
Modeling, Identification and Control, Vol. 31, No. 1, 2010, pp. 1–19, ISSN 1890–1328

Bootstrapping a Compiler for an Equation-Based
Object-Oriented Language

M. Sjölund P. Fritzson A. Pop

PELAB, Linköping University, SE-581 83 Linköping, Sweden.
E-mail: {martin.sjolund,peter.fritzson,adrian.pop}@liu.se

Abstract

What does it mean to bootstrap a compiler, and why do it? This paper reports on the first bootstrapping of
a full-scale EOO (Equation-based Object-Oriented) modeling language such as Modelica. Bootstrapping
means that the compiler of a language can compile itself. However, the usual application area for the
Modelica is modeling and simulation of complex physical systems. Fortunately it turns out that with
some minor extensions, the Modelica language is well suited for the modeling of language semantics. We
use the name MetaModelica for this slightly extended Modelica. This is a prerequisite for bootstrapping
which requires that the language can be used to model and/or implement itself. The OpenModelica
Compiler (OMC) has been written in this MetaModelica language. It originally supported only the
standard Modelica language but has been gradually extended to also cover the MetaModelica language
extensions. After substantial work, OMC is able to quickly compile itself and produces an executable
with good performance. The benefits include a more extensible and maintainable compiler by introducing
improved language constructs and a more powerful runtime that makes it easy to add functionality such as
parser generators, debuggers, and profiling tools. Future work includes extracting and restructuring parts
of OMC, making the compiler smaller and more modular and extensible. This will also make it easier to
interface with OMC, making it possible to create more powerful and user-friendly OpenModelica-based
tools. The compiler and its bootstrapping is a major effort – it is currently about 330 000 lines of code,
and the MetaModelica extensions are used routinely by approximately ten developers on a daily basis.

Keywords: compilation,equation-based,object-oriented,meta-programming,modeling

1 Introduction

The phenomenon of programming languages and com-
piler bootstrapping is not uncommon. Early exam-
ples include Lisp (Steele and Gabriel, 1993) and Pas-
cal (Wirth, 1971). One of the advantages is assumed
to be higher quality since the designers and developers
of a language and its compiler will be major users, and
therefore will be highly motivated to correct possible
design flaws and errors. Another advantage is portabil-
ity – the bootstrapped compiler is primarily dependent
on itself, not on other languages, once it has been boot-
strapped.

Bootstrapping means that the language and its com-
piler is defined and implemented using itself. On a
first impression this sounds impossible, especially for
a new language, since the language must exist before
it is used. The term bootstrapping comes from lifting
yourself in your own boot straps, which of course is im-
possible. However, bootstrapping of compilers is possi-
ble. A common approach is to write a subset language
compiler in another available language, then rewrite
the subset compiler into its own language, extend the
compiler to handle the remaining constructs, and fi-
nally update the compiler to use the full language.

This paper describes the first bootstrapping of a full-

doi:10.4173/mic.2010.1.1 c© 2010 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2010.1.1


Modeling, Identification and Control

scale EOO (Equation-based Object-Oriented) model-
ing language, in this case the Modelica language. Mod-
elica is rather unusual since it supports mathematical
modeling with equations, that is, differential, algebraic,
and discrete equations. However, such equations are
not very suitable for modeling language semantics and
symbolic transformations. Therefore Modelica was ex-
tended with pattern equations, pattern matching, and
tree and list data structures. The extended language
is called MetaModelica.

The bootstrapping of Modelica is a large-scale prac-
tical effort since the compiler is currently about 330 000
lines of code, and approximately ten full-time develop-
ers are using MetaModelica on a daily basis. The stan-
dard Modelica language is used by several thousand
developers including people developing large industrial
applications, many of which are described in Modelica
conference proceedings, for example Otter and Zimmer
(2012), Clauß (2011), Casella (2009), and Bachmann
(2008).

In the case of Modelica, we have at least two motiva-
tions for bootstrapping in addition to those mentioned
previously. One motivation is a scientific experiment in
language design with the goal of a generalized equation-
based language suitable for both physical system mod-
eling and language modeling (Pop and Fritzson, 2006).

A second motivation comes from the growth of the
Modelica language itself, and the corresponding in-
crease of complexity and size of its compilers. This is
caused by steadily increasing user application require-
ments on the language including widening of its appli-
cation domains.

One approach to manage such an increasing language
and compiler complexity is the language core library
approach used by several functional languages (Sec-
tion 7). A number of language features are defined in
core libraries rather than in the compiler itself.

After several years of discussion and a number of lan-
guage prototypes (Broman, 2010; Fritzson et al., 2005b;
Fritzson, 2005; Nilsson et al., 2007; Pop and Fritzson,
2006; Pop, 2008; Zimmer, 2010), this approach finally
became accepted as a design goal for future Model-
ica versions during the 67th Modelica design meeting
Modelica Association (2010).

This paper gives a rather complete account of the
Modelica bootstrapping effort in the OpenModelica
compiler project of which an early preliminary descrip-
tion is available in Sjölund et al. (2011).

1.1 Modelica – An Equation-Based
Object-Oriented Language

Before the Modelica language effort started, some of
us were involved in developing a language and tool

called ObjectMath (Viklund et al., 1992), an equation-
based object-oriented (EOO) specification language for
mathematical modeling. Several other groups devel-
oped related languages and tools, for example Dy-
mola (Elmqvist, 1978), NMF (Sahlin and Sowell, 1989),
Smile (Kloas et al., 1995), and gPROMS (Barton and
Pantelides, 1994). In 1996, some of these groups
joined forces to create an internationally viable declar-
ative mathematical modeling language. The result is
the Modelica language (Elmqvist et al., 1999; Fritz-
son, 2004; Fritzson and Engelson, 1998; Tiller, 2001;
Modelica Association, a). It is an equation-based
object-oriented (EOO) modeling language for declara-
tive mathematical modeling of large and heterogeneous
(multi-domain) physical systems. For modeling with
Modelica, commercial software products such as Sys-
tem Modeler (Fritzson et al., 2002; Wolfram Mathcore,
2012), Dymola (Brück et al., 2002), SimulationX (ITI
GmbH, 2012), MapleSim (Maplesoft, 2012), IDA Simu-
lation Environment (Equa AB, 2002), etc are available.
There are also open source implementations like our
own tool, OpenModelica (Fritzson et al., 2005a), and
the more recent JModelica.org (Åkesson et al., 2010)1.

The Modelica language has been designed to allow
tools to generate efficient simulation code automati-
cally with the main objective of facilitating exchange of
models, model libraries and simulation specifications.
The typical result of using a Modelica tool on a model
is a plot window with the results of a simulation.

The language is statically strongly typed and pro-
vides object-orientation2 with multiple inheritance and
generics templates within a single class construct. This
facilitates reuse of components and evolution of mod-
els.

While this overview is sufficient for the purpose of
reading the rest of this text, Modelica has many more
features from a simulation pracitioner’s point of view,
including acausal modeling, multi-domain modeling,
hybrid system modeling, graphical modeling, index
reduction of differential-algebraic equations (DAE’s),
and more). To learn more about Modelica or the moti-
vations and design goals that led to it, see books (Fritz-
son, 2004, 2011; Tiller, 2001; Fritzson, 2014) as well as
shorter overviews (Elmqvist et al., 1999; Fritzson and
Engelson, 1998; Fritzson and Bunus, 2002), and the
language specification (Modelica Association, a).

1.2 Specification of Language Constructs

The Modelica specification and modeling language was
originally developed as an object-oriented declarative

1http://modelica.org has a complete list of Modelica tools.
2Object-orientation in the sense of hierarchical modeling, not

object-oriented programming like Java, which tends to focus
on methods.

2

http://modelica.org


Sjölund et.al., “Bootstrapping a Compiler for an Equation-Based Object-Oriented Language”

equation-based specification formalism for mathemati-
cal modeling of complex systems, in particular physical
systems.

However, it turns out that with some minor exten-
sions, the Modelica language is also well suited for an-
other modeling task, namely modeling of the seman-
tics, that is, the meaning, of programming language
constructs. Since modeling of programming languages
is often known as meta-modeling, we use the name
MetaModelica (Fritzson et al., 2005b; Pop and Fritz-
son, 2006; Fritzson and Pop, 2011a; Fritzson et al.,
2011) for this slightly extended Modelica.

Well-known language specification formalisms such
as Structured Operational Semantics and Natural Se-
mantics (Pettersson, 1995a, 1999) also have the prop-
erty of being declarative equation-based formalisms.
These formalisms fit well into the style of the Mod-
elica specification language, which explains why Mod-
elica with some minor extensions is well-suited as a
language specification formalism. However, only an ex-
tended subset of Modelica here called MetaModelica is
needed for language specification. Many parts of the
language designed for physical system modeling are not
used at all, or very little, for language specification.

Another great benefit of using and extending Model-
ica in this direction is that the language becomes suit-
able for meta-programming and meta-modeling. This
means that Modelica can be used for specification
and transformation of models and programs, includ-
ing transforming and combining Modelica models into
other (lower-level) Modelica models, that is, a kind of
compilation.

Figure 1 shows typical translation stages in a Mod-
elica compiler.

2 Vision – Extensible Tools

Traditionally, a model compiler performs the task of
translating a model into executable code, which sub-
sequently is executed during simulation of the model.
Thus, the symbolic translation step is followed by
an execution step, a simulation, which often involves
large-scale numeric computations.

