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Abstract

A simple Model Predictive Control (MPC) algorithm of velocity (incremental) form is presented. The
proposed MPC controller is insensitive to slowly varying system and measurement trends and therefore
has integral action. The presented algorithm is illustrated by both simulations and practical experiments
on a quadruple tank MIMO process.
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1. Introduction

Model Predictive Control (MPC) algorithms are stud-
ied in a number of books (e.g. Huang and Kadali
(2008), Maciejowski (2002), Camacho and Bordons
(1995), Bitmead et al. (1990)) and in numerous pa-
pers, se e.g. Maeder et al. (2009) and the references
therein.

MPC has its origin in the theory of optimal con-
trol problems, Pontryagin et al. (1956) and Bellmann
(1957), and in lecture notes on optimal control the-
ory at MIT in the early 1960-ties which resulted in the
book Athans and Falb (1966).

Parts of the optimal control theory are believed de-
veloped during the Apollo program in the early 60-ties
where there was a great focus on minimum time (time
optimal control) and minimum fuel (fuel optimal con-
trol) problems, see e.g. Athans and Falb (1966) Ch.
7 where the minimum principle by Pontryagin et al.
(1956) is used to solve the optimal control problems.
This also successful resulted in the state feedback opti-
mal control law in the Apollo Lunar-Module Autopilot
Widnall (1970).

The above mentioned optimal control problems are
most often based on a fixed time optimization interval
from say a constant initial time t0 = 0 to a final time,
say L, i.e. a time optimal control problem where a cost

functional J(u) =
∫ L

0
dt = L and L is free, are opti-

mized with respect to the control action u subject to
a model and constraints. MPC problems are however
based on a moving horizon (i.e. a receding horizon)
strategy Garca et al. (1989) were we consider the ini-
tial time of the optimization interval to be equal to the
present time t, and the final time of the optimization
interval to be equal to the present time plus a predic-
tion horizon, say t+L where L is the prediction horizon.
There is no theoretical difference between standard op-
timal control problems and MPC problems and notice

that the functional J(u) =
∫ t+L

t
dt = L.

An early description of the moving horizon or reced-
ing horizon optimal control strategy where the initial
integration time is set equal to the present time, t, and
the final horizon is set equal to t+ L where L > 0 is a
constant time interval is as presented in Propoi (1963)
and Balchen et al. (1970) p. 208 (in Norwegian).

An early survey paper on MPC is Garca et al. (1989).
A survey of both linear and nonlinear MPC is given in,
e.g. Maeder et al. (2009), Qin and Badgwell (2003).
Some early work on non-linear MPC is presented in
Balchen et al. (1992) and the references therein.

The Generalized Predictive Control (GPC) algo-
rithm by Clarke et al. (1987) is an algorithm based on
an input and output Controlled Auto Regressive and
Integrated Moving Average (CARIMA) model. The
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GPC algorithm gives integral action of the closed loop
system and the present state is estimated using the
model and some old known input and output data.

Standard MPC algorithms usually do not achieve in-
tegral action and there is one main reason for this. The
answer is that integral action is not necessarily optimal.
However, if integral action is wanted there is some com-
mon methods to achieve this.

One commonly used method is to augment an in-
tegrator at the input, i.e. augment the plant model
with an integrator uk = uk−1 + ∆uk. MPC algo-
rithms is of state feedback type and in this case the
MPC algorithm is a function of the plant state esti-
mate x̂k and the estimate ûk−1. The plant control is
then uk = uk−1 + ∆u∗k where ∆u∗k is the MPC cal-
culated optimal control deviation. One should notice
that in this case and due to unknown disturbances the
actual previous control uk−1 is not necessarily equal
to the estimate ûk−1. This method is among others
described in Mayne et al. (2000).

Another commonly used strategy to incorporate in-
tegral action is to augment an integrator model dk =
dk−1 of a constant disturbance d influencing the plant
model state equation and the output equation. This
strategy may be viewed as putting the integrator at the
output. This strategy is also among others described
in Mayne et al. (2000).

