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Abstract

This paper investigates the stiffness characteristics of spherical parallel manipulators. By virtue of singular
value decomposition, the 6×6 dimensionally inhomogeneous Cartesian stiffness matrix is transformed into
two homogeneous ones, i.e., the rotational and translational stiffness matrices. The decomposed singular
values and the corresponding vectors indicate the directions of high/weak stiffness and the stiffness isotropy
for the manipulator at a given configuration. Two indices, one for rotation and the other for translation, are
introduced to optimize the manipulator stiffness and to map the stiffness isocontours over the workspace
to show an image of the overall stiffness.

Keywords: Spherical parallel manipulator, parameter nomalization, singular value decomposition, stiff-
ness optimization

1 Introduction

Three Degrees of Freedom (3-DOF) spherical paral-
lel manipulators (SPMs) have been extensively stud-
ied, with focus on different aspects, such as kine-
matic analysis Gosselin and Lavoie (1993); Bonev
et al. (2006), singularity analysis Bonev and Gosselin
(2005), dexterity Bai et al. (2009), workspace analy-
sis Bulca et al. (1999); Bai (2010) and synthesis Kong
and Gosselin (2004). On the other hand, the elasto-
static/kinetostatic analysis, particularly, the stiffness,
received relatively less attention. Liu et al. (2000)
proposed a model by only considering the actuation
compliance, in which a global stiffness index similar
to global conditioning index (GCI) is proposed for
isotropy design of SPM. Combining the structural com-
pliance, Enferadi and Tootoonchi (2011) conducted the
stiffness analysis of a 3-RRP SPM on the basis of strain
energy and Castigliano’s theorem by ignoring the in-
fluence of the passive joints and strain energy due to
shear forces. Since the SPMs are widely used as ori-
entating devices, these stiffness models are limited to

investigate the orientation deformation of the mobile
platform. Whereas, when this kind of SPMs are used
to develop spherical joints Asada and Granito (1985),
the translational deformation of the SPM, namely, the
separation between the centers of the mobile and base
platforms, could be an important consideration. This
paper will investigate the stiffness characteristics for
this class of SPMs.

On the assessment of manipulator stiffness, a com-
mon problem lies in the dimensionally inhomogeneous
matrix, which does not admit a norm to evaluate its
stiffness. Gosselin (1990) used the diagonal elements
of the stiffness matrix to map the stiffness over the
workspace, to represent the pure stiffness in each direc-
tion clearly and directly. El-Khasawneh and Ferreira
(1999) addressed on the direct eigenvalue problem of
the stiffness matrix for a mechanism at a given pos-
ture to find the minimum and maximum stiffnesses
and their directions. However, the identification of
eigenvalues and eigenvectors does not make sense for
an inhomogeneous matrix due to the different physical
meanings of dimensionally inconsistent entries. Ciblak
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Figure 1: A co-axial spherical parallel manipulator.

and Lipkin (1999) proposed a method of synthesizing
a linearly elastic suspension composed of simple trans-
lational springs with prescribed stiffness matrix. Ding
and Selig (2004) used a finite element model to com-
pute the Cartesian stiffness matrix of a more general
suspension (a coiled spring). Dai and Ding (2006) dis-
cussed the eigenscrew decomposition of the compliance
matrix to find the eigencompliance and eigenscrew for a
three-legged platform device. Similarly, Angeles (2010)
proposed the eigenforce from the decomposed stiffness
matrix to characterize a robot’s stiffness. Kövecses and
Ebrahimi (2009) proposed a decomposition of the iner-
tia matrix for dynamic analysis by changing variables
to make the matrix non-dimensional, which can be ap-
plied to the stiffness matrix Taghvaeipour et al. (2012).
Henceforth, this approach will be adopted to charac-
terize and to optimize the stiffness of SPMs.

