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Abstract

Standard system identification algorithms are usually designed to generate mathematical models with
equidistant sampling instants, that are equal for both input variables and output variables. Unfortunately,
real industrial data sets are often disrupted by missing samples, variations of sampling rates in the different
variables (also known as multi-rate systems), and intermittent measurements. In industries with varying
events based maintenance or manual operational measures, intermittent measurements are performed
leading to uneven sampling rates. Such is the case with aluminium smelters, where in addition the
materials fed into the cell create even more irregularity in sampling. Both measurements and feeding are
mostly manually controlled. A simplified simulation of the metal level in an aluminium electrolysis cell is
performed based on mass balance considerations. System identification methods based on Prediction Error
Methods (PEM) such as Ordinary Least Squares (OLS), and the sub-space method combined Deterministic
and Stochastic system identification and Realization (DSR), and its variants are applied to the model of
a single electrolysis cell as found in the aluminium smelters. Aliasing phenomena due to large sampling
intervals can be crucial in avoiding unsuitable models, but with knowledge about the system dynamics,
it is easier to optimize the sampling performance, and hence achieve successful models. The results based
on the simulation studies of molten aluminium height in the cells using the various algorithms give results
which tally well with the synthetic data sets used. System identification on a smaller data set from a real
plant is also implemented in this work. Finally, some concrete suggestions are made for using these models
in the smelters.
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1 Introduction

Many industrial processes involve systems where two
or more physical processes have strongly differing tem-
poral characteristics, i.e large differences in time con-
stants. Simulations of such systems may be solved
without excessive use of small time steps, by using two
different models, one for the rapid variations, assum-
ing the slow varying process to be constant, and an-
other model for the slow variations, where the rapid

varying process is neglected. This is a possible way
of attacking the system identification problem of such
systems, also known as stiff systems. In some cases a
model should be determined based upon already exist-
ing data from industrial processes. In such cases the re-
searcher may be confronted with lacking data samples
or outliers that should be deleted, hence making the
system identification problem some more complicated.
In addition multi-rate system widely exists in chemi-
cal process industries, typically with a slower sampling
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Table 1: Nomenclature

Symbol Quantity
A Cross section of aluminium
CE Current Efficiency
F Faraday constant
I Line current
K Kalman gain matrix
M Sampling difference factor

between Tf and Ts
MAl Molecular mass of aluminium
N Number of data samples
P Covariance matrix
Q Charge
Tf Fast sampling time
Ts Slow sampling time
V Volume of aluminium
Vt Criterion function
h Height of molten aluminium
b1 and b2 Parameters in mechanistic model
fs Sampling frequency
fm System frequency

∆ĥ Predicted change of Aluminium height
h̄ Aluminium height prediction
h Aluminium height measurement
k Discrete time
m Mass of molten aluminium
ni Discrete sampling instant of the

i-th output measurement
t Continuous time
w1 Weight put on the model
w2 Weight put on the measurements
z Charge number of an ion
α Forgetting factor
∆t Sampling time of input measurements
ε Prediction error
θ Parameter vector of OLS models
λ Parameter weight in OLS model
ρ Density
Φ Measurement vector for fast sampling
ψ Measurement vector for slow sampling
ACD Anode Cathode Distance
CCA Canonical Correlation Analysis
DSR Deterministic and Stochastic

system identification and Realization
MDSR Multiple time series DSR
MSE Mean Square Error
NMSE Normalized Mean Square Error
NRMSE Normalized Root Mean Square Error
NUSM Non-Uniformly Sampled Multi-rate syst.
OLS Ordinary Least Squares
PEM Prediction Error Method
ROLS Recursive Ordinary Least Squares
SNR Signal to Noise Ratio
SSM State Space Model

rate for the outputs, compared to the inputs of the
system. Some of the measurements may also be manu-
ally performed, causing rare and intermittent sampling
instants. All these factors complicate the system iden-
tification process. As the standard methods of system
identifications are based upon equidistant sampling in-
stants, these methods cannot be directly applied for
such data sets.

During periods without measurement data, gathered
data will consist of several data segments. Simply con-
catenating the data segments may lead to false tran-
sients in their connection points. A more consistent
option is to calculate model parameters for each of the
segments, using the identical model structure. Finally,
the segment estimates should somehow be merged into
the resulting model of the system. In Ljung (1999) the
parameter estimates of the segments are given weight
according to their estimated inverse covariance matri-
ces. In 1957 Kranc introduced a method of replacing
multi-rate sampled systems with single-rate models,
using z transform methods (Kranc, 1957). In Kranc’s
approach the sampling and updating instants are syn-
chronized but operate with different sampling periods.
The sampling periods could all be expressed as unit
fractions of an overall sampling rate T, later known as
the frame period (Sheng et al., 2002). T is the least
common multiple of the periods of the sampling and
updating pattern of the system. Within each frame
period T, there is one or more “sub”-sampling peri-
ods. The most common case is the system in which
the inputs of the system are sampled on a higher rate
than the output. The extracted single-rate model of
the multi-rate system is designed with the sampling
rate of the frame period T. This method is therefore
known as the lifting technique (Sheng et al., 2002), as
sampling periods are lifted to a higher and mutual level
for all the variables. A dual-rate modeling case study
on continuous catalytic reforming in the oil industry,
using lifting technique, is presented in Li et al. (2003).
A least squares method was used by Lu and Fisher
to estimate the inter-sample outputs, for applications
where the outputs are sampled at a slower rate, com-
pared to the inputs (Lu and Grant Fisher, 1989). In
Li et al. (1999) system identification of multi-rate sys-
tems, using subspace methods are discussed. In par-
ticular the systems considered are systems where the
sampling rate of the input variables are n times faster
than the sampling rate of the output variables, where
n is an integer.

The lifting method has been used to generate a min-
imum variance predictor with the fast sampling rate
of the input variables. This predictor shows enhanced
performance compared to a similar predictor using the
slow output sampling rate. The controllability and ob-
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servability of lifted systems are discussed in Wang et al.
(2004) and Ding et al. (2009), in addition to a recur-
sive auxiliary least square model based upon a dual-
rate system. A lifted state space model with an im-
plemented Kalman filter for Non-Uniformly Sampled
Multi-rate (NUSM) systems is presented in Li et al.
(2008).

A simplified simulated model of the aluminium metal
height in a pre-baked aluminium electrolysis process is
used as a representative example throughout this pa-
per. Aluminium electrolysis processes applying pre-
baked anodes are the main procedure to manufacture
primary aluminium to day. This is an old method heav-
ily based upon frequent operator interventions involv-
ing a plethora of manual operations involving materials
feeds, handling of measurands, removing crusts and ex-
cessive alumina of cryolite. Although there has been a
considerable improvement by the introductions of the
automated control system and some few automatically
sampled measurements, the majority of the measure-
ments are still manually performed. Regular sensor ap-
plications are normally not suitable for this electrolysis
process due to the high temperature, the invasive cor-
rosive environment of the bath and the generally harsh
environment of the plants. In this paper the focus will
be upon estimating the molten aluminium height, also
called the metal height. By improving the monitoring
of this vital variable, the process can be stabilized at
more optimal conditions, which are beneficial to the en-
vironmental and economical performance of the whole
plant. In other words undesired variations of the pro-
cess should be reduced or eliminated.

