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Abstract

The high abstraction level of equation-based object-oriented (EOQO) languages such as Modelica has the
drawback that programming and modeling errors are often hard to find. In this paper we present integrated
static and dynamic debugging methods for Modelica models and a debugger prototype that addresses sev-
eral of those problems. The goal is an integrated debugging framework that combines classical debugging
techniques with special techniques for equation-based languages partly based on graph visualization and

interaction.

To our knowledge, this is the first Modelica debugger that supports both equation-based transforma-
tional and algorithmic code debugging in an integrated fashion.
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1 Introduction

Advanced development of today’s complex products
requires integrated environments and equation-based
object-oriented declarative (EOO) languages such as
Modelica (Fritzson, 2014; Modelica Association, 2012,
2013) for modeling and simulation. The increased ease
of use, the high abstraction level, and the expressivity
of such languages are very attractive properties. How-
ever, these attractive properties come with the draw-
back that programming and modeling errors are often
hard to find.

To address these issues we present static (compile-
time) and dynamic (run-time) debugging methods for
Modelica models and a debugger prototype that ad-
dresses several of those problems. The goal is an in-
tegrated debugging framework that combines classi-
cal debugging techniques with special techniques for
equation-based languages partly based on graph visu-
alization and user interaction.

The static transformational debugging functionality
addresses the problem that model compilers are opti-
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mized so heavily that it is hard to tell the origin of
an equation during runtime. This work proposes and
implements a prototype of a method that is efficient
with less than one percent overhead, yet manages to
keep track of all the transformations/operations that
the compiler performs on the model.

Modelica models often contain functions and algo-
rithm sections with algorithmic code. The fraction of
algorithmic code is increasing since Modelica, in addi-
tion to equation-based modeling, is also used for em-
bedded system control code as well as symbolic model
transformations in applications using the MetaModel-
ica language extension.

Our earlier work in debuggers for the algorithmic
subset of Modelica used high-level code instrumenta-
tion techniques which are portable but turned out to
have too much overhead for large applications. The
new dynamic algorithmic code debugger is the first
Modelica debugger that can operate without high-level
code instrumentation. Instead, it communicates with a
low-level C-language symbolic debugger to directly ex-
tract information from a running executable, set and
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remove breakpoints, etc. This is made possible by the
new bootstrapped OpenModelica compiler which keeps
track of a detailed mapping from the high level Mod-
elica code down to the generated C code compiled to
machine code.

The dynamic algorithmic code debugger is opera-
tional, supports both standard Modelica data struc-
tures and tree/list data structures, and operates effi-
ciently on large applications such as the OpenModelica
compiler with more than 200 000 lines of code.

The attractive properties of high-level object-
oriented equation-based languages come with the draw-
back that programming and modeling errors are often
hard to find. For example, in order to simulate models
efficiently, Modelica simulation tools perform a large
amount of symbolic manipulation in order to reduce
the complexity of models and prepare them for effi-
cient simulation. By removing redundancy, the gener-
ation of simulation code and the simulation itself can
be sped up significantly. The drawback of this perfor-
mance gain is that error-messages often are not very
user-friendly due to symbolic manipulation, renaming
and reordering of variables and equations. For exam-
ple, the following error message says nothing about the
variables involved or its origin:

Error solving non-linear system 2

time = 0.002
residual [0] = 0.288956
x[0] = 1.105149
residual[1] = 17.000400
x[1] = 1.248448

It is usually hard for a typical user of the Modelica
tool to determine what symbolic manipulations have
been performed and why. If the tool only emits a bi-
nary executable this is almost impossible. Even if the
tool emits source code in some programming language
(typically C), it is still quite hard to understand what
kind of equation system was produced by the symbolic
transformation process. This makes it difficult to un-
derstand where the model can be changed in order to
improve the speed or stability of the simulation. Some
tools allow the user to export the description of the
translated system of equations (Casella et al., 2009;
Parrotto et al., 2010), but this is not enough. Af-
ter symbolic manipulation, the resulting equations no
longer need to contain the same variables or structure
as the original equations.

This work proposes and develops a combination of
static and dynamic debugging techniques to address
these problems. The static (compile-time) transforma-
tional debugging efficiently traces the symbolic trans-
formations throughout the model compilation process
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and provides explanations regarding the origin of prob-
lematic code. The dynamic (run-time) debugging al-
lows interactive inspection of large executable models,
stepping through algorithmic parts of the models, set-
ting breakpoints, inspecting and modifying data struc-
tures and the execution stack.

An integrated approach is proposed where the map-
ping from generated code to source code provided by
the static transformational debugging is used by the
dynamic debugger to relate run-time errors to the
original model sources. To our knowledge no other
open-source or commercial Modelica tool currently
supports static transformational debugging and algo-
rithmic code debugging of an equation-based object-
oriented (EOO) language.

The paper is structured as follows: Section 2 gives
a background to debugging techniques, Section 3 an-
alyzes sources of errors and faults, Section 4 proposes
an integrated static and dynamic debugging approach,
Section 5 presents the static transformational debug-
ging method and implementation, whereas Section 6
presents the algorithmic code debugging functionality.
Conclusions and future work are given in Section 7.

2 Debugging techniques for EOO
Languages

In the context of debugging declarative equation-based
object-oriented (EOQ) languages such as Modelica,
both the static (compile-time) and the dynamic (run-
time) aspects have to be addressed.