Recently in Ruscio (2012) a simple Linear Quadratic
(LQ) optimal controller algorithm with integral action
is presented. In this method constant or slowly vary-
ing disturbances in the state and output equations are
removed from the problem by working on deviation
models.

The contributions of this paper may be itemized as
follows:

• In this paper an MPC algorithm with integral ac-
tion, along the same lines as used in the LQ op-
timal controller with integral action method, in
Ruscio (2012) is presented.

2. Problem formulation

Given a process model

xk+1 = Axk +Buk + v, (1)

yk = Dxk + w, (2)

where xk ∈ Rn is the state vector, uk ∈ Rr is the control
input vector, yk ∈ Rm is the output (measurement)
vector, A, B and D are system matrices of appropriate
dimensions, and x0 is the initial state.

The disturbances v and w may both be unknown,
i.e., v may be an unknown constant or slowly varying

process disturbance, and w may be an unknown con-
stant or slowly varying measurements noise vector. v
and w may represent trends or drifts.

Note that the variables uk and yk in the model eqs.
(1) and (2) are the actual input and output variable,
respectively. Furthermore, note that the model eqs.
(1) and (2) may arise from linearizing non-linear mod-
els around some nominal steady state variables. The
model may also rise from system identification based on
trended input and output data. Hence, in these cases,
the external noise variables v and w are known, but
the resulting control algorithm to be presented in this
paper is insensitive to these noise variables v and w.
Furthermore the system and the measurements may be
influenced by drifts and in these cases the noise vari-
ables v and w may be unknown and slowly varying.
Hence, the model eqs. (1) and (2) is a realistic model.

We will study the MPC controller subject to the fol-
lowing performance index,

Jk =
∑L

i=1((yk+i − rk+i)
TQi(yk+i − rk+i)

+∆uTk+i−1Pi∆uk+i−1), (3)

where k is the present discrete time, ∆uk = uk − uk−1

is the control rate of change (or control increment),
rk is a reference signal and Qi and Pi are symmetric
positive semi-definite weighting matrices of appropri-
ate dimensions. For finite prediction horizon L, then
QL may be chosen as the solution to Riccati equation
of the problem to ensure closed loop nominal stability.

The above MPC objective criterion may be written
in more compact form as

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L)

+∆uTk|LP∆uk|L, (4)

where Q ∈ RLm×Lm is a block diagonal matrix with
Qi ∀ i = 1, . . . , L on the block diagonal. P ∈ RLr×Lr

is defined similar with Pi ∀ i = 1, . . . , L on the block
diagonal. The notation used to define the vectors in
eq. (4) is defined in Appendix A.

In this paper we consider input rate of change and
amplitude constraints. These constraints may be for-
mulated as a linear inequality,

A∆uk|L ≤ bk, (5)

where the matrix A and the vector bk are defined later
in Sec. 3.2.

The MPC problem is now equivalent to a Quadratic
Programming (QP) problem, i.e., the objective func-
tion eq. (4) with the process model, eqs (1) and (2), is
minimized with respect to the unknown vector of future
control increments, subject to the process constraints
eq. (5), i.e.,

∆u∗k|L = arg min
A∆uk|L≤bk

Jk. (6)

120



Di Ruscio, “Model Predictive Control with Integral Action: A simple MPC algorithm”

The simplified MPC strategy of including a control
horizon, 1 ≤ Lu ≤ L, and instead calculating a reduced
number of future controls ∆uk|Lu

, will be discussed and
solved later in the paper.