In this paper, the characteristics of the stiffness ma-
trix were analyzed by addressing the matrix inhomo-
geneity. With the virtual-spring approach Pashkevich
et al. (2009), the Cartesian stiffness matrix for the
SPMs was developed, which was transformed into ho-
mogeneous translational and rotational stiffness matri-
ces by means of singular value decomposition (SVD).
Two indices for translational and rotational stiffness
were introduced to optimize the manipulator stiffness
and reveal the properties. The proposed approach was
illustrated with a co-axial SPM Bai (2010); Wu (2012),
as displayed in Fig. 1, whose stiffness characteristics at
a given configuration were graphically represented by
stiffness ellipsoids. The stiffness indices and isotropy
were mapped over its workspace to show an image of
the overall stiffness.

2 Manipulator Under Study

A general spherical parallel manipulator is shown in
Fig. 2 for comparison. The SPM consists only of revo-

Figure 2: Architecture of a general SPM.

lute joints, whose axes are parallel to the unit vectors
ui, vi, and wi, i = 1, 2, 3, intersecting at a common
point, namely, the center of rotation. All three legs
have identical structures defined by angles α1, α2, β
and γ. The origin O of the reference coordinate sys-
tem xyz is located at the center of rotation. The z axis
is normal to the bottom surface of the base pyramid
and points upwards, while the y axis is located in the
plane made by z axis and u1. The manipulator shown
in Fig. 1 is a special case of γ = 0, which consists
only of three curved links connected to a rigid mobile
platform (MP) as an end-effector (EE).

Under the prescribed coordinate system, unit vector
ui is derived as

ui =
[
− sin ηi sin γ cos ηi sin γ − cos γ

]T
(1)

where ηi = 2(i− 1)π/3, i = 1, 2, 3.
Unit vector vi of the axis of the intermediate revolute

joint in the ith leg is expressed as:

vi =

−sηisγcα1 + (cηisθi − sηicγcθi)sα1

cηisγcα1 + (sηisθi + cηicγcθi)sα1

−cγcα1 + sγcθisα1

 (2)

Unit vector wi of the top revolute joint in the ith leg,
is a function of the orientation of the mobile platform
described as

wi =
[
wix wiy wiz

]T
= Qw∗

i (3)

where w∗
i is the unit vector for the axis of the top

revolute joint of the ith leg when the mobile platform
is at its home configuration, which is given as

w∗
i =

[
− sin ηi sinβ cos ηi sinβ cosβ

]T
(4)
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Figure 3: The orientation representation of the
azimuth–tilt–torsion angles.

Matrix Q is the rotation matrix of the mobile plat-
form represented by azimuth–tilt–torsion (φ–θ–σ) an-
gles Bonev (2008) as shown in Fig. 3, which is kine-
matically equivalent to the Euler convention Z–Y –Z,
namely,

Q = Rz(φ)Ry(θ)Rz(σ − φ) (5)

where φ ∈ (−π, π], θ ∈ [0, π), σ ∈ (−π, π].

3 Stiffness Modeling of SPM

In this work, the virtual spring approach Pashkevich
et al. (2009) is adopted to derive the Cartesian stiffness
matrix of SPM, of which the details of modeling pro-
cedure were presented in Wu et al. (2014). Figure 4(a)
represents the flexibility of the single kinematic leg
with the virtual springs, of which the two passive joint
bearings are supposed to be rigid. Moreover, the joint
displacements and the coordinate frames in the joint
space of the ith leg are illustrated in Fig. 4(b).