The static aspect of debugging EOO languages deals
with inconsistencies in the underlying system of equa-
tions:

1. Errors related to the transformations of the mod-
els to an optimized flattened system of equations
suitable for numeric solution. For example sym-
bolic solutions leading to division by a constant
zero stemming from a singular system of equations
or (very rarely) errors in the symbolic transforma-
tions themselves.

2. Overconstrained models (too many equations) or
underconstrained models (too few equations). The
number of variables needs to be equal to the equa-
tions is required for solution.

The dynamic (run-time) aspect of debugging EOO lan-
guages addresses run-time errors that may appear due
to faults in the model:

1. model configuration: when the parameters values
and start attributes for the model simulation are
incorrect.
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2. model specification: when the equations and algo-
rithm sections that specify the model behavior are
incorrect.

3. algorithmic code: when the functions called from
equations return incorrect results.

Methods for both static and dynamic (run-time) de-
bugging of EOO languages such as Modelica have
been proposed earlier by Bunus and Fritzson (2003)
and Bunus (2004). With the new Modelica 3.0 lan-
guage specification, the static overconstrained/under-
constrained debugging of Modelica presents a rather
small benefit, since all models are required to be bal-
anced. All models from already checked libraries will
already be balanced; only newly written models might
be unbalanced, which is particularly useful if new mod-
els contain a significant number of unknowns.

Regarding dynamic (run-time) debugging of models,
Bunus and Fritzson (2003) proposes a semi-automated
declarative debugging solution in which the user has to
provide a correct diagnostic specification of the model
which is used to generate assertions at runtime. More-
over, starting from an erroneous variable value the user
explores the dependent equations (a slice of the pro-
gram) and acts like an “oracle” to guide the debugger
in finding the error.

3 Sources of Errors and Faults

There are a number of sources of errors and faults in
a simulation system. Some errors can be recovered
automatically by the system, whereas others should
be reported and allow the users to enter debugging
mode. An error can also be a wrong value pointed out
manually by a user.

Every solver employed within a simulation system
at all levels should be equipped with an error report-
ing mechanism, allowing error recovery by the master
solver, or error reporting to the end-user in case of ir-
recoverable error:

e the ODE solvers
e the functions computing the derivatives and the
algebraic functions given the states, time, and in-

puts

e the functions computing the initial states and the
values of parameters

e the linear equation solvers

e the nonlinear equation solvers

If some equation can be solved symbolically, without
resorting to numerical solvers, then the symbolic solu-
tion code should be equipped with diagnostics to han-
dle errors as well.

In the next section we give causes of errors that can
appear during the model simulation.

3.1 Errors in the evaluation of expressions

During the evaluation of expressions, faults may occur
for example due to the following causes:

e Division by zero

e Evaluation of non-integer powers with negative ar-
gument

e Functions called outside their domain (e.g.: sqrt(-
1), log(-3), asin(2)). For non built-in functions,
these errors can be triggered by assertions within
the algorithm, or by calls to the pre-defined Mod-
elicaError() function in the body of external func-
tions.

e Errors manifesting as computed wrong value of
some variable(s), where the error is manually
pointed out by a user or automatically detected
as being outside min/max bounds.

3.2 Assertion violations in models

During initialization or simulation, assertions inside
models can be triggered when the condition being as-
serted becomes false.

3.3 Errors in the solution of implicit
algebraic equations

During initialization or simulation of DAE systems, im-
plicit equations (or systems of implicit equations, corre-
sponding to strong components in the BLT decomposi-
tion) must be solved. In the case of linear systems, the
solver might fail because there is some error in eval-
uating the coefficients of the A matrix and of the b
vector of the linear equation A *x = b, or because said
problem is singular. In the case of nonlinear equations
f(z) = 0, the solver might fail for several reasons: the
evaluation of the residual f(x) or of its Jacobian gives
errors; the Jacobian becomes singular; the solver fails
to converge after a maximum number of iterations.

3.4 Errors in the integration of the ODEs

In OpenModelica, the DAEs are brought to index-1
ODE form by symbolic and numerical transformation,
and these equations are then solved by an ODE solver,
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which iteratively computes the next state given the
current state. During the computation of the next
state, for example by using Euler, Runge-Kutta or a
BDF algorithm, errors such as those reported in sec-
tions 3.1, 3.2, and 3.3 might occur. Furthermore, the
solver might fail because of singularity in the ODE, as
in the case of finite escape time solutions, or because
of discontinuities leading to chattering.

4 Integrated Debugging Approach

In this section we propose an integrated debugging
method combining information from a static analysis
of the model with dynamic debugging at run-time.

4.1 Integrated Static-Dynamic Debug
Method

This method partly follows the approach proposed in
Bunus and Fritzson (2003) and Bunus (2004) and fur-
ther elaborated in Pop et al. (2007). However, our
approach does not require the user to write diagnos-
tic specifications of models. The approach we present
here can also handle the debugging of algorithmic code
using classic debugging techniques.

An overview of this debugging strategy is presented
in Figure 1. In short, our run-time debugging method
is based on the integration of the following:

1. Dependency graph visualization and interaction.

2. Presentation of simulation results and modeling
code.

3. Mapping of errors to model code positions.

4. Execution-based debugging of algorithmic code.

A possible debugging session might be as follows.