2.1. Model discussion

Note that the model eqs. (1) and (2), when v and w are
constant vectors, is not unique. The constant trends v
and w may be incorporated in the model by including
one additional state. We find that the following model
is equivalent

x̄k+1︷ ︸︸ ︷[
xk+1

zk+1

]
=

Ā︷ ︸︸ ︷[
A v
01×n 1

] x̄k︷ ︸︸ ︷[
xk

zk

]
+

B̃︷ ︸︸ ︷[
B
0

]
uk, (7)

yk =

D̄︷ ︸︸ ︷[
D w

] x̄k︷ ︸︸ ︷[
xk
zk

]
, (8)

with the initial state vector as

x̄0 =

[
x0

z0

]
, (9)

and with z0 = 1 in order to take care of the constant
trends.

3. MPC algorithm

3.1. Problem solution

In order to solve the MPC optimal control problem
eq. (6) we need a model which is independent of the
unknown disturbances. For the sake of generality we
are focusing on state space modeling.

From the state eq. (1) we have

∆xk+1 = A∆xk +B∆uk, (10)

where ∆xk = xk − xk−1. From the measurement eq.
(2) we have

yk = yk−1 +D∆xk. (11)

Augmenting eqs. (10) with (11) gives the state space
model

x̃k+1︷ ︸︸ ︷[
∆xk+1

yk

]
=

Ã︷ ︸︸ ︷[
A 0n×m

D Im×m

] x̃k︷ ︸︸ ︷[
∆xk

yk−1

]
+

B̃︷ ︸︸ ︷[
B
0m×r

]
∆uk, (12)

yk =

D̃︷ ︸︸ ︷[
D Im×m

] x̃k︷ ︸︸ ︷[
∆xk
yk−1

]
. (13)

Hence, we have a strictly proper state space model of
the form

x̃k+1 = Ãx̃k + B̃∆uk, (14)

yk = D̃x̃k. (15)

The state space model eqs (12), (13) (or equivalently
(14), (15) ) may be used to define a Prediction Model
(PM) of the form

yk+1|L = pL + FL∆uk|L, (16)

where

pL = OLÃx̃k, (17)

FL =
[
OLB̃ Hd

L

]
, (18)

and where OL is the extended observability matrix of
the pair Ã, D̃ and Hd

L ∈ RmL×(L−1)r the Toepliz matrix
of impulse response matrices D̃Ãi−1B̃ ∈ Rm×r. See
Appendix A for definitions.

The performance index eq. (4) with the PM eq. (16)
can be written as a quadratic function on standard
form, i.e.,

Jk = ∆uTk|LH∆uk|L + 2fTk ∆uk|L + J0, (19)

where

H = FT
LQFL + P, (20)

fk = FT
LQ(pL − rk+1|L). (21)

The constant term J0 in eq. (19) is not a function of
the unknown ∆uk|L and then not needed and therefore
not presented.

Notice that when the constraints in the MPC prob-
lem eq. (5) is inactive, then the unconstrained MPC
controls is given by

∆u∗k|L = −H−1fk. (22)

Usually we have process constraints and this will be
discussed in the next Sec. 3.2.

3.2. Constraints

It make sense to specify input rate of change con-
straints, i.e.

∆umin ≤ ∆uk|L ≤ ∆umax, (23)

and input amplitude constraints, i.e.

umin ≤ uk|L ≤ umax. (24)

Using the relationship

uk|L = S∆uk|L + cuk−1, (25)
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where S ∈ RrL×rL and c ∈ RrL×r are matrices with
ones and zeroes as defined in the Appendix A.

We find that the constraints may be written as the
linear matrix inequality

A∆uk|L ≤ bk, (26)

where

A :=


I(rL×rL)

−I(rL×rL)

S
−S

 , (27)

and

bk :=


∆umax
−∆umin

umax − cuk−1

−umin + cuk−1

 . (28)

The MPC algorithm is then to minimize the objec-
tive eq. (19) with respect to the constraints given by
the linear inequality eq. (26).

This is a standard Quadratic Programming (QP)
problem in terms of the unknown future control in-
crements and the optimal solution is ∆u∗k|L, as defined

in eq. (6). A receding horizon strategy is used and
only the first control increment ∆u∗k in the calculated
∆u∗k|L, is used for control. The actual control action
to the process is then uk = ∆u∗k + uk−1.

