate.

Second, the Markov chain representing the system
mode transitions should be designed. The system mode
is a combination of all failure modes, such as ∆k =[
∆1 ∆2 ∆3

]>
, where ∆1, ∆2, and ∆3 belonging to

set {0, 1} represents if their corresponding failure mode
occurs or not. The Markov chains in Table 2 is designed
for the mode transitions. For instance, the transition
probability from ∆k = {0, 0, 0}, which is the fault-free
mode, to ∆k+1 = {0, 1, 0}, which is the drifting mode,
is Pr∆k={0,0,0},∆k+1={0,1,0} = 0.01.

This Markov chain gives a more detailed description
of the system behavior, but in a connotative manner.
The system is assumed to never run into a multiple
fault case, which is when more than one fault occur
at the same time. The transition probabilities to such
modes are therefore zero and neglected in Table 2. An-
other restriction of the mode transition is that the sys-
tem mode can transfer to a fault case only from the
fault-free mode. This is inspired by the assumption of
the system behavior, and it helps when diagnosing an
ambiguous fault (e.g. a small size bias can be mistaken
for a drifting bias). Designing the transition probabil-
ities related to the bias and the drift modes are tricky.
Compared to the outliers, which is isolated events, de-
tecting the bias and drift failures is close to estimating
a time sequence. Hence, the transition probabilities
from these modes back to the fault-free mode is small
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Figure 3: Outliers detection. The sizes of the outliers
are [1.5,−0.5] from 200 sec to 400 sec, [2, 1]
from 400 sec to 600 sec, and [3, 1] from 600
sec to 800 sec, subject to Gaussian noise with
covariance I2×2.

to make the particles stick to these modes and perform
retentively.

5.3 Results

The simulation results in this section show the de-
tection and diagnosis performance of the proposed
algorithm to the different fault cases. In all the
simulations, the PF adopts the same structure and
parameters, and the number of particles is set to
1000. The mode transition Markov chain is given
in Table 2. The covariance matrix of the measure-
ment noise vk takes the value I2×2. bin = [−5, 5]

2
,

bout =
{
x
∣∣x ∈ R2, ‖x‖2 < 2

√
2
}

, wd,in = [−0.1, 0.1]
2
,

wd,out =
{
x
∣∣x ∈ R2, ‖x‖2 <

√
0.0001

}
.

Detection of Outliers Figure 3 shows the detection
results of outliers in the white Gaussian noise sequence.
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Figure 4: Drift detection. The upper graph shows the
original signal and the estimation of the drift
by the PF. The lower graph shows the abun-
dance of the particles in each system mode.

In this simulation three different sizes of outliers are
triggered; [1.5 0.5]

>
from 200 sec to 400 sec, [2 1]

>
from

400 sec to 600 sec, and [3 1]
>

from 600 sec to 800 sec.
The sizes of the outliers subject to a Gaussian noise
with covariance 0.2× I2×2.

It can be conclude from the result that the PF ef-
fectively detects the outliers with large enough size. If
considering the outliers being the signal, the signal-to-
noise ratio4 for the different outliers are 1.25, 2.5, and
5, respectively. As the SNR increases, the PF’s detec-
tion frequency of outliers also increases. SNR 2.5 is a
critical value in the sense that the detection rate of the
outliers is about 50%.

Drift Detection and Estimation Figures 4 and 5
show the detection and estimation of a drift fault. The
drift speed is set to [0.03 − 0.01]

>
meters per second.

4SNR for short, defined as A2/σ2, where A is the amplitude of
the signal, and σ2 is the variance of the noise.
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Figure 5: The estimated empirical distribution of the
first component of dk, and the estimated
mean as the curve in green.

This speed is relatively low compared to the variance
of the noise.

As shown in Figure 4 that the drift is detected in the
way that the marginal probability mass of the drift-
ing mode exceeds the marginal probability mass of the
fault-free mode at about 145 sec, which is about 45 sec-
onds after the fault triggered. Because the drift speed
is slow, the time-to-detection is relatively long. The de-
tection happens when the SNR reaches 1.01, which is
lower than the critical SNR 2.5 in the outliers case. Be-
sides the consideration of sensitivity, this benefits from
that the PF makes good use of the historical data to
estimate the trend of the drift. Instead of only exam-
ining a measurement independently from the previous
measurements, the detection of drift is like estimating
a ramp sequence starting at an unknown time. How-
ever, not all historic information is used in the detec-
tion, since partial information leaks along the particle
transfer from the drift mode to the fault-free mode.
This information leak is an innate character of this al-
gorithm, and it cannot be avoided by increasing the
number of particles (unless we unrealistically let the
number of particles increase with time).