During the simulation phase, the user discovers an
error in the plotted results, or an irrecoverable error
is triggered by the run-time simulation code. In the
former case, the user marks either the entire plot of the
variable that presents the error or parts of it and starts
the debugging framework. The debugger presents an
interactive dependency graph (IDG) with respect to
the variable with the wrong value or the expression
where the fault occurred. The dependency edges in
the IDG are computed using the transformation tracing
that is described in Section 5. The nodes in the graph
consist of all the equations, functions, parameter value
definitions, and inputs that were used to calculate the
wrong variable value, starting from the known values
of states, parameters and time. The variable with the
erroneous value (or which cannot be computed at all)
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is displayed in a special node which is the root of the
graph. The IDG contains two types of edges:

1. Calculation dependency edges: the directed edges
labeled by variables or parameters which are in-
puts (used for calculations in this equation) or
outputs (calculated from this equation) from/to
the equation displayed in the node.

2. Origin edges: the undirected edges that tie the
equation node to the actual model which this
equation belongs to.

The user interacts with the dependency graph in sev-
eral ways:

e Displaying simulation results through selection of
the variables (or parameters) names (edge labels).
The plot of a variable is shown in a popup window.
In this way the user can quickly see if the plotted
variable has erroneous values.

e Displaying model code by following origin edges.

e Invoking the algorithmic code debugging subsystem
when the user suspects that the result of a variable
calculated in an equation which contains a func-
tion call is wrong, but the equation seems to be
correct.

Using these interactive dependency graph facilities
the user can follow the error from its manifestation
to its origin. Note that in most cases of irrecoverable
errors arising when trying to compute a variable, the
root cause of the error does not lie in the equation
itself being wrong, but rather in some of the values
of previously computed variables appearing in it being
wrong, for example because of erroneous initialization
or parameterization.

The proposed debugging method can also start from
multiple variables with wrong values with the premise
that the error might be at the confluence of several
dependency graphs.

Note that the debugger can handle both data depen-
dency edges (for example which variables influence the
current variable of interest), and origin edges (edges
pointing from the generated executable simulation code
to the original equations or parts of equations con-
tributing to this code). Both are computed by the
transformational debugger mentioned in Section 5.

5 Static Transformational
Debugging

Transformational debugging is a static compile-time
technique since it does not need run-time execution
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Figure 1: Integrated debugging approach overview

Error Discovered

— (apollo.gzavity) [¢]

What now?
Where is the equation or code that
generated this error?

Build graph

Interactive Dependency Graph
These equations contributed to the result

Code viewer
Show which model or function
the equation node belongs to

162f
©

158
156

1.54

Follow if error
is in a function

Follow if error
is in an equation

Algorithmic Code Debugging
Normal execution point debugging of
functions

s

O o e | Qi ome gy | - | | SR ERANAG 55

of a model. The method keeps track of symbolic trans-
formations, can explain and display applied transfor-
mations, and compute dependence edges between the
original model and the generated executable code.

5.1 Common Operations on Continuous
Equation Systems

In order to create a debugger adapted for debugging
the symbolic transformations performed on equation
systems, its requirements should be stated. There are
many symbolic operations that may be performed on
equation systems. The following descriptions of opera-
tions also include a rationale for each of them, since it
is not always apparent why certain operations are per-
formed. There are of course many more operations that
can be performed than the ones listed below, which are
however deemed the most important, and which the
debugger for models translated by the OpenModelica
Compiler (Open Source Modelica Consortium, 2014b)

4

Simulation Results
These are the intermediate simulation
results that contributed to the result

pN

should be able to handle.

5.1.1 Variable aliasing

An optimization that is very common in Modelica com-
pilers is variable aliasing. This is due to the connec-
tion semantics of the Modelica language. For example,
if @ and b are connectors with the potential-variable v
and flow-variable ¢, a connection (1) will generate alias
equations (2) and (3).

connect(a,b)

a.v=>buwv

ai+bi=0&bi=—a.i

3)
In a simulation result-file, this alias relation can be
stored instead of a duplicate trajectory, saving both
space and computation time. In the equation system,
b.v may be substituted by a.v and b.i by —a.7, which
may lead to further optimizations of the equations.
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5.1.2 Known variables

Known variables are similar to aliased variables in that
the compiler may perform variable substitutions on the
rest of the equation system if it finds such an occur-
rence. For example, (4) and (5) can be combined into
(6). In the result-file, there is no longer a need to
store the value of a at each time step; once is enough
for known variables, which in Modelica are parameters
and constants.

a=4.0
b=40—-a+c
b=40—-40+c¢

5.1.3 Equation Solving

If the tool has determined that = needs to be solved for
in (7), it is needed to symbolically solve the equation to
produce a simple equation with = on one side as in (8).
Solving for z is not always straight-forward and it is not
always possible to invert user-defined functions such as
called in (9). Since x is present in the call arguments
and the tool cannot invert or inline the function, it fails
to solve the equation symbolically and instead solves it
numerically using a non-linear solver during runtime.