Let the center of rotation be the reference point of
the end-effector. Henceforth, the Jacobians of one leg
are expressed as below:

Jiθ =
[
$̂iA $̂i1 ... $̂i12

]
∈ R6×13 (6a)

Jiq =
[
$̂iB $̂iC

]
∈ R6×2 (6b)

(a)

(b)

Figure 4: Flexibilities of one single leg: (a) virtual
spring model, where Ac stands for the actu-
ator, R for revolute joints; (b) joint displace-
ments in the ith leg in local frames.

with

$̂iA =

[
ui
0

]
, $̂iB =

[
vi
0

]
, $̂iC =

[
wi

0

]
$̂i1 =

[
xi1

bi × xi1

]
, $̂i2 = $̂iB , $̂i3 =

[
zi1

bi × zi1

]
$̂i4 =

[
0

xi1

]
, $̂i5 =

[
0
vi

]
, $̂i6 =

[
0

zi1

]
$̂i7 =

[
xi2

ci × xi2

]
, $̂i8 = $̂iC , $̂i9 =

[
zi2

ci × zi2

]
$̂i10 =

[
0

xi2

]
, $̂i11 =

[
0
wi

]
, $̂i12 =

[
0

zi2

]
(7)

where Jiθ considers the elastic deformation, while Jiq
takes into account the passive joint influence on the
MP motions. Vectors bi and ci, respectively, are the
position vectors of points Bi and Ci in the reference
frame. The corresponding unit vectors are given as

zi1 =
ui × vi
‖ui × vi‖

, zi2 =
vi ×wi

‖vi ×wi‖

xi1 =
vi × zi1
‖vi × zi1‖

, xi2 =
wi × zi2
‖wi × zi2‖

(8)
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The Cartesian stiffness matrix Ki of the ith leg is
obtained from the following matrix, namely,[

Ki ∗
∗ ∗

]
=

[
Siθ Jiq
Jiq
T

02

]−1

(9)

where the block Siθ = Jiθ(K
i
θ)

−1Jiθ
T ∈ R6 describes

the spring compliance relative to the reference point on
the mobile platform. Matrix Ki

θ ∈ R13 is the stiffness
matrix in joint space, which describes the stiffness of
the virtual springs and actuation, taking the form:

Ki
θ =

Ki
act 01×6 01×6

06 Ki
L1

06

06 06 Ki
L2

 (10)

where Ki
act describes the actuation stiffness corre-

sponding to the ith actuator, and Ki−1

L1(2)
∈ R6 is the

stiffness matrices of the lower (upper) curved links

in the ith leg. The compliance matrix Ki−1

L1(2)
of the

curved link was documented in Wu (2012); Wu et al.
(2014):

Ki−1

L1(2)
=


C11 C12 0 0 0 C16

C12 C22 0 0 0 C26

0 0 C33 C34 C35 0
0 0 C34 C44 C45 0
0 0 C35 C45 C55 0
C16 C26 0 0 0 C66

 (11)

The Cartesian stiffness matrix K of the system is
found by simple addition from Eqn. (9), namely,

K =

3∑
i=1

Ki (12)

4 Parameter Nomalization of the
Stiffness Matrix

The previous Cartesian stiffness matrix (12) is inho-
mogeneous, namely,[

m
f

]
=

[
Krr [Nm] Krt [N]
KT
rt [N] Ktt [N/m]

] [
∆ϕ
∆p

]
(13)

In order to analyze the stiffness matrix, it is necessary
to make it homogeneous. Henceforth, the method re-
ported by Kövecses and Ebrahimi (2009) is adopted to
decompose the stiffness matrix K into dimensionally
homogeneous entries. Equation (13) can be decom-
posed as

m = Krr∆ϕ+ Krt∆p = mr + mp (14a)

f = KT
rt∆ϕ+ Ktt∆p = fr + fp (14b)

In Eqn. (14a), the two unit-homogeneous parts can
be associated with a physically meaningful quadratic
form, for instance, mT

r mr = ∆ϕTKT
rrKrr∆ϕ, which

defines a moment ellipsoid in the Cartesian space. The
eigenvectors of KT

rrKrr define the principal axes of the
ellipsoid, which is related to the singular values ob-
tained through singular value decomposition (SVD) of
matrix Krr, namely,

Krr = UrrΣrrV
∗
rr (15)

where Σrr is a diagonal matrix composed of the sin-
gular values of Krr indicating the principal axes of
the ellipsoid and the columns of matrix Urr are the
eigenvectors of matrix KrrK