The main focus in this paper is on using system iden-
tification methods on non-uniformly sampled multi-
rate systems, and in particular on a simplified model
of the aluminium electrolysis cell. The main contribu-
tions in this paper are as itemized in the following:

• Deriving a simplified model of the metal height in
an aluminium electrolysis cell.

• Deriving and testing a Prediction Error Method
(PEM) (Ljung, 1999) model for a non-uniformly
sampled multi-rate system.

• Reducing the impact of the computer precision
on updating the covariance matrix of the Multi-
ple Input Single Output (MISO) system, in the
Recursive Ordinary Least Square (ROLS) method
(Di Ruscio, 2001), by rearranging the updating
equation.

• Testing the combined Deterministic and Stochas-
tic Realization (DSR) algorithm (Di Ruscio, 1996)
on a data set with multi-rate sampling.

• Testing the Multiple time series Deterministic
and Stochastic Realization (MDSR) algorithm
(Di Ruscio, 1997) on a data set with multi-rate
sampling and multiple time series.

• Comparing different system identification meth-
ods on the simplified discrete model of the metal
height, showing saw-tooth-shaped behavior.

The rest of the paper is organized as follows. In
Sec. 2 we derive a simplified discrete model of the
metal height in an aluminium electrolysis cell, which
represents the synthetic system that is to be identified
throughout the rest of the paper. In Sec. 3 the black,
white and gray model approaches in system identifica-
tion are emphasized. Data sampling for system iden-
tification methods are discussed in Sec. 4. In Sec. 5
prediction error methods are described for use on the
given synthetic system, assuming non-uniformly multi-
rate sampling. In Sec. 6 the sub space method DSR and
a corresponding version for multiple series are tested,
assuming synchronous but multi-rate sampling. Sam-
pled data from a real plant is utilized in Sec. 7. The
results from the different methods are compared and
analyzed in Sec. 8, whereas this paper is summarized
and concluded in Sec. 9.

2 Simplified model of the metal
height

There are several model approaches describing the level
and shape of the metal/bath interface in aluminium
electrolysis cells. The interface is not totally flat, but
consists of gravitational standing waves, and unstable
propagating waves (Kurenkov et al., 2004). The waves
are generated by the high electrical and magnetic fields
(Lorentz forces), and the Kelvin-Helmholtz instability
of the mean flow. Under stable conditions, the inter-
face waves are estimated to have an amplitude of about
0.5 mm, at fixed positions (for a 500 kA cell), but these
waves can increase by variations in stability affecting
parameters, like the Anode Cathode Distance (ACD)
and the height of the liquid metal (Bojarevics and Peri-
cleous, 2006, 2009). Larger deviations are present along
the horizontal axis, due to the Lorentz forces. In this
work we will consider a fixed horizontal position of
the metal/bath interface, and are focusing on its mean
value.

Consider the sketch of an aluminium electrolysis cell
of Figure 1. A simplified model of the metal height,
i.e. h, will be derived in this section, based upon the
aluminium mass balance.

Due to the spatial mass balance of molten aluminium
the time gradient of mass equals
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Figure 1: Schematic drawing of an aluminium electrolysis cell with the different structures in it forming the
system under consideration. Our model focuses on temporal variations of molten metal height h.

dm

dt
= m·

gen(t) +m·
in(t)−m·

out(t). (1)

where m·
gen(t) is the instant mass rate of molten alu-

minium generated inside the cell, whereas m·
in(t) and

m·
out(t) represents the mass flow of molten aluminium

into and out of the electrolysis cell, respectively. For
small values of ∆t, a good approximation of the mass
balance is the discrete model

∆m(k) = ∆t(m·
gen(k) +m·

in(k)−m·
out(k)), (2)

where k = {1, 2, 3, · · · } represents the discrete time,
whereas ∆t is the sampling time. Normally, there
are no inflow of molten aluminium to the system, as
the aluminium is generated within the electrolysis cell,
which is regarded as the system of interest.

The generated mass of aluminium per time unit
is given by Faraday’s laws of electrolysis (Grjotheim,
1993);

m·
gen(k) =

∆Q(k) · CE ·MAl

F · z ·∆t
(3)

where CE is the current efficiency of the cell which
in the following simulation is assumed to be constant
for all t. MAl = 26.98g/mol is the molecular mass
of aluminium, F the Faraday constant, whereas z is

the number of electrons involved in the electrode re-
action generating one single aluminium atom from a
aluminium-ion. The charge transferred from time k−1
to k, i.e. ∆Q(k) is given by the time integral of the cur-
rent

∆Q(k) =

∫ k

k−1

I(τ)dτ (4)

Assuming constant value of the current within each
∆t, i.e. zero-order hold, the generated mass of alu-
minium per time unit equals

m·
gen(k) =

CE ·MAl

F · z
I(k), (5)

There is usually no inflow of molten aluminium to the
process, hence

m·
in(k) = 0 (6)

The outflow of molten aluminium per time unit re-
lates to the tapping proceeding. As the tapped mass
of aluminium, and not its mass flow is measured in the
tapping procedure, it is more convenient to put

mout(k) = ∆t ·m·
out(k), (7)

in Eq. (2), hence assuming a constant flow rate within
each time step.
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Assuming a crisp interface between the electrolyte
and the molten aluminium, and that all the generated
molten aluminium will be located at the bottom of the
cell, i.e. assuming no time delay due to transportation
of aluminium in the electrolyte, and no precipitations
of other substances within this area, and assuming a
homogeneous pure aluminium, ∆m(k) equals

∆m(k) = ρ ·∆V (k). (8)

Due to side ledge formation of frozen electrolyte at
the side walls of the cell, the area of the horizontal sec-
tion of molten aluminium varies with both height and
time. Here the side ledge profile (Figure 1) is assumed
to be straight vertical. Hence, the change in volume of
the molten aluminium in one time step is, according to
Figure 2, given by

∆V (k) = ∆h(k) ·A(k) + h(k − 1) ·∆A(k) (9)

Figure 2: Schematic figure of the volume of the metal
pad, showing change in volume of the molten
metal described by the variables A and h.

Consequently, in one time step, the net mass alu-
minium accumulated is

∆m(k) = ρ (∆h(k) ·A(k) + h(k − 1) ·∆A(k)) . (10)

Based upon Eq. 10, the change in metal height in
one time step is given by

∆h(k) =
∆m(k)

ρ ·A(k)
− h(k − 1) ·∆A(k)

A(k)
. (11)

Inserting Eq. (2), (5), (7) into Eq. (11), leads to this
simplified model of the height of aluminium in the cell:

∆h(k) =
1

ρ ·A(k)
[∆t

CE ·MAl

F · z
I(k)−mout(k)]

− h(k − 1) ·∆A(k)

A(k)
, (12)

The model in Eq. (12) is used for generating the
synthetic data set simulating the aluminium height
throughout this paper.