However, as requirements on the usage of models
grow, and the scope of modeling domains increases, the
demands on the modeling language and corresponding
tools increase. This causes the model compiler to be-
come large and complex.

Moreover, the modeling community needs not only
tools for simulation but also languages and tools to cre-
ate, query, manipulate, and compose equation-based
models. Additional examples are optimization of mod-
els, parallelization of models, checking and configura-
tion of models.

Input Model

Frontend (Flattening)

Backend
Sorting and optimising

C-Code Generator

C Compiler

Flat Modelica

Optimized Model

C Code

Simulation Executable

Figure 1: The typical stages of translating and execut-
ing a Modelica model.

If all this functionality is added to the model com-
piler, it tends to become large and complex.

An alternative idea already mentioned in Section 1
is to add features to the modeling language defined in
library packages that can contain model analysis and
translation features that therefore are not required in
the model compiler. An example is a PDE (partial
differential equation) discretization scheme that could
be expressed in the modeling language itself as part of
a PDE package instead of being added internally to the
model compiler.

2.1 Motivation for Compiler Bootstrapping

As mentioned in the introduction, bootstrapping
means that a compiler can compile itself. Why is this
relevant in the context of language specification and
language semantics modeling? The most important
factor is probably that the language itself can be used
as a large test case for language specification using the
developed specification language. This has mostly ad-
vantages, but also a disadvantage:

• The implemented language becomes well tested,
since the developers are using it on a large appli-
cation (the compiler).

• The developers are motivated to make a high qual-
ity implementation, since they are using it them-

3



Modeling, Identification and Control

selves.

• The developers are motivated to create a good
development environment, since they are using it
themselves.

• There is also a negative factor: since the tool must
be able to build itself, more effort is needed to
create it since the implementation must be good
enough to be usable. Moreover, initially a new
language and environment may lack some qualities
and tools available already in existing languages.
For example, during the first years of using Meta-
Modelica there was no good debugger available.

2.2 The Stages of Bootstrapping OMC

The bootstrapping of the OpenModelica Compiler
(OMC) has been a 7-year effort, consisting of the fol-
lowing stages:

1. Design of an early MetaModelica language version
(Fritzson et al., 2005b) as an extended subset of
Modelica, spring 2005.

2. Implementation of a MetaModelica Compiler
(MMC) by adding a new compiler frontend to
the old RML compiler (Pettersson, 1995a; Fritz-
son et al., 2009a), translating MetaModelica into
RML intermediate form, spring-fall 2005.

3. Automatically translating the whole OpenModel-
ica compiler, 60 000 lines, from RML to MetaMod-
elica.

4. In parallel, developing a new Eclipse plugin, MDT
(Modelica Development Tooling), for Modelica
and MetaModelica (Pop et al., 2006, 2008), in-
cluding both browsing, debugging, semantic con-
textsensitive information, etc., 2005-2006.

5. Switching to using this MetaModelica 1.0 (an ex-
tended subset of Modelica), the MMC compiler,
and the new MDT Eclipse plugin for the Open-
Modelica compiler development, at that time 3-
4 full-time developers. This version 1.0 of Meta-
Modelica is described in (Fritzson, 2007; Fritzson
and Pop, 2011b). Fall 2006.

6. Preliminary implementation of pattern-matching
by Stav̊aker et al. (2008) and exception handling
by Pop et al. (2008) in the OpenModelica com-
piler, to enable future bootstrapping. Spring-fall
2008.

7. Continuation of the work on better support for
pattern-matching compilation, support for lists,
tuples, records, etc. in OpenModelica. This was

part of the metamodeling support in the OMC
Java interface that was implemented by Sjölund
(2009) in spring-fall 2009.

8. Implementation of function arguments to func-
tions (used in MetaModelica), also in OpenMod-
elica (Brus, 2009). This also became part of the
Modelica language specification (Modelica Associ-
ation, a). Fall 2009, spring 2010.

9. The current work on finalizing the bootstrapping
reported in this paper. The bootstrapped compiler
supports MetaModelica 2.0, which includes both
standard Modelica as well as further improved
MetaModelica extensions aiming at becoming fu-
ture Modelica extensions. Fall 2010, spring 2011.

10. Further adding, enhancing, and redesigning Meta-
Modelica language features in Fritzson et al.
(2011) was based on usage experience, the Model-
ica design effort, and inspiration from functional
languages and languages such as Scala (Odersky
et al., 2008). Refactoring parts of the compiler to
use the enhanced features.

11. Adding garbage collection. Fall 2012.

12. Improving the build system, parallel builds.
Reaching full testsuite coverage, good perfor-
mance, and running the tests nightly. 2013.

3 MetaModelica

As already mentioned, MetaModelica provides lan-
guage extensions for language modeling and model
transformations. The basic language extensions are
briefly described here. Some language features are de-
fined in libraries.

3.1 Pattern Matching

MetaModelica pattern matching expressions (Stav̊aker
et al., 2008) may occur where expressions can be
used in Modelica code. There are two kinds of
match-expressions in MetaModelica, using the match

or matchcontinue keywords. The syntax can be de-
scribed (approximately) as follows.

matchcontinue (<var-list >)

local

<var-decls >

...

case (<pat-expr >)

equation

<equations >

then <expr >;

4



Sjölund et.al., “Bootstrapping a Compiler for an Equation-Based Object-Oriented Language”

...

end matchcontinue;

In the MetaModelica language extension only local,
time-independent equations may occur inside a pat-
tern matching expression which must be checked by
the semantic phase of the compiler. The difference be-
tween a pattern matching expression with the keyword
match and a pattern matching expression with the key-
word matchcontinue is in the fail semantics, see Sec-
tion 3.1.2. The matchcontinue variant is a match with
backtracking and continuation of the next case in the
match at failure. The match variant has no backtrack-
ing.

The <pat-expr> expression is a sequence of pat-
terns. A pattern may be:

• A wildcard pattern, denoted _.

• A variable, such as x.

• A constant literal of built-in type such as 7 or true.

• A variable binding pattern of the form x as pat.

• A constructor pattern of the form
C(pat1, ..., patn), where C is a record identifier
and pat1, ..., patn are patterns. The arguments
of C may be named (for instance field1 = pat1)
or positional but a mixture is not allowed. We
may also have constructor patterns with zero
arguments (constants).

3.1.1 Semantics

The semantics of a pattern matching expression is
as follows: If the input variables match the pattern-
expression in a case-clause, then the equations in this
case-clause will be executed and the matchcontinue
expression will return the value of the corresponding
then-expression. The variables declared in the upper-
most variable declaration section can be used (as local
instantiations) in all case-clauses. The local variables
declared in a case-clause may be used in the corre-
sponding pattern and in the rest of the case-clause.
The matching of patterns works as follows given a vari-
able v.

• A wildcard pattern, _, will succeed matching any-
thing.

• A variable binding pattern of the form x as pat:
If the match of pat succeeds then x will be bound
to the value of v.

• A variable, x, will be bound to the value of v just
as x as would.

• A constant literal of built-in type will be matched
against v.

• A constructor pattern of the form
C(pat1, ..., patn): v will be matched against
C and the subpatterns will be matched (recur-
sively) against parts of v.

3.1.2 Pattern Matching Fail Semantics

If a case-clause fails in an expression with the keyword
matchcontinue then an attempt to match the subse-
quent case-clause will take place. If we have an ex-
pression with the keyword match, however, then the
whole expression will fail if there is a failure in one
of the case-clauses. We will henceforth in this paper
primarily deal with matchcontinue expressions.

3.2 Data Types

List, Tuple and Option are algebraic data types
which are common in many languages used for
meta-programming and symbolic programming. The
uniontype is a recursive type required to represent
trees and directed acyclic graphs, which is similar to
algebraic data types in functional languages such as
SML (Milner et al., 1997) and Haskell (Peyton Jones
et al., 2003), and case classes in Scala (Odersky et al.,
2008).

3.2.1 Lists

The following operations allow creation of lists and ad-
dition of new elements in front of lists in a declara-
tive way. Extracting elements is done through pattern-
matching in match-expressions shown earlier.

• List(el1,el2,el3, ...) creates a list of ele-
ments of identical type. Examples: List() – the
empty list, List(2,3,4) – a list of integers.

• {} – denotes an reference to an empty list.

• the call cons(element, lst) adds an element in
front of the list and returns the resulting list. Also
available as a new built-in operator :: (colon-
colon), for example used as in: element::lst.

Types of lists and list variables can be specified as
follows:

type RealList = List <Real >;

or directly in a declaration of a variable rlist that
denotes a list of real numbers:

List <Real > rlist;

5



Modeling, Identification and Control

3.2.2 Tuples

Tuples can be viewed as instances of anonymous
records. The syntax is a parenthesized list. The same
syntax is used in the extended Modelica (that is, Meta-
Modelica) presented here, and is in fact already present
in standard Modelica as a receiver of values for func-
tions returning multiple results.

• An example of a tuple literal: (a, b, "cc")

• A tuple with a single element has a comma in order
to have different syntax compared to a parenthe-
sized expression: (a,)

• A tuple can be seen as being returned from a func-
tion with multiple results in standard Modelica:
(a,b,c) := foo(x, 2, 3, 5);

• Access of field values in tuples is
achieved via pattern-matching or dot-
notation, tupval.fieldnr, analogous to
recval.fieldname for ordinary record val-
ues. For example, accessing the second value in
tup: tup.2

The main reason to introduce tuples is for conve-
nience of notation. You can use them directly with-
out explicit declaration. Tuples using this syntax are
already present in the major functional programming
languages.