In Figure 4 the bias mode has the largest marginal
probability mass from 195 sec to 265 sec, which means
that the PF diagnoses the current fault as a bias in-
stead of a drift. This misdiagnosis is due to the be-
havior of the fault at this stage, which can be taken
as either a bias or a drift. After 265 sec, the PF
has cumulated enough information to distinguish these
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Figure 6: Bias detection. The upper graph shows the
original signal and the estimation of the bias
from the PF. The lower graph shows the
abundance of the particles in each system
mode.

faults. Although there is a misdiagnosis during the pro-
cess, the fault detection is always successful since the
marginal probability mass of the fault-free mode is al-
ways low, and the estimate of the drift size is accurate.

Bias Detection and Estimation Figures 6 and 7 show
the detection and estimation of a bias fault. The size
of the bias is [3,−1]

>
, such that the SNR of the fault

is 2.5. The bias is triggered at 100 second, and the
detection is successful since the marginal probability
mass of the bias mode is almost always the largest. The
exception is a the few points where the measurement
is close to the origin because of the noise.

6 Conclusion

In this paper, a PF based fault detection and diagnosis
framework was proposed. In this framework, the sys-
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Figure 7: The estimated empirical distribution of the
first component of bk, and the estimated
mean as the curve in green.

tem with possible failures is modeled as a group of hid-
den Markov models, representing the system in fault-
free and different failure modes, and a Markov chain,
representing the transition between modes. This com-
bined HMM and MC model can be used as a canonical
model for a wide range of systems, since the HMM is
compatible with the state-space model in control con-
text, and the MC is also a generalized model of the
system mode transition. By two introductory exam-
ples, we showed how to model a system into this form.

A modified PF algorithm was introduced to estimate
the system mode and the states of the canonical model,
and at the same time solve the FDD problem. This
new PF algorithm extends the PFs into hybrid spaces
of continuous and discrete components. A new resam-
pling algorithm was developed along with the PF, to
enhance the efficiency of the PF.

The proposed method is suitable for the system
where the propagations of the distributions in fault-free
and faulty conditions are known and can be properly
modeled in switching mode hidden Markov model. In
the case that the propagations of the distributions are
not accurately known, rough approximations need to
be used instead. These inaccurate models will affect
the fault detection and diagnosis performance of the
proposed method. To enhance the robustness of this
method, a CUSUM algorithm Blanke et al. (2006) can
be applied in addition. For example, we can calculate
the time accumulation of the posterior probability of
each mode, and compare with each other, or compare

against predefined thresholds to detect the faults.
At last, a case study regarding the proposed FDD

scheme for a faulty system was are given in detail. The
case study demonstrates how to apply this PF- based
FDD method, and it also verifies the method by sim-
ulations. The example is instructive and can be used
as a template for developing new applications based on
the same algorithm.

Acknowledgments

Research partly funded by Research Council of Nor-
way (RCN) KMB project no. 199567: Arctic DP, with
partners Kongsberg Maritime, Statoil, and DNV GL,
and partly by RCN project no. 146025: CoE CeSOS.

We appreciate the constructive comments to the pa-
per from PhD Jostein Bakkeheim (Kongsberg Mar-
itime) and PhD Dong Trong Nguyen (Marine Cyber-
netics ) during review of the text.

References

Arulampalam, M., Maskell, S., Gordon, N., and
Clapp, T. A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking. Signal
Processing, IEEE Transactions on, 2002. 50(2):174
–188. doi:10.1109/78.978374.

Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki,
M. Diagnosis and Fault-Tolerant Control. Springer
Berlin Heidelberg, 2006.

Carpenter, J., Clifford, P., and Fearnhead, P. Improved
particle filter for nonlinear problems. Radar, Sonar
and Navigation, IEE Proceedings -, 1999. 146(1):2
–7. doi:10.1049/ip-rsn:19990255.

Chen, Z. Bayesian filtering: From kalman filters to par-
ticle filters, and beyond. Technical report, McMaster
University, 2003.