An even simpler model of the metal height is derived,
by assuming that the area A is constant. Hence, the
last term in Eq. (12) will disappear. By further col-
lecting the constants into two constants, a very simple
finite impulse response (FIR) model is formed

∆h(k) = b1 ·∆t · I(k)− b2 ·mout(k), (13)

where

b1 =
CE ·MAl

ρ ·A(k) · F · z
, (14)

and

b2 =
1

ρ ·A(k)
. (15)

This model is the basis of the PEM models used for
the system identification problem in Sec. 5.

The assumptions used in this model are:

1. Homogeneous layers of molten cryolite (elec-
trolyte) and molten aluminium.

2. Perfect crisp interface between the layers. No mix-
ing of the materials in the different layers.

3. No transportation delay for any of the materials
in the system.

4. The process variables are fixed for each sampling
interval ∆t.

5. A straight vertical side ledge profile.

6. Constant current efficiency.

7. No precipitates or impurities in the aluminium vol-
ume, only pure aluminium.

8. Constant density of the molten aluminium.

The aluminium electrolysis process requires a very
stable energy balance, as the operation temperature of
the electrolyte within the cell is close to its freezing
point, so that the top surface of the bath is covered
with frozen electrolyte, as well as the side ledges. The
frozen electrolyte has a desired heat insulating effect,
as well as it protects the side shell of the cell from cor-
rosion. Simultaneously it is important that the active
electrolyte is in molten condition. To maintain these
steady conditions of the heat transfer, and hence the
side ledge profiles, the variation of the metal height
varies with only about some centimeters between max-
imum and minimum position of the interface. However,
the total height of the aluminium layer is normally close
to 20 cm.
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2.1 Simulation of the molten metal height

A simulation of the aluminium height was performed
using the simplified model derived in Eq. (12). Normal
distributed noise with mean value µ = 0 and stan-
dard deviation σ = 0.75 cm was added to the height
measurement, and rounded to nearest half centimeter.
This is a very high, but a realistic measurement uncer-
tainty of the manually performed height measurements
in aluminium electrolysis plants. The time of the daily
performed tapping procedure is randomly varied from
day to day, as seen in in Figure 3. In the simulation
typical variations of the variables I and mout are in-
cluded. To make the simulation more dynamic, a vari-
ation of the horizontal cross sectional area A has been
implemented as a sine-curve. The simplified model is
simulated with ∆t = 5min. This simulation approach
will be used throughout this paper, examining different
system identification methods.

3 Black, white and gray box models

There are several ways of categorizing different system
identification methods. In this paper we use the box
system to categorize the utilized algorithms, to have a
better overview of the benefits and drawbacks of each
method.

3.1 Introduction to model types

There are two main approaches to generate mathemat-
ical models of industrial processes. Mechanistic mod-
els, also called white box models, are merging several
well-know physical relations between the different vari-
ables of concern to achieve a reasonable model of the
process. With set of mechanistic model variables that
are assumed to influence the total system, the outputs
may be calculated with these models. Although the
basic models are well established and may work ex-
cellent for small processes, the many assumptions and
uncertainties induced by the often huge number of re-
lations integrated in the model, the final simulation of
the variables may not be satisfying. The deviations of
the simulated variables from the real values, regarded
as random noise is normally not white noise, and some
of the noise might be eliminated by improving the mod-
els.

The optional approach of creating mechanistic mod-
els is a conglomerate of different empirical methods
that all depend on sampled data from the particular
system of interest. In that sense such systems are more
individually calibrated to the actual system, whereas
the mechanistic approach induces more general mod-
els. System identification, neural networks, multivari-
ate data analysis are all groups of algorithms that
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Figure 3: Simulations of the three input variables (Line
current, Tapped Aluminium, and The hori-
zontal Cross sectional area of the metal pad)
and the output variable (Metal height) con-
sidered in the simplified model of an alu-
minium electrolysis cell.

are belonging to algorithms based on empirical rea-
soning/analysis. Models where the model structure is
not influenced by physical relations is often called black
box models (Ljung, 1999), because parameters are ad-
justed to fit the input and output data-sets, without
reflecting physical considerations of the system. The
model structure inside is not reflecting the structure
of the real system, whereas the mechanistic models at-
tempt to have identical structure to the real systems,
and hence called white models.

It is also possible to take advantage of the empiri-
cal methods in conjunction with the mechanistic mod-
els, by utilizing the well known physical relations and
calibrate the physical parameters by empirical meth-
ods, called parameter estimation. With this approach,
all the variables are still easily available as the model
structure is identical or similar to the mechanistic
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model, but simultaneously more individually fitted,
due to the empirical methods. There is a large range
of such gray models,varying from models with almost
any physically based model structures to mechanistic
models where some parameters are estimated. Hence,
gray model is a collective term of such mixed models.

The main focus in this approach will be parame-
ter estimation using least square methods, which can
be considered as a gray box, as the structure is de-
signed based on physical insight, and the parameters
calibrated according to empirical data.

Many testing techniques of different processes have
been developed over the years based on functional, pro-
cess and system modeling (among a plethora of other
possibilities), aiming at testing, verifying and predict-
ing system behavior robustly and as accurately as pos-
sible. The different modeling approaches display di-
verse characteristics as shown in Table 2. Naturally,
some solutions may involve a series of white box, black
box, and gray box in tandem depending on the system
architecture and the needed set of outputs.

3.2 White Box Models

White box models are based on knowledge of the in-
ternal behavior of the system. The available form of
knowledge can be in terms of equations, coherent data
with the related temporal and spatial associations etc.
This approach may increase effectiveness, reveal inter-
nal structures, but is essentially a general approach,
that is not calibrated to the actual process. White box
modeling is widely performed in simulation purposes,
as no measurement of the process has to be performed,
to generate the model. The process does not need to
exist at all, which makes this modeling approach ideal
for designing and modifying systems. The simplified
model of the metal height, derived in Sec. 2 is an ex-
ample of a white box model.

3.3 Black Box Models

Black box models are based on the insurmountable fact
of not having any knowledge about the internal behav-
ior of the system under scrutiny. Black box model does
not have any information of the system architecture or
any underlying equations describing the internal be-
havior of the variables involved. A typical black box
model is based on the study of a set of inputs provided
by the user to the system and outputs from the system
oblivious to where, when and how these inputs were
operated inside the system to deliver the observed out-
puts. In other words, how these outputs are generated
or what is inside the black box representing the sys-
tem are not important or unknown to the user of the
black box model. The main advantages may be in the

ease of the usage and implementation of the model,
and the process specific approach. On the other side,
generating the model requires consistent measurement
of the system, measurements that can both be cum-
bersome and expensive. The DSR and MDSR model
of the metal height, that will be presented in Sec. 6 are
examples of black box models.