4. Reducing the number of
unknowns future control actions

Usually when presenting MPC algorithms a control
horizon is defined, and this control horizon is usually
less than the prediction horizon L in order to reduce
the number of unknown and then reducing the compu-
tation time.

4.1. Computing only the present control
action

Consider now the extreme case in which the future con-
trol actions are equal to the present control action, i.e.
such that uk+i−1 = uk ∀ i = 1, 2, . . .. In this case the
only unknown control action is uk, and equivalently
∆uk.

In this case we have that ∆uk+i = 0 ∀ i = 1, 2, . . ..
This gives

∆uTk|LP∆uk|L = ∆ukP1∆uk, (29)

and hence we have the control objective

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L)

+∆uTk P1∆uk. (30)

In this case we furthermore have a simple PM of the
form

yk+1|L = pL + F∆uk, (31)

where

F = OLB̃, (32)

and where OL is the extended observability matrix of
the pair (D̃, Ã). The term pL is unchanged and given
by eq. (17).

This gives the control objective as a function of the
increment ∆uk only, i.e. as follows

Jk = ∆uTkH∆uk + 2fTk ∆uk + J0, (33)

where

H := FTQF + P1, (34)

fk := FTQ(pL − rk+1|L). (35)

In this case we find that the constraints may be writ-
ten as the linear matrix inequality

A∆uk ≤ bk, (36)

where

A :=


Ir×r
−Ir×r
Ir×r
−Ir×r

 , (37)

and

bk :=


∆umax
−∆umin

umax − uk−1

−umin + uk−1

 . (38)

The MPC algorithm is then to minimize the objec-
tive eq. (33) with respect to the constraints given by
the linear inequality eq. (36). This is a standard
quadratic programming problem in terms of the un-
known and the optimal minimizing solution is ∆u∗k. A
receding horizon strategy is used. The actual control
action to the process is, uk = ∆u∗k + uk−1.

The strategy presented in this section is consider-
ably reducing the computational time of the MPC al-
gorithm. This strategy is demonstrated to work con-
siderably well for the control of the quadruple tank
process.

4.2. Including a control horizon

In order to reduce the number of unknown input vari-
ables it is common to include a control horizon, say
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Lu where 1 ≤ Lu ≤ L. In this section we study the
objective

Jk = 1
2

∑L
i=1((yk+i − rk+i)

TQi(yk+i − rk+i)

+
∑Lu

i=1 ∆uTk+i−1Pi∆uk+i−1), (39)

Hence, the compact form of this objective can be writ-
ten as

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L)

+∆uTk|Lu
PLu

∆uk|Lu
, (40)

where PLu = P (1 : rLu, 1 : rLu).

In this case we find a PM of the form as in eq. (31)
with

F := FL(:, 1 : rLu), (41)

where FL is defined in eq. (18). We are using MAT-
LAB notation in eq. (41) and hence F is defined from
all rows in FL and the first rLu columns.

Substituting this PM into the objective eq. (40)
gives

Jk = ∆uTk|Lu
H∆uk|Lu

+ 2fTk ∆uk|Lu
+ J0, (42)

where

H := FTQF + PLu , (43)

fk := FTQ(pL − rk+1|L). (44)

The constraints are then formulated as the linear in-
equality

A∆uk|Lu
≤ bk, (45)

where in this case, for 1 ≤ Lu ≤ L we have

A :=


I(rLu×rLu)

−I(rLu×rLu)

S(1 : rLu, 1 : rLu)
−S(1 : rLu, 1 : rLu)

 , (46)

and

bk :=


∆umax(1 : rLu)
−∆umin(1 : rLu)

umax(1 : rLu)− cuk−1

−umin(1 : rLu) + cuk−1

 . (47)

Hence we have a quadratic programming problem in
the unknown vector ∆uk|Lu

∈ RrLu of future control
actions and only the first vector, ∆uk is used.