15.0=3.0* (x +y)
x=15.0/3.0—y

0=f(3+x)

5.1.4 Expression Simplification

Expression simplification is a symbolic operation that
does not change the meaning of the expression, while
making it faster to calculate. It is related to many dif-
ferent optimization techniques such as constant fold-
ing. It is possible to change the order in which argu-
ments are evaluated (10). Constant sub-expressions are
evaluated during compile-time (11). Regarding Mod-
elica models it is also allowed to rewrite non-constant
sub-expressions (12) and choose to evaluate functions
fewer times than in the original expression (13) since
functions may not have side-effects. It is also possible
for the compiler to use knowledge about the execution
model in order to make expressions run faster (14) and
(15).

and(a, false,b) = and(false,a,b) = false  (10)
40—-40+c=c (11)
max(a,b,7.5,a,15.0) = max(a,b, 15.0) (12)
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f@)+ f(z) + f(z) = 3= f(z) (13)
if cond then a else a = a (14)
if not cond then false else true = cond (15)

5.1.5 Equation System Simplification

It is of course also possible to solve some equation sys-
tems statically. For example a linear system of equa-
tions with constant coefficients (16) can be solved using
one step of symbolic Gaussian elimination (17), gener-
ating two separate equations that can be solved indi-
vidually after causalisation (18). A simple linear equa-
tion system such as (16) may also be solved numerically
using for example LAPACK (Anderson et al., 1999) rou-

tines.
CNE-6)
O 20 -() o
M (1)

5.1.6 Differentiation

Symbolic differentiation (Elliott, 2009) is used for
many purposes. It is used to symbolically expand
known derivatives (19) or as an operation during in-
dex reduction. Symbolic Jacobian matrices consist-
ing of derivatives have many applications, for example
to speed up simulation runtime (Braun et al., 2011).
If there is no symbolic Jacobian available, a numeri-
cal one might instead be estimated by the numerical
solvers. Such a matrix is often computed using au-
tomatic differentiation (Elliott, 2009) which combines
symbolic and/or automatic differentiation with other
techniques to achieve fast computation.

9 5
ol =2 (19)

5.1.7 Index reduction

In order to solve (hybrid) differential algebraic equa-
tions (DAESs) numerically, simulation tools use discreti-
sation techniques and methods to numerically com-
pute derivatives and solve differential equations. These
parts of the tools are often referred to as solvers. Cer-
tain DAESs need to be differentiated symbolically to en-
able stable numeric solution. The differential index of
a general DAE system is the minimum number of times
that certain equations in the system need to be differ-
entiated to reduce the system to a set of ODEs, which
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can then be solved by the usual ODE solvers (Fritz-
son, 2014). While there are techniques to solve DAEs
of higher index than 1, most of them require index-
1 DAEs or ODEs (no second derivatives). A com-
mon index-reduction technique uses dummy deriva-
tives as described by Mattsson and Soderlind (1993).
The OpenModelica Compiler default method currently
combines the Pantelides (1988) method for index re-
duction enhanced by Soares and Secchi (2005) with
dynamic state selection (Mattsson et al., 2000; Matts-
son and Soderlind, 1992, 1993).

5.1.8 Function inlining

Writing functions to perform common operations is a
great way to reduce the burden of maintaining code
since each operation is defined by a function in only
one place. The problem is that for function calls there
is some overhead. This becomes a noticeable fraction
of the computational cost for the whole invocation and
computation for small functions. By inlining a function
call (20) and (21), it is treated as a macro expansion
(22) which avoids the overhead of calling the function
and may increase the number of symbolic manipula-
tions that can performed by the compiler on expres-
sions such as (23).

In Modelica, the compiler may inline the call before
or after index reduction. Both methods have advan-
tages and disadvantages. Doing it after index reduc-
tions may provide a better result if the modeller has
provided an analytic solution in the form of a deriva-
tive function. This causes a smaller expression to be
differentiated if index reduction is required.

20
21
22
23

flz,y) = sin(x) + cos(z — y)
2% f(x+y,y)/m
2% 7% (sin(z +y) +cos(zx+y—y))/m
2 x (sin(x 4+ y) + cos(x))

(20)
(21)
(22)
(23)

5.1.9 Scalarization

Scalarization is the process of expanding array equa-
tions into a number of scalar equations, usually one
equation for each element of the corresponding array.
By keeping array equations together instead of scalar-
ising them early, the compiler backend saves time since
it needs to perform a symbolic operation on only one
equation instead of n equations for an array of size
n. However, if enough information is known about an
equation (24), it can be beneficial to split it into scalar
equations, one for each array element (25).

(a,b,¢) = (2,9, 2)

a=x b=y c=z

5.2 Debugging

The choice of techniques for implementation of a de-
bugger depends on where and for what it is intended
to be used. Translation and optimization of large ap-
plication models can be very time-consuming. Thus it
would be good if the approach has such a low overhead
that it can be enabled by default. It would also be
good if error messages from the runtime could use the
debug information from the translation and optimiza-
tion stages to give more understandable and informa-
tive messages to the user.

A technique that is commonly used for debugging is
tracing. The simplest way of implementing tracing is
to print a message to the terminal or file in order to log
the operations that are performed. The problem here
is that if an operation is rolled back, the log-file will
still contain the operation that was rolled back. The
data also need to be post-processed if the operations
should be grouped by equation.

A more elegant technique is to treat operations as
meta data on equations, variables or equation systems.
Other meta data that should already be propagated
from source code to runtime include the name of the
component that an equation is part of, which line and
column that the equation originates from, and more.
Whenever an operation is performed, the kind of op-
eration and input/output is stored inside the equation
as a list of operations. If the structure used to store
equations is persistent this also works if the tool needs
to roll back execution to an earlier state.

The cost of adding this meta data is a constant run-
time factor from storing a new head in the list. The
memory cost depends a lot on the compiler itself. If
garbage collection or reference counting is used, the
only cost is a small amount to describe the operation
(typically an integer and some pointers to the expres-
sions involved in the operation).