A tuple will of course also have a type. When tu-
ple variable types are needed, they can for example be
declared using the following notation:

type VarBND = Tuple <Ident, Integer >;

or directly in a declaration of a variable bnd:

Tuple <Ident, Integer > bnd;

3.2.3 Option Types

Option types have been introduced in MetaModelica
to provide a type-safe way of representing the common
situation where a data item is optionally present in a
data structure. In C-like and Java-like languages this
is often represented by NULL pointers, which are not
type-safe and may cause program crashes even when
the data has been initialized by the programmer. Ex-
amples include double-free, or usage of a copy of a now
freed pointer.

• NONE() represents no data present

• SOME(e) represents e present

The option type is declared analogous to the list
type.

type MaybeResult = Option <Result >;

3.2.4 MetaModelica Array Types

There is also an array type in MetaModelica, which is
different from the Modelica array type. A MetaModel-
ica array can be used to represent ragged arrays, that
is, arrays of arrays that may have unequal size. More
importantly for the point of view of performance is
Modelica arrays need a deep copy when assigning one
array to another. This means it allocates new memory
and copies all the data content from the old array to the
new, a linear-time operation. In MetaModelica copy-
ing of arrays is by reference, which is a constant-time
operation. New arrays have to be explicitly created.
The main use of arrays is currently for side effects that
increase performance, for example caching partial re-
sults even if a function fails.

3.2.5 Union Types

The uniontype declaration in MetaModelica is used to
introduce union types. This is similar to the algebraic
data types represented by the datatype construct in
the ML family of languages (Milner et al., 1997). Con-
sider for example the Number type below, which can be
used to represent several kinds of number types such
as integers, rational numbers, real, and complex within
the same type.

uniontype Number

record INT

Integer int;

end INT;

record RATIONAL

Integer dividend, divisor;

end RATIONAL;

record REAL

Real real;

end REAL;

record COMPLEX

Real re,im;

end COMPLEX;

end Number;

The most frequent use of the union type is for rep-
resentation of trees or directed acyclic graphs. A tree
is a recursive data type, and representing these is as
simple as using the name of the union type as the type
of a field in a record that is part of the union type.
There are no restrictions or special syntax required to
defined mutually dependent union types as shown by
Expression.VAR and Subscript.SUBSCRIPT.

uniontype Expression

record RCONST "A real constant"

Real r;

end RCONST;

record ADD "lhs + rhs"

6



Sjölund et.al., “Bootstrapping a Compiler for an Equation-Based Object-Oriented Language”

Expression lhs, rhs;

end ADD;

record SUB "lhs - rhs"

Expression lhs, rhs;

end SUB;

record MUL "lhs * rhs"

Expression lhs, rhs;

end MUL;

record DIV "lhs / rhs"

Expression lhs, rhs;

end DIV;

record VAR "name[sub1, ..., subn]"

String name;

List <Subscript > subscripts;

end Var;

end Expression;

uniontype Subscript

record NOSUB end NOSUB;

record SUBSCRIPT

Expression subscript;

end SUBSCRIPT;

end Subscript;

4 Implementation

This section provides some information about the im-
plementation of the compiler and the runtime system
for the MetaModelica extensions.

4.1 Compiler

The OpenModelica compiler is implemented mostly in
MetaModelica. The compiler front-end currently com-
prises almost half of the source code. Here the front-
end is defined as the compiler phases that convert the
source model into a flattened intermediate form con-
sisting of equations, variables and functions. It elabo-
rates Modelica and MetaModelica code into so-called
flattened intermediate code, which is passed on to the
backend equation optimizer (for simulation models) or
directly to the code generator (for functions).

The number of lines of MetaModelica code used
to implement OpenModelica are in Table 1. Empty
lines and C-style comments have been removed, but
Modelica-style string comments are included. The
OpenModelica text generation template language Su-
san described in Fritzson et al. (2009b) is used in the
compiler to generate most of the files in the code gener-
ation module. Susan generates MetaModelica code for
appending large strings since appending strings with-
out a string builder is very inefficient if done incor-
rectly. It is also easier to understand and edit the Su-
san source code than optimized MetaModelica source
code.

OpenModelica also requires a runtime system. It is
divided into five parts:

• The basic runtime system contains all Modelica
builtin function definitions, such as String() or
div() and handles array operations. This runtime
needs to be linked to the compiler itself and any
source code it produces.

• The simulation runtime system contains the nu-
merical solvers and also performs event handling.

• The compiler runtime system handles runtime op-
tions, settings, CORBA communication between
OMC and clients, as well as system calls.

• The parser sources are currently generated by the
ANTLRv3 (Parr, 2010) parser generator. This
tool produces code that can be called through the
foreign function interface of MetaModelica (Sec-
tion 4.4.2). When run, the parser produces a
MetaModelica abstract syntax tree that the com-
piler can use directly. An alternative approach
would be to use a parser generator that produces
MetaModelica code instead, analogous to MLLex
(Appel et al., 1994) and MLYacc (Tarditi and Ap-
pel, 2000) for the SML language. A recent proto-
type of such a parser generator is OMCCp (Lopez-
Rojas, 2011; Palanisamy et al., 2014).

• The built-in environment of predefined functions,
types, and constants is specified by a Modelica file
that contains a list of all builtin functions in the
Modelica language as well as the scripting func-
tions that are available in OpenModelica.

The MMC foreign function interfaces is completely
different from the OMC interface which means they
cannot use the same code directly. Most of the run-
time is written as an implementation conforming to
the OMC interface and an MMC wrapper around this,
as shown below:

RML_BEGIN_LABEL(Lapack__dorgqr)

{

void *A, *WORK;

int INFO;

LapackImpl__dorgqr(RML_UNTAGFIXNUM

(rmlA0), ...);

rmlA0 = A;

rmlA1 = WORK;

rmlA2 = (void*) RML_TAGFIXNUM ((long

)INFO);

RML_TAILCALLK(rmlSC); /* Success

continuation */

}

RML_END_LABEL;

7



Modeling, Identification and Control

Table 1: Sizes of OMC Compiler Phases, Lines of Code.

Compiler phase Files Lines
Constants 1 27
Entry-point 1 902
Scripting environment 6 26788
Utility functions 48 24202
FrontEnd (up to flat Modelica) 106 165569
BackEnd (from flat Modelica to sorted eq.syst.) 46 96372
Code generation (hand-written Susan runtime) 5 13816
Code generation (Susan template source code) 21 36624
Code generation (generated MetaModelica code) 21 211088

Total size (excl. generated code) 213 327676

The lines of code listed in Table 2 exclude these
MMC wrapper functions. Header files are included in
these measurements, but comments and blank lines are
not counted in either headers or source code.

4.2 Platform Availability

The OpenModelica compiler runs on all the major plat-
forms, including Windows, Mac OSX, and a number of
Linux variants. With the bootstrapped compiler it is
now also possible to compile on platforms without a
Standard ML compiler, which used to be a limiting
factor in porting OpenModelica to new operating sys-
tems.

4.3 Language Feature Implementations

4.3.1 Pattern Matching Implementation

In the old MMC compiler the matchcontinue con-
struct was implemented using the continuation pass-
ing style. This is the same as in the RML language
by Pettersson (1995b) on which it was based. It pro-
vides exception handling without additional cost. The
main drawback is the lack of a regular C stack. The
lack of a regular C stack precludes some optimizations
typically performed by C compilers, and also makes it
impossible to use standard performance analyzers and
debuggers.

There have been three main attempts to add this
language feature to the MetaModelica compiler. These
attempts all used a regular C stack and exception han-
dling to model matchcontinue.

The first approach (Stav̊aker et al., 2008) introduced
C-like constructs (like goto) to the intermediate repre-
sentation so that it could be mapped to the runtime at
an early stage. It created a DFA (Definite Finite Au-
tomaton, a deterministic state machine) so that results
of pattern-matching in earlier cases could be remem-
bered when matching later cases. But the DFA was un-

able to handle all of the aspects of the matchcontinue

semantics. The code that generated the DFA was too
hard to maintain, and did not produce faster code, only
slightly smaller code size in some cases. Therefore this
part was removed in the second approach.

Removing the DFA solved the issues of match and
matchcontinue giving unexpected results. It also
made it possible to nest match-expressions. But there
still existed flaws in the implementation. Each match-
expression needed to be a statement, and the inputs of
the match were required to be variable names. While
this is the same restriction as in the MMC implemen-
tation, the language design requires expressions to be
more general.

One of the problems with the implementation was
that it elaborated the expression twice (from a typed
expression back to untyped, and then typed again so
it could add temporary variables with the correct type
name). Trying to add special code to allow for empty
lists proved futile as its internal type (list of Any) can-
not and should not be possible to express in the Meta-
Modelica abstract syntax.

The start of the final attempt was the implementa-
tion of pattern-matching statements/assignments, for
example:

(a,1.0) := fnCall (...)

Previously, pattern-matching assignments were han-
dled by being converted to nested matchcontinue

blocks. This did not always work as types of temporary
variables could not always be expressed in MetaModel-
ica abstract syntax. The new implementation has the
concept of patterns in addition to expressions. They are
treated differently and elaboration is now performed in
a single step without converting an elaborated expres-
sion back to abstract syntax. Generation of temporary
variables is performed by the code generator. This
allows a complete implementation of matchcontinue

without any major issues, and also allows good error

8



Sjölund et.al., “Bootstrapping a Compiler for an Equation-Based Object-Oriented Language”

Table 2: Sizes of OMC Parser and Runtime.