5. Constant references and large
prediction horizon

We will here discuss a special case which leads to a par-
ticular simple solution to the optimal control problem.
Consider the case where the references are constant,
i.e., and that the prediction horizon is large or infinite.
Then we may use the LQ index

Ji =
1

2

∞∑
k=i

((yk − r)TQ(yk − r) + ∆uTk P∆uk)

=
1

2

∞∑
k=i

(ỹTk Qỹk + ∆uTk P∆uk), (48)

where we have defined ỹk = yk − r.
If r is a non-zero constant reference then the mea-

surements eq. (11) can be written as

yk − r = yk−1 − r +D∆xk. (49)

The state and output eqs. (12) and (13) can then be
rewritten as

x̃k+1︷ ︸︸ ︷[
∆xk+1

yk − r

]
=

Ã︷ ︸︸ ︷[
A 0n×m

D Im×m

] x̃k︷ ︸︸ ︷[
∆xk

yk−1 − r

]
+

B̃︷ ︸︸ ︷[
B
0m×r

]
∆uk, (50)

ỹk︷ ︸︸ ︷
yk − r =

D̃︷ ︸︸ ︷[
D Im×m

] x̃k︷ ︸︸ ︷[
∆xk
yk−1 − r

]
. (51)

Hence, we have a strictly proper state space model of
the form

x̃k+1 = Ãx̃k + B̃∆uk, (52)

ỹk = D̃x̃k (53)

The state space model (50) and (51) (or equivalently
(52) and (53)) with the performance index (48) defines
a standard LQ optimal control problem. The optimal
control is of the form

∆uk =
[
G1 G2

] [ ∆xk
yk−1 − r

]
, (54)

which can be rewritten as

uk = uk−1 +G1∆xk +G2(yk−1 − r). (55)

The LQ optimal controller (55) gives y = r in steady
state since the closed loop system is stable due to the
properties of the LQ optimal controller. The states
are seldom measured in practice. In this case we can
use a state observer to define the deviation state ∆xk.
However, another solution is to define ∆xk in terms of
some past and known outputs . . . , yk−1, yk and some
known inputs . . . , uk−1 and the model matrices A, B
and D.
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6. Numerical examples

Example 6.1 (4 tank process (simulations))

Consider the quadruple tank process, Johansson
(2000), with the non-linear state space model derived
from mass balances and Bernulli’s/Torricelli’s law. By
equating the potential energy and kinetic energy, i.e.
mgh = 1

2mv
2 and solving for the velocity we obtain

v =
√

2gh. Multiplying with the area, a, of the outlet
hole of the tank we obtain the volumetric flow-rate, q,
out of the tank as q = av = a

√
2gh.

Hence, a mass balance of the four tank process gives
the state space model

A1ẋ1 = −a1

√
2gx1 + a3

√
2gx3 + γ1k1u1, (56)

A2ẋ2 = −a2

√
2gx2 + a4

√
2gx4 + γ2k2u2, (57)

A3ẋ3 = −a3

√
2gx3 + (1− γ2)k2u2, (58)

A4ẋ4 = −a4

√
2gx4 + (1− γ1)k1u1, (59)

where Ai ∀ i = 1, . . . , 4 is the cross-section area of tank
i, ai ∀ i = 1, . . . , 4 is the cross-section area of the outlet
pipe of tank i.

The flow k1u1 from pump 1 may be divided into a
flow γ1k1u1 into tank 1 and a flow (1 − γ1)k1u1 to
tank 4, i.e. such that the flow from pump number 1
is k1u1 = γ1k1u1 + (1 − γ1)k1u1. Similarly, the flow
k2u2 from the second pump may be divided into a flow
γ2k2u2 into tank 2 and a flow (1 − γ2)k2u2 into tank
3. Here γ1 and γ2 are fixed parameters. The system is
non-minimum phase when choosing these parameters
such that, 0 < γ1 +γ2 < 1, and the system is minimum
phase when, 1 < γ1 + γ2 < 2. The numerical values
for the above parameters, as well as nominal values for
the states and control inputs, are chosen as presented
in Johansson (2000).