T
rr indicating the direc-

tions of the principal axes. The symmetric 3×3 matrix
KT
rrKrr has three orthogonal eigenvectors vr1, vr2 and

vr3 with dimensions of ∆ϕ. ∆ϕ can be represented by
a dimensionless vector sr,m through linear transforma-
tion Kövecses and Ebrahimi (2009), namely,

∆ϕ = Vrrsr,m, Vrr =
[
vr1 vr2 vr3

]
(16)

Similarly, ∆p can be expressed as

∆p = Vrtsp,m, Vrt =
[
vt1 vt2 vt3

]
(17)

where vti, i = 1, 2, 3, are the eigenvectors of ma-
trix KT

rtKrt. By the same token, ∆ϕ and ∆p from
Eqn. (14b) can be expressed as

∆ϕ = Vtrsr,f , ∆p = Vttsp,f (18)

where Vtr and Vtt are orthogonal matrices composed
of the eigenvectors of matrices KrtK

T
rt and KT

ttKtt,
respectively. Substituting Eqns. (16), (17) and (18)
into Eqns. (14a) and (14b), respectively, leads to

m = KrrVrrsr,m + KrtVrtsp,m = Gm

[
sTr,m sTp,m

]T
(19a)

f = KT
rtVtrsr,f + KttVttsp,f = Gf

[
sTr,f sTp,f

]T
(19b)

where Gm and Gf are defined as

Gm =
[
KrrVrr KrtVrt

]
(20a)

Gf =
[
KT
rtVtr KttVtt

]
(20b)

Gm and Gf are 3 × 6 dimensionally homogeneous
matrices, mapping the normalized displacements to
the vector of moments (forces). The SVD of matrix
Gm (Gf ) indicates the rotational (translational) stiff-
ness property of the manipulator at a prescribed pos-
ture. Matrix Gm (Gf ) has three nonzero singular val-
ues σj,r (σj,t), j = 1, 2, 3, which characterize the dis-
tortion of the unit sphere ‖m‖ = 1 Nm (‖f‖ = 1 N) as
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Figure 5: Distortion of the normalized moment/force
sphere.

shown in Fig. 5. Consequently, the rotational stiffness
index can be defined Taghvaeipour et al. (2012) as

κr = min{σj,r}, j = 1, 2, 3 (21)

Similarly, the translational stiffness index is defined as

κt = min{σj,t} (22)

The two performance indices κr and κt assess the stiff-
ness behavior of the manipulator, a higher index indi-
cating high rigidity.

These singular values can be graphically represented
by ellipsoids to indicate the translational and rota-
tional stiffness, respectively, where the principal axes
of the ellipsoid indicate the singular values and their
directions indicate the corresponding left singular vec-
tors. The isotropy of the stiffness can be measured by
the ratio of ρ = σmin/σmax ∈ [0, 1], namely, the inverse
of the conditioning number of the matrices Gm (Gf ).

5 Stiffness Optimization and
Analysis of the Co-axial SPM

The foregoing approaches are applied to the SPM in
Fig. 1, for which only the upper curved links are needed
to be considered. The actuation stiffness is obtained
as Ki

act = 5.44 · 105 Nm/rad from the static load ex-
periment implemented on an actuator with gearbox as
shown in Fig. 6, where the output shaft was mechani-
cally locked. The curved link of midcurve radiusR with
circular cross-section of radius r, is made of steel of
Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3
and the shear modulus G = E/(2+2ν). Moreover, the
SPM is assembled under the working mode Bonev et al.
(2006) of (ui × vi) ·wi ≤ 0, i = 1, 2, 3.