Supporting functionality Lines

Parser (ANTLR sources) 1968
Parser (generated C sources) 49256
Parser (wrapper code) 339
Compiler runtime 6159
Simulation runtime 3405
Basic runtime (excl. MetaModelica and External) 9675
Basic runtime (External code maintained in other projects; for ex. Fortran code from LAPACK) 13268
Basic runtime (MetaModelica) 1930
Modelica builtin environment 744
MetaModelica builtin environment 825

Total size (excl. generated and external code) 25045

messages when elaborating invalid patterns.
Since match expressions are now implemented as ex-

pressions instead of as a specific kind of assignment,
they can now be used as regular expressions. Since
they have result types they may even be the input of
another match expression, for example:

match (match str

case "Modelica" then true; else

false;

end match)

case true then 3.0;

else 2.0;

end match; /* if str ==" Modelica"

then 3.0 else 2.0 */

This approach is much simpler to maintain because
it works at the correct level of abstraction, that is,
elaborated expressions. The compiler has access to the
full type information while doing the translation.

While this works correctly for all cases, it might be a
bit slower than the first implementation in some cases.
It no longer has a DFA to avoid pattern-matching
the same thing several times. However, because the
code for pattern-matching is essentially created dur-
ing code-generation instead of during elaboration, it
enabled switching from a C++ runtime to C (see Sec-
tion 5). For example, if the target language knows what
a match-expression is, it is possible that it knows how
to optimize such constructs very well – this would be
true if a functional language was the target language.
We have implemented our own optimizations based on
patterns. For example, dead code eliminiation (un-
reachable patterns) and detection of expressions where
a case can be directly selected instead of doing a lin-
ear search of all patterns (similar to switch in C, but
for more data types). We could also generate more
low-level code (like a DFA) based on this structure.
However, experience has shown that the OpenModel-

ica compiler currently generates sufficiently fast code
directly from the intermediate code without allocating
registers, creating temporary variables and so on.

4.3.2 Type Implementations

Adding support for the Array, Option, List and Tuple

types to a Modelica compiler is not an easy task due
to subtle incompatibilities in the type systems of Meta-
Modelica and Modelica.

Array expressions sometimes need to be type con-
verted to lists, but there are more expressions than
the array data constructor that elaborate to the same
expression. For example, the fill(3,2) operator call
produces an array expression {3,3}, which can then be
cast to a list. The MetaModelica 2.0 design (Fritzson
et al., 2011) solves these issues.

The Option type was easier to implement than the
other types introduced in MetaModelica. The reason is
that its syntax does not overlap with arrays (like lists),
or multiple outputs of functions (like tuples).

Tuples are treated differently in the compiler and
the runtime depending on whether they are multiple
outputs of a function or a tuple. A function that re-
turns Tuple<Integer,Integer> has a different type
than one that returns two integers. This is different
from most functional programming languages, but is
consistent with the Modelica design as well as the de-
sign of the RML specification language.

The union type syntax looks like it would be ac-
cessed by Package.Uniontype.RECORD, but in MMC
the record is implicitly added to the package scope
so that it is accessed as Package.RECORD. In order to
bootstrap the compiler, the same principle is used in
OpenModelica. The type of a call to a record construc-
tor is the union type, not the record type itself, which
means that accessing fields from uniontype records
currently is limited to pattern-matching.

9



Modeling, Identification and Control

4.3.3 Polymorphism

There could be several different ways to imple-
ment polymorphic functions in a Modelica compiler.
Hindley-Milner-style type inference (Hindley, 1969;
Milner, 1978) is used to infer the type of a function
based on its interface.

That is, only inputs and outputs of functions are
considered when doing type inference. From the inputs
of a call expression, a set of constraints are created and
subsequently unified. If unification succeeds, we have
determined the actual type of each type variable, which
is used to calculate the result type of the call. All other
variables have a type and no type inference is done for
local variables.

Note that neither Modelica nor MetaModelica has
the concept of a general Number type (some Mod-
elica builtin operators take either Integer or Real

as input, but this cannot be represented in Model-
ica code). Because there is no Number type, a call to
valueEq(1,1.5) would not pass type checking because
the types are different.

Even though implementing polymorphic functions in
a Modelica compiler is rather straight forward, there
are some pitfalls. The names of type variables can be
from the current scope, from the called function or from
a function pointer used as an input argument. Keeping
track of the different sources is the key to getting the
correct semantics.

4.4 Runtime System

Because the OpenModelica compiler runtime initially
only handled the static Modelica structures we had to
extend the runtime system to handle the new func-
tional constructs.

4.4.1 Data layout

The same layout of values (objects) in memory as for
the MMC compiler runtime was used with some en-
hancements for faster debugging (see Section 6). Basi-
cally all values besides integers are boxes that contain
a header followed by the actual data. The pointers are
tagged (the small number 3 is added to them) to be
able to differentiate between pointers and other values
such as integers. The differentiation was needed for the
garbage collection implementation as used in MMC. It
is now instead needed in order to provide type informa-
tion in the debugger. The headers have 32 bits or 64
bits depending on the platform (32/64 bit platforms).
Inside the header the bits are split into:

• slots – represent the size of data in words

• constructor – represents the type of the data (that
is, index in an uniontype or string, real, etc)

On 32 bit platforms the slots are 22 bits and con-
structor (the tag) is 10 bits. On 64 bit platforms the
slots are 54 bits and 10 bits are devoted to the con-
structor (the tag).

Integers are either 31 or 63 bits depending on plat-
forms and are represented as even values (that is, in-
teger N is represented as N << 1, N shifted left by
1).

Bit zero (0) is set if the box (node) contains point-
ers and unset otherwise, or the other way around de-
pending on what garbage collection characteristics are
desired.

A list value is represented as a box containing a CONS

header, a pointer to the element and a pointer to next.
The end of the list is represented by a box containing
a NIL header with zero slots.

An Option value is represented as a box containing
a SOME header and a pointer to the element or a NONE

header with zero slots.
There is a header that contains macros to access the

desired fields without requiring to know which bits to
read, taking care of cross-platform issues.

4.4.2 Foreign Function Interface

Modelica has support for calling external "C" func-
tions with a mapping of Modelica types to C types.
The types introduced in MetaModelica (List, Tuple,
Option, Array, and uniontype) all map to void*. The
macros used to access and create these types are differ-
ent for MMC and OMC, but a compatibility header ex-
ists so code can be shared between the two implemen-
tations. One major difference between the MMC and
OMC implementation is that within an external func-
tion, variables may have been moved by the garbage
collector after calling another function in the MMC
implementation. In OMC, calling other functions is
considered safe.

4.4.3 Builtin MetaModelica Functions

New built-in functions are needed to perform opera-
tions on the MetaModelica boxed values. The func-
tions can be used directly in the MetaModelica code or
they are generated in the C code from operators. We
can classify these functions based on the types they
operate on. These are some of the available built-in
functions:

• Booleans: boolEq, boolString

• Integers: intEq, intLt, intLte, intGt, intGe,
intNe, intString, intAdd, intSub, intMul,
intDiv, intMod, intMin, intMax

10



Sjölund et.al., “Bootstrapping a Compiler for an Equation-Based Object-Oriented Language”

• Reals: realEq, realLt, realLe, realGt,
realGe, realNe, realString, realAdd, realSub,
realMul, realDiv, realMod, realMin, realMax

• Strings: stringEq, stringCompare,
stringHash, stringGet, stringAppend

• Lists: listAppend, listMember, listGet,
listReverse, cons (:: operator),
stringAppendList

• MetaArrays: arrayCreate, arrayGet ([x] in-
dex operator), arrayCopy, arrayUpdate

4.4.4 Garbage collection

Garbage collection (GC), that is, automatic memory
reclamation, of un-used heap-allocated data is a must
for a functional language to be able to collect unused
values and reuse memory. The garbage collector used
in MMC is a simple 2-generational copying compacting
garbage collector (Pettersson, 1995a; Wilson, 1992). It
has two main memory areas: a young generation where
the objects where initially allocated and an older region
to which the objects are promoted if they survive a
minor collection. We could not directly reuse this old
MMC garbage collector for the OMC runtime because
it moves pointers and makes it hard to write external
functions.

The interface to the garbage collector in OMC is
currently simple in order to make it easier to test dif-
ferent strategies. The garbage collector (GC) used for
the remainder of the paper uses the Boehm-Demers-
Weiser conservative mark-and-sweep garbage collector
(Boehm and Weiser, 1988; Boehm et al., 1991). It is
simply plugged into our code and collects garbage by
analyzing the stack, searching for live objects to free.

4.5 Issues

We have identified several problems with the tools we
use, MMC and OMC. However, there are also design
issues in the Modelica language that we needed to work
around in order to bootstrap OMC.

4.5.1 MMC Problems

The old MMC compiler has several problems. While
it has very good performance, maintaining the code is
cumbersome. We would like to have only one tool to
maintain, the OpenModelica Compiler. Still, before we
can switch to using the OpenModelica Compiler as the
default MetaModelica Compiler, we need to be able to
compile the same code as MMC during a transition pe-
riod. The problem is that the MetaModelica to RML

translator is very relaxed regarding the syntax it ac-
cepts.