3.4 Gray Box Models

Gray box models address systems with limited knowl-
edge of the internal behavior of the system under
scrutiny. As the name implies, the model will have
the strategies of white box and black box models in
analyzing a given system. This method may have the
advantage of harvesting from both white box and black
box analysis of a given system. For complicated sys-
tems like the one we have in the case of aluminium
electrolysis cell, this method may be an unavoidable
option, as models addressing all the phenomena in the
cells are not available or incomplete. The OLS and
ROLS model of the metal height, that will be presented
in Sec. 5 are examples of gray box models.

4 Data sampling

Table 3 provides a set of the most common variables
that are measured in the aluminium electrolysis pro-
cess.

In the aluminium electrolysis process, there is a large
variety in sampling intervals for the different variables.
The online measurements; line current and cell voltage
are the most regular performed measurements often
given as mean values every 5 minutes. The tapping
procedure is intermittently performed typically once a
day. The height of the molten aluminium in industrial
plants is only measured just before the tapping pro-
ceeding, and may influence the amount of aluminium
to be tapped. In case of generating a model of this
process, if just implementing these few measurements
into a black box model, without adding any additional
information of the system, a complete unfeasible model
of the aluminium height will be the result. A black box
model will “see” a folded version of the system as the
dynamic of the saw-tooth shaped periodic oscillation
is not sampled. By further including a realistic normal
distributed measurement error with mean µ = 0, and
standard deviation σ = 0.75 cm, the identification pro-
cess will become even worse, as can be seen in Figure 4.
The uncertainty of the metal height measurements will
add random dynamics to the already poor folded mea-
surements.

Tests with real data from the industry show that the
simple prediction model;
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Table 2: Different “Box”Systems in conjunction with modeling and their overall characteristics

Model Type Physical insight Model structure Validity

White Box Crucial Rigid General
Black Box Less important Flexible Specific
Gray Box Important Adjustable Fairly Specific
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Figure 4: Synthetic data set showing metal height steadily increasing with sudden drops in its values, due to
tapping, over a period of time, in this case about 10 days. It is common to measure the metal height
just before the metal tapping, once a day.

h̄(k + 1) = h(k), (16)

provides smaller error predictions than many ad-
vanced system identification models, because of the
lack of information of the dynamic system the few sam-
pling instants gives. To overcome these challenges both
more physical insight of the system and more measure-
ments have to be considered.

In cases where the output variables make stepwise
jumps, like the saw-tooth jumps of the aluminium
height, making the measurements at the right time in-
stants is even more important than just increasing the
number of measurements in general. The Nyquist the-
orem states that the sampling frequency fs should at
least be twice the frequency of the variable to be mea-
sured (Shannon, 1949, 1998);

fs > 2fm (17)

In many reel applications it is more common to sam-
ple with a sample frequency about 10 times the sys-
tem frequency. In the aluminium electrolysis example
fs = fm, which according to both the Nyquist theo-
rem and simulations provides a too poor sampling rate
for system identification purposes. At the other side,
increased number of manually performed metal height
measurements might be to time demanding, and hence
expensive for the plant, as the sampling range might

span some weeks. Especially in cases where recursive
models are considered, as few manual measurements as
possible should be included.

A more cost efficient solution to the high sampling
rate is to use knowledge of the system to decide cru-
cial measurement instants, i.e. including more infor-
mation on the physical and chemical connections be-
tween the variables to establish a more realistic model
with improved predictability. Based on sensible rea-
soning of the system, or if a mechanistic model of the
system is available, it is possible to set up decisive in-
termittent measurement instants without performing
a lot of measurements with a high sampling frequency.
One measurement just before, and one just after the
tapping procedure would have been a reasonable min-
imum requirement for detecting the model of the alu-
minium height. If the mechanistic model structure is
assumed to be of high accuracy, a prediction-error-
method (PEM) would be the first choice, to estimate
its parameters (Ljung, 1999).

When deciding the crucial measurement instants,
variables with rapid short term variations are isolated
from variables with long term slow variations. After
this segregation of variables, it is possible to utilize
different system identification methods for each of the
two variable groups. This will be considered in the fol-
lowing example from the aluminium electrolysis cell.
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5 Prediction Error Methods (PEM)

In this section different PEMs are used to predict the
metal height, based on the synthetic data set described
in Sec. 2. To make it realistic, the input variables are
assumed sampled with a “fast” sampling rate Tf , while
the output is sampled with a “slow” variable sampling
rate Ts(i). Ts(i) will vary with time, due to manual in-
tervention in performing the measurements. For con-
venience Ts(i) is adjusted to fit a multiple of Tf , as
shown in Figure 5. ni is the discrete time of output
measurement number i, while the inputs are sampled
at each k.

The Ordinary Least Square (OLS) algorithm is de-
signed for both these sampling rates, entailing two
OLS-models. The model with sampling rate Ts(t) is
used for determining the parameter vector θ, while the
model with sampling rate Tf is used for predicting the
inter-sample outputs. It is utilized that the identified
parameter vector θ is identical for both models.

5.1 Ordinary Least Square (OLS)

Based upon the simple discrete model in Eq. (13), a
linear regression model is constructed;

∆ĥ(k|θ) =

ΦT (k)︷ ︸︸ ︷[
∆t · I(k) mout(k)

] θ︷ ︸︸ ︷[
θ1

θ2

]
(18)

where ∆ĥ(k|θ) is the predicted change of the metal
height from time step k − 1 to k, given the parameter
vector θ. The parameters are estimated by the least
square method, where the optimal θ, given the defined
model structure and a specific data set with N input
and output samples, is the parameter vector θ̂LSN that
minimizes the least square criterion for the linear re-
gression

VN (θ) =
1

N

N∑
k=1

εT (k)λε(k), (19)

where ε(k) = ∆h(k)−∆ĥ(k|θ) describes the predic-
tion error at time step k.

Table 3: Common measured variables in aluminium electrolysis plants. The statistics are based upon process
data from one single aluminium electrolysis cell generated over one year. The measurements can be
categorized into two main categories; on-line measurements (⊕) and measurements performed with
manual interactions (	).

Index Variable Unit Category
Average
sample
time

Average
Standard
deviation

Minimum
value

Maximum
value

1 Metal height cm 	 24 h 20.1 1.2 17 28
2 Cell Voltage V ⊕ 5 min 4.49 0.29 0.44 28.3
3 Line current A ⊕ 5 min 293.4 3.7 0 315.6
4 Bath height cm 	 24 h 20.7 1.5 14 32

5 Anode position 1 rotations
day ⊕ 78 min 0.0 1679 150 2569

6 Anode position 2 rotations
day ⊕ 78 min 0.0 1677 112 2634

7 Alumina feeding kg
day ⊕ 15 min 4137 323 3044 5121

8 Tapped aluminium kg
day 	 24 h 2182 301 0 3125

9 Acidity % 	 48 h 10.7 1.7 6.3 15.2

10 Added bath kg
day 	 10 days 590 264 350 1750

11 Tapped bath kg
day 	 7 days 665 354 150 2100

12 Bath temperature C 	 7.5 h 962 9.0 939 998

13 Added CaF2 kg
day 	 24 days 35 12.7 25 50

14
CaF2

concentration
% 	 56 h 5.1 0.2 4.3 5.7

15 Anode effects 1
day 	 24 hours 0.19 0.6 0 5

16 Feeder defects 1
day 	 13 days 0.080 0.31 0 2

17 Superheat C 	 4 days 7.58 5.19 1.9 36
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Figure 5: Time line showing the fast sampling rate Tf used for the input variables, and the slow sampling rate
Ts(i) used for the output measurement (the aluminium height). As indicated Ts(i) will vary with
time, due to manual intervention, but it is adjusted to fit a variable multiple of Tf . i indicates the
i-th element of the output measurements sequence, while the inputs are sampled at each k.