5.3 Bookkeeping of Operations
5.3.1 Variable Substitution

The elimination of variable aliasing and variables with
known values (constants) is considered as the same op-
eration that can be done in a single phase. It can be
performed as a fixed-point algorithm where substitu-
tions are collected which record if any change was made
(stop if no substitution is performed or no new substi-
tution can be collected). For each alias or known vari-
able, merge the operations stored in the simple equa-
tion & = y before removing it from the equation sys-
tem. For each successful substitution, record it in the
list of operations for the equation.

The history of the variable a in the equation system
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(26) could be represented as a more detailed version
(27) instead of the shorter (28) depending on the order
in which the substitutions were performed.

a=bb=—c,c=45 (26)
a=b=>a=—-c=>a=-45 (27)
a=b=>a=-45 (28)

In equation systems that originate from a Modelica
model it is preferable to view a substitution as a single
operation rather than as a long chain of operations
(chains of 50 cascading substitutions are not unheard of
and makes it hard to get an overview of the operations
performed on the equation, even though sometimes all
the steps are necessary to understand the reason for
the final substitution).

It is also possible to collect sets of aliases and select
a single variable (doing everything in one operation) in
order to make substitutions more efficient. However,
alias elimination may still cascade due to simplification
rules (29), which means that a work-around is needed
for substitutions performed in a non-optimal order.

a=b—c+d=a=b-b+d=a=d (29)
To efficiently handle this case, the previous operation is
compared with the new one and if a link in the chain is
detected, this relation is stored. When displaying the
operations of an equation system to the user, it is then
possible to expand and collapse the chain depending
on the user’s needs.

5.3.2 Equation Solving

Some equations are only valid for a certain range of in-
put. When solving an equation like (30), is is assumed
by the compiler that the divisor is non-zero and it is
eliminated in order to solve for x. The compiler records
a list of such implicit assertions made (and their data
sources for traceability). Such an assertion may be re-
moved if it is later determined that it always holds or
if it overlaps with another assertion (31).

(y#0)

y#0,40<y<80=40<y<8.0

zly=1l=xz=y (30)

(31)

5.3.3 Expression Simplification

Tracking changes to an expression is easy if you have
a working fixed-point algorithm for expression simplifi-
cation (record a simplification operation if the simpli-
fication algorithm says that the expression changed).
However, if the simplification algorithm oscillates (as
in 32) there is no canonical form and it is hard to use
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the simplification procedure as a fixed-point algorithm,
which simplifies until nothing changes in the next iter-
ation.

2% =>r*2= 2%z (32)

The simple solution is to use an algorithm that is fixed
point, or conservative (reporting no change made when
performing changes that may cause oscillating behav-
ior). Finding where this behavior occurs is not hard
for a compiler developer (simply print an error message
after 10 iterations). If it is hard to detect if a change
has actually occurred (due to changing data represen-
tation to use more advanced techniques), one may need
to compare the input and output expression in order to
determine if the operation should be recorded. While
comparing large expressions may be expensive, it is of-
ten possible to let the simplification routine keep track
of any changes at a smaller cost.

5.3.4 Equation System Simplification

It is possible to store these operations as pointers to
a shared and more “global” operation or as many in-
dividual copies of the same operation. We would also
recommend to store reverse pointers (or indices) from
the global operation back to each individual operation
as well, so that reverse lookup can be performed at a
low cost.

Since the OpenModelica Compiler only performs
limited simplification of strongly connected compo-
nents, it is currently limited to only recording evalu-
ation of constant linear systems. As more of these op-
timizations, for example solving for y in (33), are added
to the compiler, they will also need to be traced and
support for them added in the debugger. Another ex-
ample would be tracing the tearing operation described
by Elmqvist and Otter (1994), which causes the solu-
tion of a nonlinear system to be found more efficiently.
Support for tearing was recently added to the Open-
Modelica Compiler but is not yet part of the trace.

11 2\ [« 15
1 i 1] |yl=1[18 (33)
—i 1) \z 18

5.3.5 Differentiation

Whenever the compiler performs symbolic differentia-
tion in an expression, for example to expand known
derivatives (34), this operation is recorded and asso-
ciated to the equation in the internal representation.
Currently the state variable is not eliminated as in (35),
but if it would be done that operation would also be
recorded.

der(z) = der(time) = der(xz) = 1.0 (34)



Pop et.al., “Integrated Debugging of Modelica Models”

der(z) = 1.0 = x = time + (Tstart — timestart) (35)

5.3.6 Index reduction

For the used index reduction algorithm, dummy deriva-
tives (Mattsson and Soderlind, 1993), any substitu-
tions made are recorded, source position information is
added to the new dummy variable, as well as the opera-
tions performed on the affected equations. As an exam-
ple for the dummy derivatives algorithm, this includes
differentiation of the Cartesian coordinates (z,y) of a
pendulum with length L (36) into (37) and (38). After
the index reduction is complete, further optimizations
such as variable substitution (39), are performed to re-
duce the complexity of the complete system.

2? +y? =17 (36)
der(z? + %) = 2 x (der(z) * x + der(y) xy)  (37)
der(L?) = 0.0 (38)

2% (der(z) xx+der(y) *y) = 2% (uxz+vxy) (39)

5.3.7 Function inlining

Since inlining functions may cause one or more new
function calls to be added to the expression, functions
are inlined until there are no more functions to in-
line in the expression or a maximum recursion depth
is reached when dealing with recursive functions. Ex-
pressions are also simplified in order to reduce the size
of the final expression as well as cope with a few recur-
sive functions that have a known depth after inlining.
When the compiler has completed inlining of calls in
an equation, this is recorded as an inline operation to-
gether with the expression before and after the opera-
tion.