In order to find some common errors, the whole ab-
stract syntax of a function is traversed to verify that all
matchcontinue expressions have the same input and
output as the function. This is a limitation of MMC,
but it does not actually check that this assertion holds.
Moreover, while MMC does some type checking, it does
not type check expressions of the following kind:

x = fnCall(x);

For these expressions, the lhs and rhs x may have
different types and MMC may allow some code that is
not valid MetaModelica code. Finding such code and
rewriting it takes a lot of time, but produces code that
is easier to read and maintain.

Other issues include allowing code like:

import Env;

type Env = Env.Env;

In the standard Modelica language the import will
essentially be ignored and the tool will probably get
a stack overflow because the type Env is recursive on
itself. Since the same restrictions apply for OMC, these
language constructs were refactored away.

4.5.2 OpenModelica Issues

Some parts of the compiler have been rewritten so that
it became easier to detect common errors that MMC
does not handle. As a result, the OpenModelica Com-
piler now has vastly better error messages for algorith-
mic code. We also enhanced OMC to propagate file,
line and column information to more error messages
because when there is a large application that needs
to be corrected, it is essential that you find the correct
line quickly. Improving the error messages probably
saved more time than it cost to implement and as a re-
sult, the compiler is now giving better error messages
both for Modelica and MetaModelica code.

OpenModelica has problems with shadowing of cer-
tain builtin operators. For example, creating a function
ndims and calling it in the same package will result in
the Modelica builtin ndims operator being used instead
of this function. A few of these functions existed in the
compiler and had to be renamed – rewriting Lookup in
OpenModelica is an alternative, but would take more
time.

4.5.3 Modelica Problems

The Modelica Specification (Modelica Association, a)
says that external functions map Integer to int, with
no way to change their behavior. If external func-
tions in the compiler runtime need to access large in-
tegers, this is a problem. Examples of such a function

11



Modeling, Identification and Control

are referenceEqual, which checks if two pointers are
equal and the stringHash family of functions. Values
were being truncated because of the limited precision
of int on (some) 64-bit platforms, so we had to move
functions from external C functions in the compiler into
the MetaModelica language itself (as external builtin
functions).

5 Performance

While we are not fully satisfied with the performance
of the compiler at the time of writing this text, it
has about the same performance as the old compiler
(MMC) despite the garbage collector using up a large
part of the total execution time.

The performance of the working examples varied
widely in the first versions of the bootstrapped com-
piler. Some tests could be heavily improved by doing
small changes.

In the first executable version of the bootstrapped
compiler even simple test cases were nine times slower
than in the MMC version. Since the new version of
OMC uses a real C stack, it is possible to use general-
purpose debugging and profiling tools, such as gdb,
gprof or valgrind on it. It is also possible to use our
MetaModelica debugger on the code (Section 6).

To improve performance, we used a standard tool,
valgrind --tool=callgrind, to profile a simple ex-
ample. The PEXPipe model was chosen because it took
1-2 seconds to run it, making it of suitable size (pro-
filing adds 10-100 times overhead). The model spent
around 80% of its time doing exception handling. The
C++ try-throw-catch feature had been used to im-
plement the exception handling (Pop et al., 2008) of
matchcontinue expressions. C++ exceptions are slow
because they are not supposed to be used often. How-
ever, in MetaModelica 1.0 matchcontinue (that is,
match with possible backtracking and continuation of
the next case in the match) is used as the basic general
control flow construct instead of special purpose con-
structs such as if-statements (which MMC does not
support). The exception handling was rewritten us-
ing the cheaper setjmp/longjmp operations. Since the
OpenModelica runtime does not use reference count-
ing3, C++ classes or C++-heap-allocated data, this
level of exception handling is sufficient.

The new exception handling resulted in a 10 times
speed-up for certain examples (on the average 3 times).
Exception handling still uses approximately 2̃5% of the
compiler execution time. We also implemented opti-
mizations that rewrite matchcontinue to match auto-

3longjmp does not unwind the stack so using reference counting
becomes hard to use.

matically as a compiler optimization. This removed
some of the setjmp overhead.

5.1 Benchmarks

All benchmarks were performed using a desktop run-
ning 64-bit Ubuntu 13.10 . The machine was equipped
with a 6-core Intel Core i7-3930K CPU @ 3.20GHz and
32GB of memory. Both compilers (OMC and MMC)
were taken from the standard OpenModelica package
repository, compiled with default settings4.

The two implementations use virtually the same
parser, the only difference is in the garbage collector.
The Modelica Standard Library (MSL) (Modelica As-
sociation, b) is distributed in multiple files that are
parsed and merged into a single tree by the OpenMod-
elica Compiler. Version 3.2.1 of the MSL was used.
MSL 3.2.1 is 10.9MB of Modelica text when stored as
a single file.

Unparsing the tree is the process of going from the
internal abstract syntax tree structure back to Model-
ica concrete syntax (source code). In Table 3, you can
see that the bootstrapped implementation is slightly
faster at parsing. This is due to the MMC implemen-
tation having slower memory management for exter-
nal C-code – the data is allocated in a special buffer
which is then copied to the normal heap in an ex-
tra phase. The OMC implementation uses the Boehm
GC (Boehm and Weiser, 1988; Boehm et al., 1991) as
its garbage collector, which allows for using a parallel
mark phase. The only disadvantage is parallel mark-
ing increases the total work of the thread due to thread
synchronization, which means you should only enable
it if the CPU would be idle without it.

Having the option to use parallel marking is a good
benefit for most users of the compiler since they will
typically work on only one model at a time. Compiler
developers on the other hand will run enough tests at
a time to fully utilize over 40 threads without parallel
marking.

A few known large models were chosen to test the
scalability of the compiler for large tests run as a single
process. The tests that take the longest to execute are
simulation tests, code is generated, compiled, ran, and
the results are verified. However, most of the time is
spent running a C compiler on generated code that is
the same in both compilers. Thus, the chosen tests are
large models that are not simulated.

The HumMod model (Kofrakek et al., 2011) has
more than 28083 equations and the V6 engine from
MSL (Modelica Association, b) contains 9016 equa-
tions. What the results in Table 4 tells us is that large
models have a higher overhead than small models com-

4http://build.openmodelica.org/apt/ saucy/nightly

12



Sjölund et.al., “Bootstrapping a Compiler for an Equation-Based Object-Oriented Language”

Table 3: Compiler performance, parsing.

Task MMC OMC
serial mark parallel mark

Parse MSL 3.2.1, single file 1.8s 0.96GB 1.74s 1GB 1.7s 1GB
Parse MSL 3.2.1, multiple files 1.71s 0.22GB 1.52s 0.23GB 1.43s 0.23GB
Parse and unparse 2.89s 0.37GB 3.32s 0.53GB 2.55s 0.54GB

pared to MMC. While OMC performs well overall, the
parallel mark phase speeds up performance a lot which
suggests the memory management can be further im-
proved and that it will suffer on throughput of parallel
tests where parallel mark is not a good option.

Running the entire OpenModelica testsuite is an-
other important application for the developers. The re-
sults in Table 5 are rather good. For users who run only
a single model at a time, parallel marking will improve
performance roughly to the average speed of MMC.
While the results show that MMC is faster on through-
put, this is because a few models are using algorithms
that scale poorly with the bootstrapped compiler im-
plementation. These issues will be resolved once the
compiler sources are changed to be incompatible with
MMC, using the new language features that the boot-
strapped OMC is capable of handling. It is expected
that the single-process performance of OMC with par-
allel marking would surpass MMC at that time.

There is a difference in how the two tool chains cre-
ate the executable compiler, but it is currently quite
similar. Both tool chains analyze the MetaModelica
source code to build the dependencies. OMC is more
conservative and always succeeds while MMC uses a
more optimistic approach and does not always recom-
pile required files. However, the OMC analysis is more
coarse-grained and translates more files than MMC
does. If a translated file is the same as the previous
one, the C-compiler will not try to re-compile this file,
making the OMC approach managable since translat-
ing .mo-files is fast.

After dependency analysis, MMC will compile each
mo-file into a C-file using one process per file. OMC
will create one script per core and translate many mo-
files into many C-files using one process per batch. The
reason for this is OMC needs to parse the entire com-
piler sources in order to function, which takes longer
than generating the source code for a single package.
Both methods are run in parallel since it is important
for developers to re-compile source code fast.

Table 6 shows the performance of the OMC approach
to compiling the compiler. Not surprisingly, the per-
formance figures of MMC and OMC are very close
since profilers were run on the bootstrapped compiler
to maximize performance on this benchmark.

Comparing the MMC and OMC build systems in Ta-
ble 7, OMC shows better performance. GCC versions
since 4.5 have problems handling the huge C-code gen-
erated by MMC. GCC has no problems with code gen-
erated by OMC however, giving OMC an advantage
for compiler developers preferring GCC.

5.1.1 Comparison with old benchmarks

Compared to preliminary work performed in (Sjölund
et al., 2011), the numbers reported here reflect a num-
ber of updates made in OpenModelica since 2011. Most
important is the addition of garbage collection. The
old implementation simply allocated a huge chunk of
memory and never deallocated it. As such, a number of
larger test cases could not run and were removed from
the comparison. Now all test cases run and produce
identical results. For some test cases, garbage collec-
tion takes up close to 50% of total run-time, which
means performance has also improved since 2011 de-
spite the numbers at that time saying MMC and OMC
were closer in 2011.