The analytical solution of the optimal θ̂LSN is given
by

θ̂LSN =

(
N∑
k=1

Φ(k)ΦT (k)

)−1 N∑
k=1

Φ(k)∆h(k), (20)

if the inverse of the indicated matrix exists. As this
is a MISO (multiple input, single output) system, the
weight λ is a scalar, hence λ−1λ = 1, and λ is therefore
not included in Eq. (20);

Consider a data set of input and output variables de-
scribing a period of 20 days. Assuming a regular consis-
tent measurement regime, the number of metal height
measurements will be Nh = 20, whereas the number of
line current measurements are NI = 5760. Although
the tapping is performed 20 times, the number of sam-
ples in the “tapping” vector is for convenience set to
Nt = 5760 to match Nh, where the sample values be-
tween the tapping incidents are zero. Due to the man-
ual intervention of the height measurements and tap-
ping procedure, variations in both the number and time
instants are common. The LS-model of Eq. (18) has to
incorporate these properties, hence become more flex-
ible in utilizing intermittent measurements from real
plants.

The elements of the regression vector Φ(k) are de-
fined as φ1(k) = ∆t · I(k) and φ2(k) = mout(k). The
predicted change of the metal height between two metal
height measurements, i.e. from time step ni to ni+1 are
due to the LS-model in Eq. (18), given by

ni+1∑
k=ni+1

∆ĥ(k|θ̂LSN ) =

θ1[φ1(ni + 1) + φ1(ni + 2) + · · ·
+φ1(ni+1 − 1) + φ1(ni+1)]

+θ2[φ2(ni + 1) + φ2(ni + 2) + · · ·
+φ2(ni+1 − 1) + φ2(ni+1)] (21)

To simplify the notation, we write

∆ĥ(ni+1|θ̂LSN ) =

ni+1∑
k=ni+1

∆ĥ(k|θ̂LSN ) (22)

By summing up the right-hand side of Eq.( 21),
a prediction model with linear regression structure is
achieved;

∆ĥ(ni+1|θ̂LSN ) = (23)[ ∑ni+1

k=ni+1 φ1(k)
∑ni+1

k=ni+1 φ2(k)
]︸ ︷︷ ︸

ΨT
ni+1

[
θ1

θ2

]

Although the linear regression model of Eq. (23) is
used for estimating the least square parameter vector
θ, this parameter vector is mutual for both Eq. (23)
and Eq. (18), hence it can be used to predict the metal
height by Eq. (18).

5.1.1 Simulation of the metal height

As the tapping proceeding is a rapid process com-
pared to the slow electrolysis process where molten
aluminium is generated, height measurements should
ideally be made both just before and immediately after
the metal tapping. Hence, the top and at the bottom
level of the metal height would be measured in each cy-
cle. In that way, the rapid changes of the metal height,
due to metal tapping, is isolated into a small tempo-
ral regression vector Ψni

. The next regression vector
Ψni+1

will isolate the influence of the slower electroly-
sis process. However, the second measurement instant
should be carefully chosen due to an eventually time
lag. With this approach every second Ψ-vector in the
considered simulation, the last element of this vector,
representing the amount of tapped metal, is zero.
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5.1.2 The prediction algorithm

With the predictor model of Eq. (18), the measurement
based update of the predicted metal height is very rare.
Hence, the predictions of ∆h(k) will be updated only
by the predictor model for all the time instants between
two metal height measurements. The estimated height
of the metal height is given by;

h(k + 1) = h(k) + ∆ĥ(k + 1) (24)

Although the parameter estimation may be good,
noise and uncertainties in the model may cause the
predicted output of the aluminium height to drift away
from the real value of the aluminium height. On the
other side the manually performed metal height mea-
surements are likely to be corrupted by decisive noise.
Therefore, a weighting algorithm has been incorpo-
rated in the predictor at each time step a new metal
height measurement is performed;

h(k + 1) = w1h(k) + w2h̃(k) + ∆ĥ(k + 1), (25)

where h̃(k) is the metal height measurement at time
step k. The weights w1 and w2 are related so that
w1 + w2 = 1. The weights are adjusted by trial
and error. Generally w1 should be close to 1, if the
model is assumed to be of proper quality and simulta-
neously the measurements having large uncertainties.
w1 should be reduced if the model seems unreliable or
the measurements more reliable. In the following ex-
ample w1 = 0.75.

The data sets given in Figure 3, were used to gener-
ate the θ-parameters of the OLS-algorithm. The pre-
dictions are compared to the results of simulated model
and measurements in Figure 6. The predicted metal
height is following the real metal height quite well, in
spite of large uncertainties in the metal height mea-
surements.

5.2 Recursive Ordinary Least Square
(ROLS)

Variations in the cell performance may cause a need
for updating the parameters of the model. In this case
where the measurements are both rare and displaying
low accuracy, updating the model has to be very slow,
in order to avoid rapid variations of the model param-
eters, due to measurement uncertainties. Hence, short
term variations of the plant will have minor influence
on the model, but prospective seasonal and aging vari-
ations will have impact on the parameter variations of
the model. In an OLS or a recursive ordinary least
square (ROLS) method, by increasing the number of

samples, each sample will have less influence on the es-
timated parameters. In systems where it is likely that
there will be long term variations of the model param-
eters, a forgetting factor α could be included (Ljung,
1999). The criterion function at time t will then obtain
the following form;

Vt(θ) =
1

t

t∑
k=1

αt−kεT (k)λε(k), (26)

Hence, the newest measurements are weighted more
than the older ones. The choice of α is a trade off
between reducing the sensitivity of the model regard-
ing measurement noise, and simultaneously be able to
adopt to time variations of the system parameters. Val-
ues between 0.95 and 0.99 are common choices. For a
given forgetting factor, e.g. α = 0.95, the weight as-
signed to a sample-value 30 samples before the current
sample, is reduced to approximately 21% (0.9530 ≈
0.21) of the weight put on the current sample-value,
whereas defining α = 0.99, the representative weight is
reduced to approximately 74% (0.9930 ≈ 0.74).

According to Eq. (20), an optimal parameter
vector given a data sample with discrete time
[1, 2, · · · , t− 2, t− 1] is given by

θ̂t = (

t∑
k=1

Φ(k)λΦT (k)︸ ︷︷ ︸
Pt

)−1
t∑

k=1

Φ(k)λ∆h(k), (27)

if the inverse of Pt exists.
A recursive ordinary least square (ROLS) method

with a forgetting factor is possible to include in the
parameter estimation in the following way (Di Ruscio,
2001):

1. Initial values of the covariance matrix Pt and the
parameter vector θt are defined. It is common to
let

P0 = δ

[
1 0
0 1

]
= δI

θ0 =

[
0
0

]
,

where δ is a “large” number, e.g. 10 000.