5.3.8 Scalarization

When the compiler expands an equation into scalar
equations, it stores the initial array expression, the in-
dex of the new equation, and the new expression.

5.4 Presentation of Operations

Until now the focus has been on collecting operations as
data structured in the equation system. What is possi-
ble to do with this information? During the translation

Listing 1: Alias Model with Poor Scaling

model AliasClass_N
constant Integer N=60;
Real al[N];

equation
der(al[1]) =
al2] = al1l;
for i in 3:N loop

1.0;

alil = i*ali-1]-sum(al[j] for j
in 1:i-1);
end for;

end AliasClass_N;

phase, it can be used directly to present information to
the user. Assuming that the data is well structured, it
is possible to store it in a static database (e.g. SQL) or
simply as structured data (e.g. XML or JSON). That
way the data can be accessed by various applications
and presented in different ways according to the user
needs for all of them.

The current OpenModelica prototype outputs XML
text at present, soon changed to JSON. In the future
this information will be presented in the origin edge
introduced in Section 4.

The number of operations stored for each equation
varies widely. The reason is that when a known vari-
able, for example z, is replaced by for example the
number 0.0, the compiler may start removing subex-
pressions. It may then end up with a chain of opera-
tions that loops over variable substitutions and expres-
sion simplification. Frenkel et al. (2011) prove that the
number of operations performed may scale with the to-
tal number of variables in the equation system if there
is no limitation of the number of iterations that the op-
timizer may take. This makes some synthetic models
very hard to debug. The example model in Listing 1
performs 1+2+...4 N substitutions and simplifications
in order to deduce that a[l] = a[2] = ... = a[n].

When testing these methods on a real-world exam-
ple, the EngineV6 model', the majority of equations
have less than 4 operations (Figure 2), which means
most equations were very easy to solve. The highest
number of operations was 16 which is a manageable
number to go through when there is a need to debug
the model and to understand which equations are prob-
lematic. The 16 operations still require a nice presen-
tation, like a visual diff, to quickly get an overview
of what happened and why. Note that Figure 2 is a
cumulative graph that includes both the initial equa-
tion system, the continuous-time equation system, the

Modelica.Mechanics.MultiBody. Examples.Loops.EngineV6
from the MSL (Modelica Association, 2013)
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Figure 2: The cumulative number of symbolic opera-
tions performed on each equation in the En-
gineV6 model

discrete-time equation system, and the known vari-
ables. Since known variables were included, most of
these equations will actually not be part of the gener-
ated code and will not be interesting to debug unless
it is suspected that the back-end produced the wrong
result for a constant equation.

5.5 Runtime supported by static
information

In order to produce better error messages during sim-
ulation runtime, it would be beneficial to be able to
trace the source of the problem. The toy example
in Listing 2 is used to show the information that the
augmented runtime can display when an error occurs.
The user should be presented with an error message
from the solver (linear, non-linear, ODE, or algebraic
equation does not matter). Here, the displayed error
comes from the algebraic equation handling part of the
solver. It clearly shows that log(0.0) is not defined and
the source position of the error in the concrete textual
Modelica syntax form (the Modelica code that the user
makes changes for example to fix the problem) as well
as the class names of the instances at this point in the
instance hierarchy (which may be used as a link by a
graphical editor to quickly switch view to the diagram
view of this component). The tool also displays the
symbolic transformations performed on the equation,
which can help in debugging additional problems with
the model.

Currently we are working on extending the infor-
mation we collect during the static analysis to build
the Interactive Dependency Graph from Figure 1, Sec-
tion 4.
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Listing 2: Runtime Error

Error: At t=0.5, blockl.u = 0.0 is
not in the domain of log (>0)

Source equation: [Math.mo
:2490:9-2490:33] y = log(u)

Source component: blockl (MyModel
Modelica.Blocks.Math.Log)

Flattened equation: blockl.y = log(
blockl.u)
Manipulated equation: y = log(u)
<Operations>
variable substitution: log(
blockl.u) = log(u)
<Depending on equations (from BLT)

>
u <:1link>

6 Dynamic Debugging

6.1 Using the Algorithmic Code Debugger

The debugger part for algorithmic Modelica code is
implemented within the OpenModelica environment as
a debug plugin for the Modelica Development Tooling
(MDT) which is a Modelica programming perspective
for Eclipse. The Eclipse-based user interface of the new
efficient debugger is depicted in Figure 3.

o)

S Debug -
Ble Edt Nov

o - Ecipze SDK.
n Window Help
T & v 0 v' (v v Comectindentation | Build project

5 ] e
- -

3 eug 11 =

Y TIELYE L
% MDT GDB [Modelica Developement Tooling (MDT) GDB]
8 MoT

‘‘‘‘‘‘

1 CAOpentodel suite\bootstiapping\main.cxe

List of Stack Frames

Output View

Figure 3: The debug view of the new efficient algorith-
mic code debugger within the MDT Eclipse
plugin.