Further, the tests can now be run in parallel since
they use up much less memory. The 2011 build system
for the bootstrapped compiler was always run in serial,
utilizing a single CPU. In this version, parallel builds
are compared for both MMC and OMC.

There is also a comparison on parallel garbage col-
lection using parallel marker threads.

Judging by these changes, the current version of the
bootstrapped compiler is much more mature than the
2011 version.

6 Debugger

The MMC compiler has a debugger developed by Pop
(2008) in the Eclipse environment, including a data
inspector for the MetaModelica types. It uses code
instrumentation and tracing to perform debugging,
which produces very large executables and slow exe-
cutation. Moreover, the debugger is required to fetch
the complete data of every single variable on a break-
point. It also parses the source code of the compiler to
find out the names and fields of records in uniontypes.
Needless to say, the debugger is very slow. There exist

13



Modeling, Identification and Control

Table 4: Compiler performance, checkModel() on large models, time spent and memory consumption.

Task MMC OMC
serial mark parallel mark

HumMod 92.21s 0.76GB 134.6s 1.1GB 104.08s 1.1GB
EngineV6 (analytic) 6.85s 0.43GB 11.27s 0.76GB 8.54s 0.77GB

Table 5: Compiler performance, OpenModelica testsuite, run in parallel.

Task MMC OMC
serial mark parallel mark

1622 fast tests 126.64s 0.49GB 142.66s 0.83GB 145.89s 0.82GB
all 2499 tests 1076.7s 2.5GB 1291.5s 4.5GB 1317.5s 4.2GB

some ways of making it faster, for example by limit-
ing the maximum depth of data that it fetches from a
variable. It also lacks the possibility to show the stack
frames to view a call chain, since the MMC compiler
does not use the regular C stack. The same user inter-
face for our new debugger, but the implementation is
different Pop et al. (2012).

One aspect of the design of the bootstrapped com-
piler was to make sure that the debugged compiler code
would have low overhead compared to the released ver-
sion, to only query data that the user asks for, and
to make sure the stack is preserved (except for tail-
recursive calls). The changes made to the representa-
tion of data ensures that there is no need to parse the
source code of the compiler to find out if a variable has
the value NONE() or the empty list {}, and that the
name of the record and its fields are stored as mem-
bers in records (see Figure 2). Since the bootstrapped
compiler uses the regular C stack and is compiled into
C, it is possible to generate debug symbols for it and
debug it using gdb. Compiling it takes no longer than
compiling it in the regular manner. Disabling compiler
optimizations gives access to more variables at the cost
of significantly more stack space being used.

Head

3 elts

rec ix

2 3
ADD

lhs

rhs

ADD(lhs=2,rhs=3)

Figure 2: Adding record information to the data struc-
ture to simplify the work of the debugger
at a small memory overhead (marked with
a circle).

Table 6: Running BuildOMC.mos (the new build script for compiling OpenModelica).

Task MMC OMC
serial mark parallel mark

BuildOMC.mos (generate C sources) 44.58s 1.1GB 44s 1.3GB 43.05s 1.3GB

Table 7: Compiling the OpenModelica source code with the old build system (MMC) and the new one (OMC).

Task MMC OMC Factor
Translating MetaModelica to C 135.2s 43.05s 0.32x
Compiling C-files using gcc 4.8 -O2 423.8s 44.55s 0.11x
Compiling C-files using clang 3.3 -O2 36.13s 36.04s 1x

14



Sjölund et.al., “Bootstrapping a Compiler for an Equation-Based Object-Oriented Language”

Our Eclipse frontend uses the gdb machine inter-
face to query runtime functions in order to get the
types and values of variables whenever a breakpoint
is reached. When the user inspects a certain variable,
only the required data is fetched and displayed. When
the debugger steps in or out, special care is taken for
setjmp/longjmp calls to make sure that the debugger
works the way you expect it to do. Stepping over a
function call will either end up right after the call or at
the last point caught by a matchcontinue or failure
statement.

7 Related Work

Functional programming language compilers often
bootstrap themselves during the build process. Some
also include integrated lexer and parser generators spe-
cific to their own programming language. The Open-
Modelica project has recently developed the OMCCp
parser generator (Lopez-Rojas, 2011) integrated with
MetaModelica using scanning and parsing tables gener-
ated by flex and bison (Levine, 2009). It uses features
in the OMC compiler, such as for-loops, that were
never intended to be supported by MMC. Therefore
OMCCp cannot be used as the regular OpenModelica
parser generator until MMC is phased out completely
at the end of the bootstrapping process.

In the Lisp (Steele and Gabriel, 1993) family of lan-
guages, bootstrapped compilers and interpreters have
been available since the 1960’s. These languages are
dynamically strongly typed and defer the check to run-
time instead of at compile-time. Thus, type checking
is only performed on code that is executed and type
errors may still be present in un-executed code.

Objective Caml (Chailloux et al., 2000), SML/NJ
(Blume, 2001) and MLton (MLton, 2011) are exam-
ples of bootstrapped compilers in the ML family of
programming languages. These languages are similar
to MetaModelica in that they both use very similar
language constructs, statically strong typing and type
inference. This is not surprising since RML/MMC is
written in Standard ML and compiles using either SM-
L/NJ or MLton. One major difference is that all vari-
ables in MetaModelica have a specific type while in
ML each expression has a most general type. Meta-
Modelica can generate error messages that are easier
to understand because type inference only has to be
performed when calling a polymorphic function. How-
ever, this design choice also results in more local vari-
able declarations since all temporary variables need to
be declared. This is both positive (you document what
type you expect a variable should have) and negative
(you end up with a lot of local variable declarations).

The concept of the matchcontinue expression, that

is, matching with backtracking, is something that the
ML family is missing. It is instead possible to use ex-
plicit exception handling or use guard expressions to
prevent a case from actually matching a pattern, which
is often sufficient. The ML family of languages also has
lambda functions, which is currently missing in Meta-
Modelica, but is planned to be introduced.

To summarize: the matchcontinue expression is
more general than the match expression, which is com-
mon in functional programming. As mentioned, it is re-
lated to clauses in logic programming since it provides
backtracking on failure. However, in Prolog (Nilsson
and Maluszynski, 1995) there are usually many possi-
ble answers to a given logic program since it evaluates
combinations of clauses that satisfy the program. In
MetaModelica only the first valid answer is returned
and no subsequent case is evaluated. Thus, Meta-
Modelica is more efficient and consistently statically
strongly typed, whereas logic programs sometimes can
be expressed more concisely.

8 Conclusions

We have demonstrated that is it possible for a com-
piler of an equation-based object-oriented (EOO) lan-
guage such as Modelica to compile itself. Thus, all of
the static and translational semantics of Modelica is
expressed in a slightly extended version of Modelica.
We have also shown that the performance of the im-
plementation is sufficient and is expected to improve in
the future. The effort to achieve these goals was higher
than initially expected, and included not only develop-
ing the compiler but also a development environment
including an Eclipse plugin and a debugger.

Many of the MetaModelica language extensions that
allow language modeling are in line with the design
goals for future versions of Modelica that allow mod-
eling of language features in libraries. We believe that
this work will be an important input and proof-of-
concept to the design effort.

The benefits for users of OpenModelica are many. It
is possible to use OMC as a shared library and directly
call functions asynchronously in threads. This is much
faster than the current synchronous interface which op-
erates over the network and does not allow calls to be
interrupted. For users of the graphical user interface,
this will enable progress bars in long operations, in ad-
dition to the ability to cancel them.

The bootstrapped compiler is also able to use
threads, utilising multiple cores that are now present
in almost all consumer CPUs.

It is expected that we will be able to develop features
to the compiler much faster since we will now be able
to use concepts like loops and if-expressions without

15



Modeling, Identification and Control

using function pointers (a limitation of MMC).

Many requested features, mostly regarding inter-
facing with OpenModelica, have been put on hold
since they are much simpler to implement in the boot-
strapped compiler.

8.1 Future Work

The garbage collection needs to be improved by gener-
ating code that gives better hints to the garbage collec-
tor like allocation of data that does not contain point-
ers. This has been implemented for strings, but not for
vectors of numbers and similar structures used in the
back-end.

Introduction of register allocation (optimized inter-
mediate code) in the compiler will help reduce the bur-
den of the garbage collection algorithms. The current
version tries to limit the number of registers, but it is
not optimal. It is an optmization that greatly helps
for using less stack space even when generating code
for debugging.

Parts of the compiler can be rewritten/refactored us-
ing certain more powerful and concise language con-
structs in MetaModelica 2.0 (Fritzson et al., 2011).
This will be done once MMC support is discontinued.

Furthermore, to realize important design goals, a
number of language features should be moved into li-
braries and an enhanced API for accessing compiler
functionality from such libraries need to be developed.

Introduce language constructs for threading since
the garbage collector is capable on handling threads.
A prototype using external C functions was tested on
memory-intensive tasks like parsing compiler sources.
However boehm gc will stop all threads when collect-
ing garabage, severely limiting performance. Speedup
was limited to around 2x due to Amdahl’s law (Am-
dahl, 1967). For this reason, these extensions would
be more useful for computation-intensive tasks rather
than memory-intensive.

We will improve on the build system by generating
interface files in order to perform a more fine-grained
dependency analysis. This will enable recompiling de-
pendent packages only if the interface changes. For
example, recompiling a package if an input to a depen-
dent function changes, but not if only a comment in
that package changes.