2. The regression vector Ψ is updated at each metal
height measurement:

Ψni+1
=
[ ∑ni+1

k=ni+1 φ1(k)
∑ni+1

k=ni+1 φ2(k)
]T
(28)

3. Updating the inverse of the covariance matrix

P−1
ni+1

= αP−1
ni

+ Ψni+1
λΨT

ni+1
(29)
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Figure 6: Prediction of metal height for the earlier presented synthetic data set showing fairly well correlation
between the simulated and predicted values. The prediction model is based on the OLS algorithm
and the noisy metal height measurements, just before and just after metal tapping, shown with the
green circles in the figure.

and the “Kalman” gain matrix

Kni+1
= Pni+1

Ψni+1
λ (30)

after each metal height measurement.

4. Updating the present parameter vector at each
metal height measurement

θni+1 = θni +Kni+1

(
∆hni+1 −Ψni+1θni

)
(31)

where ∆hni+1 = h(ni+1)− h(ni)

5. Computing the covariance matrix after each metal
height measurement:

Pni+1 =
(
αP−1

ni
+ Ψni+1λΨT

ni+1

)−1

(32)

6. At each time instant k the predicted change of
metal height is given by

∆h(k) = Φ(k)θT (33)

5.2.1 Matrix inversion lemma

An equivalent form of Eq. (29) and Eq. (32) that
is more suited for rapid computation is given by
the Sherman-Morrison-Woodbury formula (Golub and
Loan, 1996), also called the matrix inversion lemma;

(A+UV T )−1 = A−1−A−1U(I + V TA−1U)−1V TA−1

(34)
Applying Eq. (34) to Eq. (32), where

A = αP−1
ni

U = Ψni+1

V T = ΨT
ni+1

gives

Pni+1
= (35)

1

α
Pni −

(
1

α
PniΨni+1

)
·((

I + ΨT
ni+1

1

α
Pni

Ψni+1)

)−1

ΨT
ni+1

1

α
Pni

)

The matrix inversion in Eq. (32) is modified using
Eq. (34), hence the inversion of a matrix is now re-
placed by a inversion of a scalar, i.e. the denominator
in the following deducted equation:

Pni+1
= (36)

1

α
Pni

(
I −

Ψni+1ΨT
ni+1

Pni

α+ ΨT
ni+1

Pni
Ψni+1

)

Note that this way of calculating Pni+1
is more sen-

sitive regarding selection of initial values of P0 when
working with regression vectors where one element is
zero, and the other is “large”. In the simulated system
that is considered, only proper parameter estimation is
achieved for values of δ ≤ 10−4. For larger values of δ,
the first element of the P-matrix will become zero, and
hence θ1 will also remain at zero throughout the whole
estimation period. For values of δ ≤ 10−8, P and hence
θ will converge very slowly towards its proper values.

If the normal routine of letting the initial value of P11

be “large” is followed, and in addition ψ1 is “large”, the
impact of α ∈< 0, 1], will easily be neglected due to the
limitations of the computer precision. Assuming that
α << ΨT

1 P0Ψ1, the first estimate of P will become a
lower triangular matrix due to the computer precision;
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P1 =
1

α
P0

(
I − Ψ1ΨT

1 P

α+ ΨT
1 P0Ψ1

)
=

1

α
P0

[
1 0
0 1

]
− 1

α
P0

[
1 0
0 0

]
=

1

α
P0

[
0 0
0 1

]
(37)

However, by rearranging Eq. (36) in the following
way, proper values of θ will be estimated also for larger
values of δ:

P1 =
1

α
P0

(
α

α+ ΨT1 P0Ψ1
I +

ΨT1 P0Ψ1I − Ψ1ΨT1 P

α+ ΨT1 P0Ψ1

)
(38)

=
1

α
P0

([ α
ΨT

1 P0Ψ1
0

0 α
ΨT

1 P0Ψ1

]
+

[
0 0
0 1

])

=
1

α
P0

[
α

ΨT
1 P0Ψ1

0

0 1

]
(39)

P1 will in this case remain a diagonal matrix, which is
crucial. The reason why, the matrix inversion lemma

had to be rearranged is that displaying
Ψ1ΨT

1 P

α+ΨT
1 P0Ψ1

requires higher computer precision than displaying
α

α+ΨT
1 P0Ψ1

, since the former has a very small perturba-

tion from 1, whereas the other has a small perturbation
from 0.

Given a realistic example from the system consid-
ered in this paper, where ΨT

1 =
[

2.5 · 1010 0
]

and
P0 = 104I. Computing P1 will then involve compu-
tation with numbers close to the precision limits of
the computer. By using the ordinary matrix inversion
lemma, only values where 10−7 < δ < 10−4 caused
reasonable results. Model predictions outside this area
where unstable as one of the parameters maintained
zero throughout the regression. For larger values P11

and θ1 became zero for the ordinary matrix inversion
lemma, whereas the modified inversion lemma per-
formed proper estimations for all larger values of P11.

5.2.2 Prediction of the metal height

The data sets given in Figure 3, were used to generate
the θ-parameters of the ROLS-algorithm. The predic-
tion is compared to the simulated model and measure-
ments in Figure 7. The predicted metal height is fol-
lowing the real metal height quite well, in spite of large
uncertainties in the metal height measurements.

In Figure 8 the temporal variation of the regression
parameters is shown. For this simulation the recursive
variant of the OLS is superfluous, as these parameters
are not following the constant system parameters very
well.
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Figure 8: Simulating the values of the estimated pa-
rameters, calculated in the ROLS model, us-
ing the earlier presented synthetic data set.
The ”‘rapid”’ oscillation of the parameters is
not detected by the ROLS-model. The esti-
mated parameters are close to the mean value
of the parameters, and will only follow long
term variations of the parameters.

6 System Identification using DSR

Assume that there are dynamics within the system that
are not detected by the strict mechanistic model used
with PEM, as how the temperature is influencing the
area A. An alternative is to identify black box models,
like the DSR (Deterministic and Stochastic Realiza-
tion) model. The DSR method is based upon a linear
discrete time invariant State Space Model (SSM)

xk+1 = Axk +Buk + Cek (40)

yk = Dxk + Euk + Fek, (41)

and is explained in Di Ruscio (1996).

6.1 Regular DSR

The sample scenario used with the OLS and ROLS al-
gorithms in the former section is not consistent with
the SSM in Eq. (40). Further the number of measure-
ments has to be increased to extract information on the
short term system dynamics between the tapping in-
stants. Hence, a new measurement regime has been set
up for the identification of a DSR model, as described
in the following.