The algorithmic code debugger provides the follow-
ing general functionalities:
e Adding/Removing breakpoints.

e Step Over — moves to the next line, skipping the
function calls.
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%5 Debug &3 =8
Ok IR
7% MDT GDB [Modelica Developement Tooling (MDT) GDEB]
7 MDT

1® Main Thread (stepping)

= evaluateGraphicalApi at Interactive.mo:2034
evaluateZ at Interactive.mo:485

evaluateToStdOut at Interactive.mo:328
translateFile at Main.mo:619

beall at Debug.mo:460

main at Main.mo:1183

s Ch\OpenModelica\trunkitestsuitelbootstrapping\main.exe

Figure 4: The stack frame view of the debugger.

e Step In — steps into the called function.

e Step Return — completes the execution of the func-
tion and comes back to the point from where the
function is called.

e Suspend — interrupts the running program.

e Resume — continues the execution from the most
recent breakpoint.

e Terminate — stops the debugging session.

It is much faster and provides several stepping options
compared to the old dynamic debugger described by
Pop (2008) because the old debugger was based on
high-level source code instrumentation which made the
code grow by a factor of the number of variables. The
debug view primarily consists of two main views:

e Stack Frames View
e Variables View

The stack frame view, shown in Figure 4, shows a list
of frames that indicates how the flow has moved from
one function to another or from one file to another.
This allows backtracing of the code. It is possible to
select the previous frame in the stack and inspect the
values of the variables in that frame. However, it is not
allowed to select any of the previous frames and start
debugging from there.

Each frame is shown as <function_name at
file_name:line_number>. The Variables view (Figure 5)
shows the list of variables at a certain point in the pro-
gram. It contains four columns:

e Name — the variable name.
e Declared Type — the Modelica type of the variable.
e Value — the variable value.

e Actual Type — the mapped C type.

4= Variables i3 . % Breakpoints| = MDT Data Stack
Name Declared Type Value
@b Boolean false
@ bl Boolean false
¥ b2 Boolean false
% count Integer 13
@ inStatements record<Interactive Statements.ISTMTS> record<Interactive.5
@ interactiveStmtlst list<record<Interactive.Statement.JEXP> > <1 item>
@ 1] record<Interactive StatementIEXP > record<Interactive.5
@ op record<Absyn Exp.CALL> record< Absyn Exp.C

@ function_
% name
% subscripts
4 functionArgs
% semicolon
% inSymbolTable

record<Absyn.ComponentRef.CREF_IDENT>
String

list< Any>

record<Absyn FunctionArgs.FUNCTIOMARG...
Integer 1
record<Interactive. SymbolTable. SYMBOLTA...

record<Absyn.Comg
"loadModel"

<0 item>

record< Absyn Funct

record<Interactive.5

@ ast record<Absyn.Program.PROGRAM> record<Absyn.Progr
% depends record< AbsynDep.Depends.DEPENDS > record<AbsynDep.D
4 explodedhst Option<Any> NONEQ
@ instClsLst list<Any> <0 item>
@ IstVarval list<Any> <0 item>
@ compiledFunctions list<Any> <0 item>
@ loadedFiles list<Any> <0 item>
@ istmts record<Interactive Statements.ISTMTS> record<Interactive.5
#n Integer 1]
@ p record<Absyn.Program.PROGRAM> record<Absyn.Progr
& st record<Interactive. SymbolTable SYMBOLTA...  record<Interactive.5

"loadModel™

Figure 5: The variable view of the new debugger.

By preserving the stack frames and the variables it is
possible to keep track of the variables values. If the
value of any variable is changed while stepping then
that variable will be highlighted yellow (the standard
Eclipse way of showing the change).

6.2 Dynamic Debugger Implementation

In order to keep track of Modelica source code posi-
tions, the Modelica source-code line numbers are in-
serted into the transformed C source-code. This infor-
mation is used by the GNU Compiler GCC to create
the debugging symbols that can be read by the GNU
debugger GDB (Stallman et al., 2014).

Figure 6 shows how the bootstrapped OpenModel-
ica Compiler (Sjolund et al., 2014) propagates the line
number information all the way from the high level
Modelica representation to the low level intermediate
representation and the generated code.

This approach was developed for the symbolic model
transformation debugger described by Sjolund and
Fritzson (2011) and is also used in this debugger.

Consider the Modelica code shown in Figure 7.
The OpenModelica Compiler compiles this HelloWorld
function into the intermediate C source-code de-
picted in Figure 8. The generated code con-
tains blocks which represent the Modelica code
lines. The blocks are mentioned as comments
in the following format /*#modelicaline [model-
ica_source_file:line_number_info]*/. The generated in-
termediate C source-code is used to create another ver-
sion of the same source-code with standard C line pre-
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Modelica Code

OpenModelica Compiler

Y
C Code with line mapping

LLVM or GNU Compiler
Y

Executable

A GpB-MI

Graphical User Interface

Figure 6: Dynamic debugger flow of control.

HelloWorld.mo &3

fonction HelloWorld
inpuot Real =x;
oatput Real vy;

algorithm
v = sin(x):

end HelloWorld:

Figure 7: Modelica Code.

processor directives, see Figure 9.

The executable is created from the converted C
source-code and is debugged from the Eclipse-based
Modelica debugger which converts Modelica-related
commands to low-level GDB commands at the C code
level.

The Eclipse interface allows adding/removing break-
points. The breakpoints are created by sending the <-
break-insert filename:linenumber> command to GDB.
At the moment only line number based breakpoints
are supported. Other alternatives to set the break-
points are; <-break-insert function>, <—break-insert
filename:function>.

These program execution commands are asyn-
chronous because they do not send back any acknowl-
edgement. However, GDB raises signals:

e as a response to those asynchronous commands.
e for notifying program state.