The 4 tank process is studied in a number of papers,
see e.g. Gatzke et al. (2000) where Internal Model Con-
trol (IMC) and Dynamic Matrix Control (DMC) were
used. Here we use the proposed MPC controller with
integral action as presented in Sec. 3.1.

The results after using the MPC controller in Sec.
3 in order to control the non-linear model eqs. (56)-
(59) are presented in Figures 1 and 2. The MATLAB
quadprog.m function is used to solve the QP problem
as described in Sec. 3.2. The weighting matrices were
chosen simply as P = I2 and Q = 0.0001I2. Only the
minimum phase case is illustrated.
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Figure 1: Simulation of the quadruple tank process and
the minimum phase case in Example 6.1 with
MPC control with integral action. Level ref-
erences and actual levels illustrated. Predic-
tion horizon L = 100 and control horizon
Lu = L.
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Figure 2: Simulation of the quadruple tank process and
the minimum phase case in Example 6.1 with
MPC control with integral action. Control
inputs illustrated. Prediction horizon L =
100 and control horizon Lu = L.
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7. Experimental results on a
quadruple tank process

A practical experiment with the MPC algorithm were
performed on a quadruple tank process. The quadruple
tank process is further discussed in Example 6.1.

The sampling rate in all experiments is one sec-
ond. We started with empty tanks in all experiments.
Hence, this may be viewed as a test for robustness for
unknown non-linearities when using the proposed MPC
controller. The quadruple tank process setup results in
a non-minimum phase behavior.

The experiments are described in the following
items.

1. The non-linear model, Eqs. (56)-(59) with mea-
surements of the levels h1 and h2 in the lower
tanks, were used in en Extended Kalman Filter
(EKF) to estimate the four states in vector x
needed in the MPC algorithm in order to formu-
late the term pL in the PM.

The experiment is illustrated in Fig. (3). In order
to reduce the computational time using LabView
the simple MPC algorithm in Sec 4 were used.
From Fig. (3) we see that this MPC algorithm
performs well.

2. An open loop input experiment is designed as il-
lustrated in Fig. (4) and the corresponding out-
puts, i.e. the levels in the two lower tanks, also
illustrated in Fig. (5).

3. The input and output data are collected into
data matrices U ∈ RN×2, and Y ∈ RN×2 where
the number of samples is N = 5459. The first
NID = 4000 first samples were used for identifi-
cation. Hence, the last 1459 samples may be used
for validation of the identified state space mod-
els. The data was also centered before use in the
identification methods.

4. A First Principles (FP) model, very similar to the
one presented in Example 6.1, were fitted to the
process as well as believed possible. Using the
input experiment as illustrated in Fig. (4)) gave
the simulated outputs as illustrated in Fig. (5).
The Prediction Error (PE) criterion evaluated for
the validation data was Vfp = 7.57.

5. The MATLAB IDENT Toolbox system identifica-
tion function pem.m were used to identify a n = 4
order state space model. The simulated outputs
are illustrated in Fig. (5). The PE criterion eval-
uated for the validation data was VPEM = 3.38.

6. The subspace system identification method,
Di Ruscio (1996), Di Ruscio (2009) were used.
The best DSR model with n = 4 states was found
with parameters L = 2 and J = 29. The sim-
ulated outputs are illustrated in Fig. (5). The
PE criterion evaluated for the validation data was
VDSR = 3.07.

7. Two SISO PI controllers were tuned by using the
model based tuning method in Ruscio (2010). The
model used was the DSR model. The experimental
results using this decentralized control strategy is
illustrated in Figs. (7) and (8).