Doucet, A. and Johansen, A. The Oxford Handbook of
Nonlinear Filtering, chapter A tutorial on particle
filtering and smoothing: Fifteen years later, pages
1–39. December. Cambridge University Press, Cam-
bridge, 2009.

Doucet, A., Logothetis, A., and Krishnamurthy, V.
Stochastic sampling algorithms for state estimation
of jump markov linear systems. Automatic Con-
trol, IEEE Transactions on, 2000. 45(2):188 –202.
doi:10.1109/9.839943.

Gordon, N., Salmond, D., and Smith, A. Novel
approach to nonlinear/non-gaussian bayesian state

314

http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1049/ip-rsn:19990255
http://dx.doi.org/10.1109/9.839943


Bo Zhao, Roger Skjetne “A Unified Framework for Fault Detection and Diagnosis Using Particle Filter”

estimation. Radar and Signal Processing, IEE
Proceedings F, 1993. 140(2):107 –113. URL
ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=210672.

Gustafsson, F. Adaptive Filtering and Change Detec-
tion. John Wiley & Sons, Ltd, Chichester, UK, 1
edition, 2001.

Isermann, R. Fault-diagnosis systems: an introduction
from fault detection to fault tolerance. Springer Ver-
lag, 1 edition, 2006.

Kitagawa, G. Monte Carlo Filter and Smoother for
Non-Gaussian Nonlinear State Space Models. Jour-
nal of Computational and Graphical Statistics, 1996.
5(1):pp. 1–25. doi:10.1080/10618600.1996.10474692.

Liu, J. Metropolized independent sampling with com-
parisons to rejection sampling and importance sam-
pling. Statistics and Computing, 1996. 6:113–119.
doi:10.1007/BF00162521.

Liu, J. S. and Chen, R. Sequential monte carlo meth-
ods for dynamic systems. Journal of the Amer-
ican Statistical Association, 1998. 93:1032–1044.
doi:10.1080/01621459.1998.10473765.

Smith, A. F. M. and Gelfand, A. E. Bayesian statis-
tics without tears: A Sampling-Resampling perspec-
tive. The American Statistician, 1992. 46(2):84–88.
doi:10.1080/00031305.1992.10475856.

Zhao, B., Blanke, M., and Skjetne, R. Fault tol-
erant rov navigation system based on particle fil-
ter using hydroacoustic position and doppler ve-
locity measurements. In 9th IFAC Conference on
Manoeuvring and Control of Marine Craft. 2012a.
doi:10.3182/20120919-3-IT-2046.00048.

Zhao, B., Blanke, M., and Skjetne, R. Particle fil-
ter rov navigation using hydroacoustic position and
speed log measurements. In American Control Con-
ference (ACC), 2012. pages 6209 –6215, 2012b.
doi:10.1109/ACC.2012.6315511.

Zhao, B., Skjetne, R., Blanke, M., and Dukan, F.
Particle filter for fault diagnosis and robust naviga-
tion of underwater robot. Control Systems Technol-
ogy, IEEE Transactions on, 2014. 22(6):2399–2407.
doi:10.1109/TCST.2014.2300815.

315

ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=210672
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=210672
http://dx.doi.org/10.1080/10618600.1996.10474692
http://dx.doi.org/10.1007/BF00162521
http://dx.doi.org/10.1080/01621459.1998.10473765
http://dx.doi.org/10.1080/00031305.1992.10475856
http://dx.doi.org/10.3182/20120919-3-IT-2046.00048
http://dx.doi.org/10.1109/ACC.2012.6315511
http://dx.doi.org/10.1109/TCST.2014.2300815
http://creativecommons.org/licenses/by/3.0

	Introduction
	Fault Detection and Diagnosis
	An Introductory Idea - Fault Detection and Diagnosis with Filter Bank

	A Generalized Model
	Modeling Examples and Discussion
	Example 1: Detection in Changing Mean Model
	One-time Changing Mean Model
	Segmentation in Changing Mean Model

	Example 2: Decayed Input
	Discussion of the General Model

	Particle Filter for Fault Detection and Diagnosis
	The Algorithm of the PF for FDD
	Inherit from the Last Cycle
	Time Update
	Measurement Update
	A Modified Resampling Algorithm

	Fault Detection and Diagnosis with Particle Filter

	Case Study
	Detection of Common Failure Modes in Position-like Measurement
	System Modeling
	Results

	Conclusion