Assume that the system of interest might be de-
scribed by the linear SSM, and that the inputs are
sampled with one fast sampling rate, Tf , whereas the
output is known at a slow sampling rate, Ts. Contrary
to Sec. 5, Ts is constant in this section. The input
sampling rate is M times faster than the output sam-
pling rate, hence Ts = MTf . If it is not possible to
increase Ts, the modus operandi is to consider only the
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Figure 7: Simulating the predicted metal height using ROLS. Prediction of metal height for the earlier pre-
sented synthetic data set showing good correlation between the simulated and predicted values. The
prediction model is based on the ROLS algorithm and the noisy metal height measurements shown
with the green circles in the figure. Although the initial value is set to high, the predicted values
”‘soon”’ reaches the desirable level. ROLS needs some time to adjust its model parameters and hence
the variations in its initial phase.

inputs at a sampling rate of Ts, in order to achieve a
common sampling rate, which is required to use the
standard DSR-method (Di Ruscio, 2000). Then, to
get a discrete SSM with the fast sampling rate, Tf ,
the generated discrete SSM is first transformed into
a continuous SSM, utilizing e.g. the MATLAB func-
tion [Ac, Bc] = d2c(A,B, Ts). Next the continuous
model is transformed back to a discrete model, but
now with another sampling rate by the MATLAB func-
tion [Ad, Bd] = c2d(Ac, Bc, Tf ). A periodical variation
in the cell temperature introducing a variation in the
width of the metal bath has been introduced in the fol-
lowing simulations. Hence, in addition to the sawtooth
variation, already explained, the metal height will fluc-
tuate with a period of about 10 hours. Assuming that
the three input variables I, mout and T (bath tem-
perature) are sampled every 5 minutes, and the metal
height measured every 3rd hour. To be able to utilize
the DSR algorithm the mean values every third hour
are used as inputs, to generate the state space model.
The model is then transformed from a sampling time
of 3 hours to 5 minutes as already described. Figure 9
shows the result of a simulation of the metal height in
the aluminium electrolysis cell, using this method. The
simulation shows a fairly good estimation, in spite of
the poor metal height measurements also shown in the
figure. By running several additional simulations with
random generated measurement noise, some of the con-
comitant predictions had a tendency of drifting away
from the real metal height. This could be compensated
by including measurement in the prediction algorithm,
e.g. including a Kalman filter, when running the pre-
diction model online. This could be a useful estima-
tion technique if implementing automatic metal height

measurements as discussed in (Viumdal et al., 2010;
Viumdal and Mylvaganam, 2010). To be able to uti-
lize the DSR algorithm the mean values every 3rd hour
are used as inputs, to generate the state space model.
The model is then transformed from a sampling time
of 3 hours to 5 minutes as already described. This
transformation of the model unfortunately more often
involves less robust models.

6.2 DSR in case of multiple time series

Another approach to identify a model of the metal
height is to use the MDSR, as addressed in (Di Rus-
cio, 1997). MDSR is designed to handle multiple time
series, e.g. an industrial process where the time series
are interrupted by shutdowns in the production line, or
where each time series represents a batch process. By
just placing measurements from different time series
successively in a large data matrix, the initial states of
each time series is not computed when using ordinary
DSR algorithm. By using MDSR, initial state values
are calculated for each time series, in addition to the
overall state space model. In the aluminium electrol-
ysis example, the increase in metal height is “inter-
rupted” by the metal taps. Instead of measuring the
metal height every 3rd hour, as assumed with the DSR-
algorithm, another measurement scenario is applied for
the MDSR approach. These measurement series are di-
vided into several sub time series, each starting imme-
diately after the metal tapping. As the tapping has an
intermittent sampling interval, there will be a shift in
the sampling incidents between each of the time series.
Within each sub time series, new metal height mea-
surements are sampled each 3rd hour. The mean value
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Figure 9: Prediction of the metal height, using DSR on the earlier synthetic data set. Unlike the assumed
measurement regime for the OLS and ROLS models, the metal height is here assumed to be measured
every 3rd hour. The noisy metal height measurements are shown with the green circles in the figure.
In general, the simulated values are closer to the predicted than the measured values.

of the input variables are taken for each time step as
done with the DSR model. The result is a new model,
with as many initial states as there are sub time series.
Figure 10 shows an example where MDSR is used, still
with a sampling time between each metal height mea-
surement of 3 hour, but here with sampling occurrence
according to the latest metal tap instance. Attempts
of transforming the MDSR model with a sampling rate
of 3 hours to a sampling rate of 5 minutes failed, there-
fore the graph in Figure 10 is marked with dots, at the
locations where model has calculated the predictions.

However, in a real aluminium electrolysis process,
the metal height is still measured manually in an in-
termittent manner, and normally only just before the
tapping proceeding. Hence, the PEM-algorithms seem
to be the most realistic approach at the moment. Using
MDSR online is not straightforward, one alternative is
to use any PEM-algorithm to predict the drop in metal
height due to the metal tapping, and using the MDSR
as the model describing the metal height between the
tapping proceeding.

7 System identification using real
measurements

A measurement sequence from an Aluminium reduc-
tion cell in Norsk Hydro, Årdal, was performed with a
time span of 76 hours. The metal height was measured
just before, and just after the tapping instants, and
then approximately every 4th hour. The input vari-
ables “Line current” and “Tapped bath” were sampled
each 5 minute. Two different OLS models of the pro-
cess was generated for this data set. The first model
was only based on the metal height measurements per-
formed in conjunction with the metal tapping, while

the inter sampled measurements are included in the
second OLS model. Figure 11 shows the predictions of
the two OLS models, the measurements, and a sim-
ulation of the mechanistic model. The mechanistic
model is based upon geometrical parameters of the alu-
minium reduction cell, and the initial value is adjusted
to fit the measurements. The element values of the
parameter vector θ are about 36% to 50% less than
the corresponding parameter values in the mechanistic
model. The parameter vector of the two OLS models
are similar, but as the first model is based on fewer
measurements than the second model, the former is
expected to be less reliable. However, the main dif-
ference between these two models, is that the second
OLS model is updated more often by new measure-
ments. It is difficult to verify which model is closest
to the real system based of these few measurements,
particularly as the measurements are corrupted with
so much noise. More reliable models can be achieved
by extending the time span of the sampling, and by in-
troducing improved measurement systems, which are
beyond the scope of this paper.