8. The LQ optimal control strategy eq. (19) was im-
plemented. The Kalman filter identified by the
DSR method were used to identify the present
state deviation ∆xk = xk − xk−1 needed in the
controller. The experimental results using this LQ
optimal controller with integral action strategy is
illustrated in Figs. (7) and (8).

The conclusions drawn from these experimental re-
sults are discussed in the following.

Interestingly the identified state space models, both
from PEM and DSR, fits the real data better than
the FP model. Here the simulated output, i.e. the
behavior from the input u, to the output y, is used in
order to calculate the PE criterion. The results using
the FP model, the PEM model and the DSR model
are Vfp = 7.57, VPEM = 3.38 and VDSR = 3.07 ,

respectively. Interestingly the DSR model is slightly
better to fit the validation data compared to the PEM
model.

Based on this conclusion we are using the identified
DSR model for both tuning the PI controllers and for
use in the LQ optimal controller with integral action
strategy eq. (20). The deterministic part of the model,
i.e. xk+1 = Axk + Buk and yk = Dxk, were used to
tune the PI controller strategy (by first using the RGA
pairing strategy, Bristol (1966)), as well as for the cal-
culation of the feedback matrices G1 and G2. Further-
more the DSR identified Kalman filter gain matrix K
were used in the Kalman filter on deviation form as
presented in Ruscio (2012), for estimating the devia-
tion states ∆xk needed in eq. (20).

As we see from Figs. (7) and (8) the LQ strategy
works very well compared to the PI controller strategy.
This is justified by comparing the Integrated Absolute
(IAE) indices. The DSR model gave IAE indices 1.6849
and 1.3290 for level one and two, respectively, and for
the PI controllers 2.2723 and 2.5141 for level one and
two, respectively. It is also worth mentioning that it is
very difficult to tune PI controllers for this process due
to the non-minimum phase behavior of the process.
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Figure 3: Practical run of the quadruple tank process
as in Sec. 7, and the non-minimum phase
case in Example 6.1 with MPC control with
integral action. A control horizon Lu = 1
and the algorithm in Sec. 4.
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Figure 4: Open loop system identification input exper-
iment, i.e. the volt input to the pumps.

8. Discussion

The presented MPC algorithm is based on a state
space model of the plant and is therefore flexible to
be used for MIMO systems. The algorithm may be
combined with any state observer for estimating the
present state, e.g. the Kalman filter, Jazwinski (1989)
or simply with a state observer based on past inputs
and outputs as described in Ruscio and Foss (1998).

The algorithm as presented in this paper is believed
to work very similar as the GPC algorithm in Clarke
et al. (1987). However, as mentioned in the introduc-
tion Sec. 1 the GPC algorithm is based on the use of
an input and output CARIMA model. Such models
are practical only for SISO systems. CARIMA mod-
els are capable of removing the influence of constant
disturbances as in the state space model description in
Eqs. (1) and (2) (SISO systems assumed).

The PM used in the GPC algorithm may be written
on the form as in Eqs. (16) - (18). Se e.g. Bitmead
et al. (1990). One difference between the presented
MPC algorithm and the GPC algorithm, is that the
state estimate in the GPC algorithm, e.g. as in Eq.
(17) is calculated based on the smallest number of past
inputs and outputs. The presented MPC algorithm is
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Figure 5: This figure illustrates the real measurements
of the level in the two lower tanks as well as
the corresponding simulated outputs of the
system identification models, from DSR and
PEM, as well as the simulated outputs from
the first principles model.

more flexible with respect to state observers to be used.
Se e.g. Ruscio and Foss (1998) for a state observer
along these lines.

9. Concluding remarks

A simple state space MPC controller with integral ac-
tion on velocity (incremental) form for MIMO systems
is presented.
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A. Notations used

The special structure of a Hankel matrix as well as
some matching notations, which are frequently used
throughout the paper, are defined in the following.