5.1 SPM Stiffness Optimization

The manipulator stiffness heavily depends on its geo-
metric and structural parameters, thus, the optimiza-

Figure 6: Experimental setup of the actuation stiffness
measurement.

tion method could be used to find the optimal parame-
ters. Here, the radius of the cross-section of the curved
link is r = 7.5 mm, and the design variables in this
optimization problem are:

x =
[
α1 α2 β R

]T
(23)

Henceforth, the workspace of the SPM described in
Fig. 3 is specified as φ ∈ S, σ ∈ S, θ ∈ [0, θmin], where
S = (−π, π], θmin ≥ 45o, subsequently, the design
space can be found as:

α1 ∈ [45o, 90o]; α2 ∈ [45o, 135o]; β ∈ [45o, 90o] (24)

By the analysis above, the index κrκt is defined to
evaluate the SPM stiffness, consequently, the objective
function is written as:

f(x) = min(κn,rκn,t) → max (25)

Here, the index is calculated through a discrete ap-
proach, which is carried out over n = n1 × n2 × n3
workspace points, where n1, n2 and n3 are the numbers
of discrete points on φ, θ and σ, respectively. Math-
ematically, the optimization problem for the SPM is
formulated as:

maxmize f(x) = min(κn,rκn,t) (26)

over x =
[
α1 α2 β R

]T
subject to g1 : 120 mm ≤ R ≤ 300 mm

g2 : R sinα1 ≥ 120 mm

g3 : 45o ≤ {α1, β} ≤ 90o

g4 : 45o ≤ α2 ≤ 135o
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Figure 7: Convergence for the stiffness optimization
problem of the SPM.

This optimization procedure was implemented with the
MATLAB genetic algorithm (GA) toolbox. Here, the
initial variables, with population size 200, were ran-
domly generated. Figure 7 shows the optimization re-
sults. After 65 generations, the objective function con-
verged, for which the best solution is found as:

xb =
[
55o 86o 85o 157.5 mm

]T
(27)

Optimization problem (26) aims to maximize both
the rotational and the translational stiffness. In prac-
tice, index κr or κt can be specified as the objective
corresponding to the manipulator applications.

5.2 SPM Stiffness Analysis

With the optimal design variables (27), at configura-
tions with tilt angle θ = 0, the blocks in the stiffness
matrix of (12) are constantly equal to

Krr =

0.0101 0 0
0 0.0101 0
0 0 0.0383

 · 107

Krt =

−0.0794 0.0673 0
−0.0673 −0.0794 0

0 0 0.1587

 · 107

Ktt =

1.1594 0 0
0 1.1594 0
0 0 0.6966

 · 107 (28)

where, the blocks Krr, Krt and Ktt are given in
Nm/rad, N/rad and N/m, respectively.

According to the decomposition presented in Sec. 4,
the three singular values and vectors corresponding to

the rotational stiffness are found as:

[σ]r =
[
1.6328 1.0457 1.0457

]
· 106 Nm

[v]r =

 0
0
−1

 −1
0
0

  0
−1
0

 (29)

Similarly, the singular values and vectors for transla-
tional stiffness are:

[σ]t =
[
1.1640 1.1640 0.7144

]
· 107 N

[v]t =

−1
0
0

  0
−1
0

 0
0
1

 (30)

It is noted the decomposed vectors, i.e., the directions
of rotational/translational stiffness, are parallel to the
original frame axes.

On the basis of foregoing analysis, the corresponding
rotational and translational stiffness ellipsoids are visu-
alized in Fig. 8. It is found that the rotational stiffness
formulates a prolate spheroid while the translational
stiffness in the shape of an oblate spheroid. This means
that at configurations with tilt angle θ = 0, the SPM
has the largest rotational stiffness about z-axis but the
smallest translational stiffness along z-axis; in the xy
quadrant, it has the same rotational/translational stiff-
ness in all the directions. In other words, the elastic
deformations of the manipulator under a prescribed
moment will formulate oblate spheroids, namely, the
directions of semi-minor/-major axes of the stiffness
ellipsoids are parallel to the directions of the semi-
major/-minor axes of the deformation ellipsoids. Fig-
ure 9 displays the deformation ellipsoids when a mo-
ment ‖m‖ = 10 Nm acting on the mobile platform,
which shows that the elastic displacements reach to
their minimum magnitudes when the direction of the
moment is about z-axis.