The debugger uses the following signals to perform spe-
cific actions:

e breakpoint-hit — raised when a breakpoint is
reached.

e end-stepping-range — raised when a step into or
step over operations are finished.
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[€] HelloWorld.c &3

modelica_real _y;
modelica_real tmpZ;
_tailrecursive:

[/* functionBodyRegul out inits *
[/* wvarCutput va =
/#* functionBodyRegularFunction: state in #*/

ilarFunction: var ini
rF tion:

/*#mode al.
tmp2 = sin(_x);
_¥ = tmp2;
/*#%endModelicalLine*/

_return:
/* functionBody! : out var copy */
state out */

out var assign */

/* wva
tmpl.targl = _v;

GC: pop the mark! #*/

mme_GC undo roots state(mmc GC_local state):;

/* functionBodyRegularFunction:
return tmpl;

return the outs */

Figure 8: Generated C source-code.

[€] HelloWorld.conv.c &3
#line 25 "HelloWorld.c"

/* functionBodyRegularFunction: state in #*/
#line 26 "HelloWorld.c"

#line 27 "HelloWorld.c"
/* functionBodyRegularFunction: var inits #*/

#line 28 "HelloWorld.c"
/* functionBodyRegularFunction: body */

#line 5 "/c/Users/adeas3l/workspaceMDT/HelloWorld/HelloWorld.ma™
tmp2 = sin{_x);

#line 5 "/c/Users/adeas31/workspaceMDT/HelloWorld/HelloWorld.mo™
_¥ = tmp2;

#line 33 "HelloWorld.c"

#line 34 "HelloWoxrld.c"

_return:
#line 35 "HelloWoxrld.c"

/* functionBodyRegularFunction: out var copy */
#line 36 "HelloWorld.c"

/* functionBodyRegularFunction: state out */

Figure 9: Converted C source-code.

e function-finished — raised when a step return op-
eration is finished.

These signals are utilized by the debugger to extract
the line number information and highlight the line in
the source-code editor. They are also used as notifica-
tions for the debugger to start the routines to fetch the
new values of the variables.

The suspend functionality which interrupts the run-
ning program is implemented in the following way. On
Windows GDB interrupts do not work. Therefore a
small program BreakProcess is written to allow inter-
rupts on Windows. The debugger calls BreakProcess
by passing it the process ID of the debugged program.
BreakProcess then sends the SIGTRAP signal to the
debugged program so that it will be interrupted. In-
terrupts on Linux and MAC are working by default.
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The algorithmic code debugger is operational and
works without performance degradation on large algo-
rithmic Modelica/MetaModelica applications such as
the OpenModelica compiler, with more than 200 000
lines of code.

The algorithmic code debugging framework graph-
ical user interface is developed in Eclipse as a plugin
that is integrated into the existing OpenModelica Mod-
elica Development Tooling (MDT). The tracking of line
number information and the runtime part of the debug-
ging framework is implemented as part of the Open-
Modelica compiler and its simulation runtime.

The algorithmic code debugger currently supports
the standard Modelica data types including arrays and
records as well as all the additional MetaModelica data
types such as ragged arrays, lists, and tree data types.
It supports algorithmic code debugging of both simu-
lation code and MetaModelica code.

Furthermore, in order to make the debugging prac-
tical (as a function could be evaluated in a time step
several hundred times) the debugger supports condi-
tional breakpoints based on the time variable and/or
hit count.

The algorithmic code debugger can be invoked from
the model evaluation browser and breaks at the execu-
tion of the selected function to allow the user to debug
its execution.

7 Conclusions and Future Work

We have presented static and dynamic debugging
methods to bridge the gap between the high abstrac-
tion level of equation-based object-oriented models
compared to generated executable code. Moreover, an
overview of typical sources of errors and possibilities
for automatic error handling in the solver hierarchy
has been presented.

Regarding static transformational debugging, a pro-
totype design and implementation for tracing symbolic
transformations and operations has been made in the
OpenModelica Compiler. It is very efficient with an
overhead of the order of 0.01% if the collected infor-
mation is not output to file.

Regarding dynamic algorithmic code debugging, this
part of the debugger is in operation and is being reg-
ularly used to debug very large applications such as
the OpenModelica compiler with more than 200 000
lines of code. The user experience is very positive.
It has been possible to quickly find bugs which previ-
ously were very difficult and time consuming to locate.
The debugger is very quick and efficient even on very
large applications, without noticeable delays compared
to normal execution.

A design for an integrated static-dynamic debugging

has been presented, where the dependency and origin
information computed by the transformational debug-
ger is used to map low-level executable code positions
back to the original equations. Realizing the integrated
design is work-in-progress and not yet completed.

To our knowledge, this is the first debugger for Mod-
elica that has both static transformational symbolic
debugging and dynamic algorithmic debugging.

The tracing of symbolic operations as described in
Section 5 is available in the 1.9.0 release of Open-
Modelica (Open Source Modelica Consortium, 2014b).
Nightly builds and development releases of OpenMod-
elica contain a graphical user interface to better browse
the transformations. You can download packages for
the most common operating systems from https://
openmodelica.org/ or compile from source.

The algorithmic debugger is part of MDT (Open
Source Modelica Consortium, 2014a) and can be in-
stalled by following the instructions at https://trac.
openmodelica.org/MDT/. Moreover, there is ongoing
work to make both the algorithmic code debugger and
the equation model debugger from the OMEdit graph-
ical user interface.
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