Acknowledgments

This work has been supported by Vinnova in the
ITEA2 OPENPROD project, and by SSF in the
Proviking HIPo project. The Open Source Modelica
Consortium supports the OpenModelica project.

References

Amdahl, G. M. Validity of the single processor ap-
proach to achieving large scale computing capabili-
ties. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring).
ACM, New York, NY, USA, pages 483–485, 1967.
doi:10.1145/1465482.1465560.

Appel, A. W., Mattson, J. S., and Tarditi, D. R.
A lexical analyzer generator for Standard ML.
1994. URL http://www.smlnj.org/doc/ML-Lex/

manual.html.

Bachmann, B., editor. Proceedings of the 6th Inter-
national Modelica Conference. Modelica Association,
2008.

Barton, P. I. and Pantelides, C. C. Modeling of com-
bined discrete/continuous processes. AIChE Jour-
nal, 1994. 40:966–979. doi:10.1002/aic.690400608.

Blume, M. CMB - The SML/NJ Bootstrap Compiler -
User Manual. 2001. URL http://www.smlnj.org/

doc/CM/btcomp/.

Boehm, H.-J., Demers, A. J., and Shenker, S. Mostly
parallel garbage collection. SIGPLAN Not., 1991.
26(6):157–164. doi:10.1145/113446.113459.

Boehm, H.-J. and Weiser, M. Garbage collec-
tion in an uncooperative environment. Software:
Practice and Experience, 1988. 18(9):807–820.
doi:10.1002/spe.4380180902.

Brück, D., Elmqvist, H., Olsson, H., and Mattsson,
S. E. Dymola for multi-engineering modeling and
simulation. In Otter (2002), 2002.

Broman, D. Meta-Languages and Semantics for Equa-
tion-Based Modeling and Simulation. Doctoral the-
sis No 1333, Department of Computer and In-
formation Science, Linköping University, Sweden,
2010. URL http://urn.kb.se/resolve?urn=urn:

nbn:se:liu:diva-58743.

Brus, S. Bootstrapping the OpenModelica Compiler:
Implementing Functions as Arguments. Bachelor’s
thesis draft, Linköping University, 2009. Not pub-
lished.

Casella, F., editor. Proceedings of the 7th Interna-
tional Modelica Conference. Linköping University
Electronic Press, 2009.

Chailloux, E., Manoury, P., and Pagano, B. Developing
applications with Objective Caml. O’Reilly and As-
sociates, 2000. URL http://caml.inria.fr/pub/

docs/oreilly-book/ocaml-ora-book.pdf.

16

http://openmodelica.org
http://dx.doi.org/10.1145/1465482.1465560
http://www.smlnj.org/doc/ML-Lex/manual.html
http://www.smlnj.org/doc/ML-Lex/manual.html
http://dx.doi.org/10.1002/aic.690400608
http://www.smlnj.org/doc/CM/btcomp/
http://www.smlnj.org/doc/CM/btcomp/
http://dx.doi.org/10.1145/113446.113459
http://dx.doi.org/10.1002/spe.4380180902
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58743
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58743
http://caml.inria.fr/pub/docs/oreilly-book/ocaml-ora-book.pdf
http://caml.inria.fr/pub/docs/oreilly-book/ocaml-ora-book.pdf


Sjölund et.al., “Bootstrapping a Compiler for an Equation-Based Object-Oriented Language”

Clauß, C., editor. Proceedings of the 8th Interna-
tional Modelica Conference. Linköping University
Electronic Press, 2011.

Elmqvist, H. A Structured Model Language for Large
Continuous Systems. Ph.D. thesis, Department of
Automatic Control, Lund University, Sweden, 1978.

Elmqvist, H., Mattsson, S. E., and Otter, M. Mod-
elica - a language for physical system modeling, vi-
sualization and interaction. In Proceedings of the
1999 IEEE International Symposium on Computer-
Aided Control System Design. pages 630 –639, 1999.
doi:10.1109/CACSD.1999.808720.

Equa AB. IDA Simulation Environment. 2002. URL
http://www.equa.se/eng.se.html.

Fritzson, P. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE
Press, 2004.

Fritzson, P. Language modeling and symbolic transfor-
mations with Meta-Modelica. 2005. URL http://

openmodelica.org. Later versions Fritzson (2007);
Fritzson and Pop (2011a).

Fritzson, P. Language modeling and symbolic trans-
formations with Meta-Modelica. 2007. URL http:

//openmodelica.org. Slightly updated version of
Fritzson (2005); later update Fritzson and Pop
(2011a).

Fritzson, P. Introduction to Modeling and Simulation
of Technical and Physical Systems with Modelica.
Wiley-IEEE Press, 2011.

Fritzson, P. Principles of Object-Oriented Modeling
and Simulation with Modelica 3.3: A Cyber-Physical
Approach. Wiley-IEEE Press, 2014.

Fritzson, P., Aronsson, P., Lundvall, H., Nyström, K.,
Pop, A., Saldamli, L., and Broman, D. The Open-
Modelica Modeling, Simulation, and Software De-
velopment Environment. Simulation News Europe,
2005a. 44(45).

Fritzson, P. and Bunus, P. Modelica - a general object-
oriented language for continuous and discrete-event
system modeling and simulation. In Proceedings 35th
Annual Simulation Symposium. pages 365–380, 2002.
doi:10.1109/SIMSYM.2002.1000174.

Fritzson, P. and Engelson, V. Modelica - a unified
object-oriented language for systems modeling. In
E. Jul, editor, ECOOP’98 - Object-Oriented Pro-
gramming, volume 1445 of Lecture Notes in Com-
puter Science, pages 67–90. Springer Berlin / Hei-
delberg, 1998. doi:10.1007/BFb0054087.

Fritzson, P., Gunnarsson, J., and Jirstrand, M. Math-
modelica – an extensible modeling and simulation
environment with integrated graphics and literate
programming. In Otter (2002), pages 41–54, 2002.

Fritzson, P. and Pop, A. Meta-programming and
language modeling with MetaModelica 1.0. Tech-
nical Report 9, Linköping University, PELAB -
Programming Environment Laboratory, 2011a.
URL http://urn.kb.se/resolve?urn=urn:nbn:

se:liu:diva-66440. Almost identical to Fritzson
(2007), but tech. report.

Fritzson, P. and Pop, A. Meta-programming and
language modeling with MetaModelica 1.0. Tech-
nical Report 9, Linköping University, PELAB -
Programming Environment Laboratory, 2011b.
URL http://urn.kb.se/resolve?urn=urn:nbn:

se:liu:diva-66440.

Fritzson, P., Pop, A., and Aronsson, P. Comprehensive
meta-modeling and meta-programming capabilities
in Modelica. In G. Schmitz, editor, Proceedings of
the 4th International Modelica Conference. 2005b.

Fritzson, P., Pop, A., Broman, D., and Aronsson,
P. Formal semantics based translator generation
and tool development in practice. In C. Fidge,
editor, Proceedings of the 2009 Australian Soft-
ware Engineering Conference. IEEE Computer So-
ciety, Washington, DC, USA, pages 256–266, 2009a.
doi:10.1109/ASWEC.2009.46.

Fritzson, P., Pop, A., and Sjölund, M. Towards Mod-
elica 4 meta-programming and language modeling
with MetaModelica 2.0. Technical Report 2011:10,
Linköping University, PELAB - Programming Envi-
ronment Laboratory, 2011. URL http://urn.kb.

se/resolve?urn=urn:nbn:se:liu:diva-68361.

Fritzson, P., Privitzer, P., Sjölund, M., and Pop, A.
Towards a text generation template language for
Modelica. In Casella (2009), pages 193–207, 2009b.
doi:10.3384/ecp09430124.

Hindley, J. R. The principal type-scheme of an object
in combinatory logic. Transactions of the American
Mathematical Society, 1969. 146:29–60. URL http:

//www.jstor.org/stable/1995158.

ITI GmbH. SimulationX. 2012. URL http://www.

itisim.com/simulationx.html.

Åkesson, J., Årzén, K.-E., Gäfvert, M., Bergdahl,
T., and Tummescheit, H. Modeling and opti-
mization with Optimica and JModelica.org - lan-
guages and tools for solving large-scale dynamic

17

http://dx.doi.org/10.1109/CACSD.1999.808720
http://www.equa.se/eng.se.html
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://dx.doi.org/10.1109/SIMSYM.2002.1000174
http://dx.doi.org/10.1007/BFb0054087
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-66440
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-66440
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-66440
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-66440
http://dx.doi.org/10.1109/ASWEC.2009.46
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68361
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68361
http://dx.doi.org/10.3384/ecp09430124
http://www.jstor.org/stable/1995158
http://www.jstor.org/stable/1995158
http://www.itisim.com/simulationx.html
http://www.itisim.com/simulationx.html


Modeling, Identification and Control

optimization problems. Computers & Chem-
ical Engineering, 2010. 34(11):1737 – 1749.
doi:10.1016/j.compchemeng.2009.11.011.

Kloas, M., Friesen, V., and Simons, M. Smile - a sim-
ulation environment for energy systems. In Proceed-
ings of the 5th International IMACS - Symposium on
Systems Analysis and Simulation (SAS’95. Gordon
and Breach Publishers, pages 503–506, 1995.

Kofrakek, J., Matejak, M., and Privitzer, P. Hum-
Mod – large scale physiological models in Mod-
elica. In Clauß (2011), pages 713–724, 2011.
doi:10.3384/ecp11063713.