8 Comparing performance of the
models in metal height
predictions

In addition to the methods already described, the prob-
lem was also organized as a lifted model approach, us-
ing the same data set, as used for the DSR approach,
i.e. the sampling time for the three input variables
were every 5 minute, whereas the sampling time of the
output was every 3rd hour. Hence, the inputs were
sampled 36 times as often as the output, resulting in
an input matrix with 72 (2x36) variables. Due to the

141



Modeling, Identification and Control

0 1 2 3 4 5 6 7 8 9 10

17

18

19

20

21

22

23

Time [Days]

M
et

al
 h

ei
gh

t [
cm

]

 

 
Real metal height
Metal height measurements
MDSR-model of metal height

Figure 10: Prediction of the metal height, using MDSR on the earlier synthetic data set. Unlike the assumed
measurement regime for the OLS and ROLS models, the metal height is here assumed to be measured
every 3rd hour, but as opposed to the measurement regime using the DSR, here the measurements
are considered as multiple time series, each starting just after the tapping proceeding. The noisy
metal height measurements are shown with the green circles in the figure. In general, the simulated
values are closer to the predicted than the measured values.
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Figure 11: Predictions of the metal height, using two different OLS models based on the data from a real
aluminium plant. OLS model 1 is based upon the measurements just before and just after the
metal tap instants. OLS model 2 is in addition based on inter sampled measurements every 4 hour
as indicated in the figure. The mechanistic model is based upon the physical parameters of the
aluminium reduction cell, and the initial value is adjusted to fit the measurements.

rare tapping operations, 21 variables having no vari-
ance, were deleted from the input matrix. They were
all representing the original metal tap variable. As
proposed by Li et al. (2003), the Canonical Correla-

tion Analysis (CCA) initially developed by Hotelling
was applied, to reduce the number of variables with
poor correlation to the output. Running this test, all
the 25 best correlation results were representing the
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line current. Hence, a model built on this approach
would not include the impact of the metal tapping.
The main problems related to the lifted model in this
approach is most likely related to the poor variance
of the input matrix, that is even poorer in the lifted
input matrix. In addition the saw tooth like metal
height graph, is difficult to identify, as the tap pro-
ceedings are not synchronized, and the noise level was
rather high. Of that reason, the lifted model was not
further considered in this work. For the other models
considered in this work, a new data set was generated
for validation purpose. In addition to the mechanistic
model, predictions of the system identification models
were simulated. The selected results from the simula-
tions are shown in Figure 12. The validation of the
models was analyzed using Mean Square Error (MSE),
Normalized Mean Square Error (NMSE), and Normal-
ized Root Mean Square Error (NRMSE). On contrary
to the MSE, where the numerical value should be as
small as possible, the numerical values of the NMSE
and NRMSE are in the range 〈−∞, 1], where 1 is rep-
resenting a perfect model. The numerical performance
of these models are shown in Table 4. The validation
data set has been extract for the period after the ROLS
model has stabilized.

The results show that the OLS model and ROLS
model are following the mechanistic model quite well.
So are also the results based on DSR, but the DSR
model fails in the validation data set. In contrast to
the OLS model and ROLS model, where the predic-
tions are updated by new measurements, only the ini-
tial state vector is calculated in the DSR model. Thus,
the states are not updated by new measurements in
the DSR model, inducing a tendency of drifting away.
By utilizing new measurements of the metal height in a
implemented state estimator, an online version of the
DSR, will enhance the performance, by reducing the
drift of the model. The MDSR predictions are up-
dated by the new measurements, but the model does
not recreate the dynamics in a proper way. In sys-
tems where the main dynamics is well known, and the
variations in the measurement instant make subspace
methods difficult, an OLS approach seems to be the
optimal choice of system identification algorithm.

In real applications the DSR model often has the ad-
vantage to include more input variables to the model,
with the intention of improving the model. The need
for looking for such “lurking” input variables can be
revealed by analyzing an error prediction plot or resid-
ual plot. The prediction errors for the OLS model is
plotted in Figure 13, together with a sine curve with
identical periodicity of the not measured input variable
“Cross section area”. As this is a “lurking”variable,
indicating that it has not been involved in the identi-

fication problem (as it is not measured), it will not be
detected by the OLS model. Similar error predictions
are seen by the other models, but as mentioned a DSR
model will easily include new input measurements of
the system. Although the variable “Cross section area”
is difficult to measure on a regular basis, some of the
“lost” dynamics can perhaps be detected by the other
variables that are more easily available. It would then
be possible to identify a model describing this addi-
tional dynamic by eg. a DSR model. Finally, the OLS
and the new DSR model could be merged to a gray box
model, hence gaining advantage of both model types.
This will not be treated in the present paper, as it is
beyond the scope of this work, but the reader is re-
ferred to Draper and Smith (1998) for more details for
utilizing the error prediction or residual plots.

9 Conclusion

This paper addresses challenges using ordinary system
identification methods in applications with rare and
intermittent sampling frequencies, and if the sampling
frequencies are different for the input and output vari-
ables. In particular the challenge with identifying a
robust predictor of the metal height in aluminium elec-
trolysis cells is under scrutiny. When dealing with so
few regularly performed measurements as in the elec-
trolysis process, using historical data to model the
metal height is insufficient. With measurements just
before, and just after the tapping of metal, it is pos-
sible to achieve quite good predictors, by just using
the two main inputs; line current I and the amount of
tapped aluminium mout. This can be achieved in spite
of the intermittent tapping instants, by defining two
linear models with common parameter vector θ. The
first with a slow sampling rate, that is consistent with
the metal height measurement, where the input vari-
ables are summed between each metal height measure-
ments. This regression model is used for determining
θ. The other linear model should have a sampling rate
identical to the input variables, and serves as a pre-
dictor of the metal height between the measurements.
To determine more complex dynamic between the tap-
ping, more measurements have to be taken, in partic-
ular metal height measurements, but also more input
variables with regularly performed measurements. If
measuring the metal height every 3rd hour through-
out 20 days, some acceptable predictions of the metal
height was achieved using ordinary DSR-algorithms,
although it often created rater unstable models, due to
the transformation from models with 3 hours sampling
time to 5 minutes sampling time. If instead considering
metal height measurements every 3rd hour, but now
adjusted in time after each metal tapping procedure,
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Figure 12: Simulations of the different models, based on the validation data set. The OLS and ROLS predictions
are following the “real” metal height quite well, in spite of the large measurement uncertainty. The
DSR has a tendency of drifting away as it is not updated by the new metal height measurements, as
in the case of the former models. The MDSR has problems in reproducing the system dynamic, but
updates the predicted metal height very well at each new measurement.

Table 4: Numerical validation of the models

Algorithm MSE NMSE NRMSE

Identification Validation Identification Validation Identification Validation

OLS 6.52 · e−5 5.03 · e−5 0.16 0.49 0.83 0.29
ROLS 3.59 · e−5 3.79 · e−5 0.54 0.62 0.32 0.38
DSR 12.8 · e−5 9.97 · e−5 -0.65 -0.0054 -0.28 0.0027
MDSR 5.33 · e−5 7.93 · e−5 0.37 0.080 0.21 0.041
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Figure 13: The prediction errors of the OLS prediction shows a periodic tendency as indicated by the sine
function plotted with identical periodicity of the not measured input variable “Cross section area”.
This indicate that there are dynamics in the data set not identified by the OLS model. This is related
to a “lurking”variable, that is not included in the data set used for identification.
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the DSR did not work, due to the time-lag. In this
case MDSR, which is the DSR for multiple time series
provided acceptable predictions. As far as there are
so few regularly performed measurements in the alu-
minium electrolysis process, parameter estimation ap-
proaches using PEM-algorithms seem to be the most
satisfying and reliable approach to predict the metal
height in the aluminium electrolysis process. This con-
clusion is mainly based on the experience with this sim-
plified mechanistic model given in Eq. (12), as the real
measurements are few in their numbers and have con-
siderable uncertainties.
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