Given a vector

sk ∈ Rnr ∀ k = 0, 1, 2, . . . , (60)

where nr is the number of rows in sk.
Define integer numbers j and i and define the vector

sj|i ∈ Rinr as follows

sj|i
def
=


sj
sj+1

...
sj+i−1

 ,
which is defined as an extended vector.

126



Di Ruscio, “Model Predictive Control with Integral Action: A simple MPC algorithm”

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

Samples

h 1

 

 

1) FP L=300 Lu=5
2) FP+DSR L=300 Lu=5
3) DSR L=300 Lu=5
r1

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

Samples

h 2

 

 

1) FP L=300 Lu=5
2) FP+DSR L=300 Lu=5
3) DSR L=300 Lu=5
r2

Figure 6: Quadruple tank process. Level in tank one
upper and tank two lower. Illustrating the
reference and the outputs from the process
controlled by the proposed MPC controller,
for three different cases. Case 1: FP model
used in EKF to estimate the present state
and linearized FP model in the MPC. Case
2: FP model used in EKF to estimate the
present state and identified DSR model in
the MPC. Case 3: DSR model and the corre-
sponding Kalman filter used to estimate the
present state and DSR model in the MPC.
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Figure 7: Quadruple tank process. Level in tank one.
Illustrating the reference and the outputs
from the process controlled by two single loop
PI controllers, and the proposed LQ optimal
controller with integral action. The LQ con-
troller were constructed by using the DSR
method for system identification. The DSR
model was used to identify a Kalman filter
for the system. The states were estimated
with this Kalman filter and the determinis-
tic part of the model were used to design the
controller.
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Figure 8: Quadruple tank process. Level in tank one.
Illustrating the reference and the outputs
from the process controlled by two single loop
PI controllers, and the proposed LQ optimal
controller with integral action. The LQ con-
troller where constructed by using the DSR
method for system identification. The DSR
model was used to identify a Kalman filter
for the system. The states where estimated
with this Kalman filter and the determinis-
tic part of the model were used to design the
controller.

The integer numbers j and i have the following in-
terpretations:

• j start index or initial time in the sequence used
to form sj|i, i.e., sj , is the upper vector element in
the extended vector sj|i.

• i is the number of nr-rows in sj|i.

Examples of such vector processes, sk, to be used in
the above definition, are the measured process outputs,
yk ∈ Rm, inputs, uk ∈ Rr and references, rk ∈ Rm.

The extended observability matrix, Oi, for the pair
(D,A) is defined as

Oi
def
=


D
DA
...
DAi−1

 ∈ Rim×n, (61)

where the subscript i denotes the number of block rows.

The reversed extended controllability matrix, Cd
i , for

the pair (A,B) is defined as

Cd
i

def
=
[
Ai−1B Ai−2B · · · B

]
∈ Rn×ir, (62)

where the subscript i denotes the number of block
columns.
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The lower block triangular Toeplitz matrix, Hd
i ∈

Rim×(i+g−1)r , for the quadruple matrices (D,A,B,E).

Hd
i

def
=


E 0m×r 0m×r · · · 0m×r
DB E 0m×r · · · 0m×r
DAB DB E · · · 0m×r
...

...
...

. . .
...

DAi−2B DAi−3B DAi−4B · · · E


where the subscript i denotes the number of block rows
and i+g−1 is the number of block columns, and where
0m×r denotes the m× r matrix with zeroes.

Define ∆uk = uk − uk−1. Using that uk = ∆uk +
uk−1, uk+1 = ∆uk+1 + uk = ∆uk+1 + ∆uk + uk−1 and
so on, we have

uk|L = S∆uk|L + cuk−1 (63)

where S ∈ RLr×Lr and c ∈ RLr×r are given by

S =


Ir 0r · · · 0r
Ir Ir · · · 0r
...

...
. . .

...
Ir Ir · · · Ir

 , c =


Ir
Ir
...
Ir

 , (64)

where Ir is the r× r identity matrix and 0r is the r× r
matrix of zeroes.
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