Levine, J. flex & bison. O’Reilly Media, 2009.

Lopez-Rojas, E. A. OMCCp: A MetaModel-
ica Based Parser Generator Applied to Model-
ica. Master’s thesis, Linköping University, De-
partment of Computer and Information Science,
2011. URL http://urn.kb.se/resolve?urn=urn:

nbn:se:liu:diva-68863.

Maplesoft. MapleSim. 2012. URL http://www.

maplesoft.com/.

Milner, R. A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences,
1978. 17:348–375.

Milner, R., Tofte, M., Harper, R., and MacQueen, D.
The Definition of Standard ML. MIT Press, Cam-
bridge, MA, USA, 1997.

MLton. Installation instructions (bootstrapping).
2011. URL http://mlton.org/PortingMLton.

Modelica Association. Minutes of the Modelica Design
Meeting 67. 2010. URL http://modelica.org.

Modelica Association. Modelica: A unified object-
oriented language for physical systems modeling,
language specification version 3.3. 2012a. URL
http://www.modelica.org/.

Modelica Association. Modelica Standard Library ver-
sion 3.2.1. 2013b. URL https://modelica.org/

libraries.

Nilsson, H., Peterson, J., and Hudak, P. Functional hy-
brid modeling from an object-oriented perspective.
In P. Fritzson, F. Cellier, and C. Nytsch-Geusen,
editors, Proceedings of the 1st International Work-
shop on Equation-Based Object-Oriented Modeling
Languages and Tools. Linköping University Elec-
tronic Press, 2007. URL http://www.ep.liu.se/

ecp/024/.

Nilsson, U. and Maluszynski, J. Logic, Programming
and Prolog (2ed). John Wiley & Sons Ltd, 1995.
URL http://www.ida.liu.se/~ulfni/lpp/.

Odersky, M., Spoon, L., and Venners, B. Programming
in Scala: A Comprehensive Step-by-step Guide. Ar-
tima Incorporation, USA, 1st edition, 2008.

Otter, M., editor. Proceedings of the 2nd International
Modelica Conference. Modelica Association, 2002.

Otter, M. and Zimmer, D., editors. Proceedings of the
9th International Modelica Conference. Linköping
University Electronic Press, 2012.

Palanisamy, A., Pop, A., Sjölund, M., and Fritz-
son, P. Modelica based parser generator with
good error handling. In H. Tummescheit and K.-
E. Årzén, editors, Proceedings of the 10th Inter-
national Modelica Conference. Modelica Association
and Linköping University Electronic Press, 2014.
doi:10.3384/ecp14096567.

Parr, T. ANTLR parser generator 3.3. 2010. URL
http://www.antlr.org/.

Pettersson, M. Compiling Natural Semantics. Doc-
toral thesis No 413, Department of Computer and
Information Science, Linköping University, Sweden,
1995a. Also published in Pettersson (1999).

Pettersson, M. Compiling Natural Semantics. Doc-
toral thesis No 413, Department of Computer and
Information Science, Linköping University, Sweden,
1995b.

Pettersson, M. Compiling Natural Semantics, vol-
ume 1549 of Lecture Notes in Computer Science.
Springer, 1999. doi:10.1007/b71652.

Peyton Jones, S. et al. The Haskell 98 lan-
guage and libraries: The revised report. Jour-
nal of Functional Programming, 2003. 13(1).
doi:10.1017/S0956796803000315.

Pop, A. Integrated Model-Driven Development Envi-
ronments for Equation-Based Object-Oriented Lan-
guages. Doctoral thesis No 1183, Department of
Computer and Information Science, Linköping Uni-
versity, Sweden, 2008.

Pop, A. and Fritzson, P. Metamodelica: A unified
equation-based semantical and mathematical mod-
eling language. In D. Lightfoot and C. Szyper-
ski, editors, Modular Programming Languages, vol-
ume 4228 of Lecture Notes in Computer Science,
pages 211–229. Springer Berlin / Heidelberg, 2006.
doi:10.1007/11860990 14.

18

http://dx.doi.org/10.1016/j.compchemeng.2009.11.011
http://dx.doi.org/10.3384/ecp11063713
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68863
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68863
http://www.maplesoft.com/
http://www.maplesoft.com/
http://mlton.org/PortingMLton
http://modelica.org
http://www.modelica.org/
https://modelica.org/libraries
https://modelica.org/libraries
http://www.ep.liu.se/ecp/024/
http://www.ep.liu.se/ecp/024/
http://www.ida.liu.se/~ulfni/lpp/
http://dx.doi.org/10.3384/ecp14096567
http://www.antlr.org/
http://dx.doi.org/10.1007/b71652
http://dx.doi.org/10.1017/S0956796803000315
http://dx.doi.org/10.1007/11860990_14


Sjölund et.al., “Bootstrapping a Compiler for an Equation-Based Object-Oriented Language”

Pop, A., Fritzson, P., Remar, A., Jagudin, E., and
Akhvlediani, D. OpenModelica development envi-
ronment with Eclipse integration for browsing, mod-
eling, and debugging. In C. Kral and A. Haumer, ed-
itors, Proceedings of the 5th International Modelica
Conference. 2006.

Pop, A., Sjölund, M., Asghar, A., Fritzson, P., and
Casella, F. Static and dynamic debugging of Mod-
elica models. In Otter and Zimmer (2012), 2012.
doi:10.3384/ecp12076443.

Pop, A., Stav̊aker, K., and Fritzson, P. Exception han-
dling for Modelica. In Bachmann (2008), pages 409–
418, 2008.

Sahlin, P. and Sowell, E. F. A neutral format for build-
ing simulation models. In Proceedings of the Confer-
ence on Building Simulation. pages 147–154, 1989.

Sjölund, M. Bidirectional External Function In-
terface Between Modelica/MetaModelica and Java.
Master’s thesis, Linköping University, Depart-
ment of Computer and Information Science,
2009. URL http://urn.kb.se/resolve?urn=urn:

nbn:se:liu:diva-20386.

Sjölund, M., Fritzson, P., and Pop, A. Bootstrapping
a Modelica compiler aiming at Modelica 4. In Clauß
(2011), 2011. doi:10.3384/ecp11063510.

Stav̊aker, K., Pop, A., and Fritzson, P. Compiling and
using pattern matching in Modelica. In Bachmann
(2008), pages 637–646, 2008.

Steele, G. L., Jr. and Gabriel, R. P. The evolu-
tion of lisp. In The second ACM SIGPLAN confer-
ence on History of programming languages, HOPL-
II. ACM, New York, NY, USA, pages 231–270, 1993.
doi:10.1145/154766.155373.

Tarditi, D. R. and Appel, A. W. ML-Yacc User’s
Manual. 2000. URL http://www.smlnj.org/doc/

ML-Yacc/.

Tiller, M. Introduction to Physical Modeling with Mod-
elica. Springer, 2001.

Viklund, L., Herber, J., and Fritzson, P. The im-
plementation of ObjectMath - a high-level pro-
gramming environment for scientific computing. In
U. Kastens and P. Pfahler, editors, Compiler Con-
struction, volume 641 of Lecture Notes in Computer
Science, pages 312–318. Springer Berlin / Heidel-
berg, 1992. doi:10.1007/3-540-55984-1 28.

Wilson, P. R. Uniprocessor garbage collection tech-
niques. In Proceedings of the International Workshop
on Memory Management, IWMM ’92. Springer-
Verlag, London, UK, pages 1–42, 1992.

Wirth, N. The programming language Pascal. Acta In-
formatica, 1971. 1:35–63. doi:10.1007/BF00264291.

Wolfram Mathcore. System Modeler. 2012. URL http:

//mathcore.com/.

Zimmer, D. Equation-based modeling of variable-
structure systems. Ph.D. thesis, Eidgenössische
Technische Hochschule ETH Zürich, Switzerland,
2010. doi:10.3929/ethz-a-006053740.

19

http://dx.doi.org/10.3384/ecp12076443
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20386
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20386
http://dx.doi.org/10.3384/ecp11063510
http://dx.doi.org/10.1145/154766.155373
http://www.smlnj.org/doc/ML-Yacc/
http://www.smlnj.org/doc/ML-Yacc/
http://dx.doi.org/10.1007/3-540-55984-1_28
http://dx.doi.org/10.1007/BF00264291
http://mathcore.com/
http://mathcore.com/
http://dx.doi.org/10.3929/ethz-a-006053740
http://creativecommons.org/licenses/by/3.0

	Introduction
	Modelica – An Equation-Based Object-Oriented Language
	Specification of Language Constructs

	Vision – Extensible Tools
	Motivation for Compiler Bootstrapping
	The Stages of Bootstrapping OMC

	MetaModelica
	Pattern Matching
	Semantics
	Pattern Matching Fail Semantics

	Data Types
	Lists
	Tuples
	Option Types
	MetaModelica Array Types
	Union Types


	Implementation
	Compiler
	Platform Availability
	Language Feature Implementations
	Pattern Matching Implementation
	Type Implementations
	Polymorphism

	Runtime System
	Data layout
	Foreign Function Interface
	Builtin MetaModelica Functions
	Garbage collection

	Issues
	MMC Problems
	OpenModelica Issues
	Modelica Problems


	Performance
	Benchmarks
	Comparison with old benchmarks


	Debugger
	Related Work
	Conclusions
	Future Work