The previously defined indices κr and κt mapping
over the regular workspace with σ = 0 are shown in
Fig. 10, from which it is seen that the SPM stiffness
distribution is rotationally symmetrical with the inter-
val of 120o that associates with its symmetrical struc-
ture. At the home configuration with θ = 0 and the
workspace boundaries of φ = −100o, 20o and 140o, κr
reaches to the maximum value. The minimum κr ap-
pears at the workspace bounds at φ = −165o, −45o and
75o. Both the maximum and the minimum κt occur at
the workspace boundary, the maximum values appear-
ing at φ = −170o, −50o and 70o while the minimum
ones at φ = −100o, 20o and 140o. The isotropy of the
stiffness, namely, the distributions of the inverse of the
condition number of the stiffness matrix are given in
Figs. 10(c) and 10(d). By comparison with Figs. 10(a)
and 10(b), when the SPM has relatively larger rota-
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tional/translational stiffness, the manipulator stiffness
behaves relatively more isotropic.

The stiffness ellipsoids at two representative con-
figurations, where the SPM has the minimum rota-
tional/translational stiffness, are displayed in Fig. 11,
respectively, graphically indicating the directions of the
weak stiffness. At orientation [75o, 45o, 0], the singular
values and vectors are found as below:

[σ]r =
[
1.6544 1.4266 0.7119

]
· 106 Nm

[v]r =

−0.4201
−0.6968
−0.5813

  0.5384
0.3243
−0.7778

  0.7305
−0.6397
0.2389


[σ]t =

[
1.7011 0.8673 0.7509

]
· 107 N

[v]t =

−0.4910
0.5967
−0.6347

 0.4720
0.7946
0.3819

  0.7322
−0.1120
−0.6718


(31)

In comparison with the stiffness ellipsoids at orienta-
tion θ = 0, the ratio of the semi-minor/-major axes,
i.e., the stiffness isotropy, is much smaller, however,
the volumes of the ellipsoids are quite close. At orienta-
tion [20o, 45o, 0], the manipulator stiffness formulates
the similar shaped ellipsoids.

Due to the symmetrical structure, the stiffness dis-
tributions and isotropy with different values of σ can
be obtained with the rotation of the isocontours in
Fig. 10. As a consequence, it can be predicted that
the global stiffness of the SPM becomes weak towards
the workspace boundary from the center region.

6 Conclusions

In this paper, the stiffness characteristics of the spher-
ical parallel manipulators is discussed. The Cartesian
stiffness matrix is formulated by considering both the
rotational and the translational deflection. By means
of singular value decomposition, the dimensionally in-
homogeneous stiffness matrix is transformed into two
homogeneous ones, corresponding to the force and mo-
ment equations. The stiffness properties of a manip-
ulator at a given configuration can be characterized
through singular value decomposition of these two ho-
mogeneous matrices, which indicates the directions of
the high/weak stiffness.

Two performance indices for rotational/translational
stiffness were introduced to evaluate the manipulator
stiffness throughout the Cartesian workspace. The re-
sults can be used for either assessment of the stiffness
at different configurations or design optimization. The
proposed approach is illustrated by a case study of a
co-axial SPM with unlimited-rolling motion, whose iso-
contours of the rotational and translational stiffness in-
dices within a regular workspace were mapped together
with the isotropy. The maps show that the SPM is
stiffer in the center region of its workspace and show
an image of the SPM overall stiffness.
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σ = 0: (a) κr; (b) κt; (c) ρr; (b) ρt.
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Figure 11: Stiffness ellipsoids: (a) and (b) at orientation [75o, 45o, 0] when the SPM has the minimum rota-
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