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Abstract

A modification of the PI setting of the Ziegler-Nichols closed loop tuning method is proposed. The modifi-
cation is based on a combination of the Skogestad SIMC tuning formulas for “integrator plus time-delay”
processes with the Ziegler-Nichols tuning formulas assuming that the process is modeled as an “inte-
grator plus time-delay” process. The resulting PI settings provide improved stability margins compared
with those obtained with the original Ziegler-Nichols PI settings. Compared with the well-known Tyreus-
Luyben PI settings, the proposed PI settings give improved disturbance compensation. For processes with
zero or a negligible time-delay, but with some lags in the form of time-constants, tuning based on ultimate
gain and ultimate period may give poor results. Successful PI settings for such processes are proposed.

Keywords: PI controller, tuning, open loop, closed loop, Ziegler-Nichols, Tyreus-Luyben, Skogestad,
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1. Introduction

The PI (proportional plus integral) controller is prob-
ably the most frequently used controller function in
practical applications. The PI controller stems from
a PID controller with the D-term (derivative) deac-
tived to reduce the propagation of amplified random
measurement noise via the controller, thereby limiting
variations in the control signal due to noise.

Ziegler and Nichols (1942) presented two, now fa-
mous, methods for tuning P, PI, and PID controllers:
The closed loop, or ultimate gain, method, and the
open loop, or process reaction curve, method. In the
present paper, focus is on closed loop tuning of PI con-
trollers.

The PI settings with the Ziegler and Nichols closed
loop method are:

Kc = 0.45Kcu (1)

Ti =
Pu
1.2

(2)

where Kcu is the ultimate gain, and Pu is the ultimate
period to be found by the user. A practical, experimen-
tal way to find Kcu and Pu is using relay oscillations,
Åstrøm and Hägglund (1995), cf. Appendix A.

It is well-known that Ziegler and Nichols closed loop
PI tuning in many cases give relatively fast process
disturbance compensation, but unfortunately poor sta-
bility margins, seen as poorly damped oscillatory re-
sponses. This is demonstrated in several examples in
Section 3. Tyreus and Luyben (1992) proposed a now
well-known modification of the Ziegler-Nichols PI set-
tings which typically give improved control system sta-
bility:

Kc = 0.31Kcu (3)

Ti = 2.2Pu (4)

In the present paper, another modification of the
Ziegler-Nichols PI settings is proposed to provide ac-
ceptable stability margins and improved disturbance
compensation compared to the Tyreus and Luyben set-
tings. The proposed tuning rules, here denoted the
Relaxed Ziegler-Nichols (R-ZN) PI settings, are based
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on the open loop tuning rules in the SIMC method
(Simple Internal Model Control) by Skogestad (2004)
applied to an “integrator plus time-delay” process esti-
mated from the ultimate gain and the ultimate period,
Yu (1999).

The outline of this paper is as follows: In Section
2, the R-ZN PI settings are derived. In Section 3, the
original Ziegler-Nichols (ZN) PI settings, the Relaxed
Ziegler-Nichols PI settings, and the Tyreus-Luyben
(TL) PI settings are applied to two simulation cases
and to a practical temperature control system of an
air heater. In Section 4 an adjustable parameter of the
R-ZN method is used to tune processes without time-
delay, but with lags. Section 5 contains a discussion,
and conclusions are given in Section 6.

Appendix A reviews the relay experiment of find-
ing the ultimate gain and the ultimate period from
both sinusoidal and triangular oscillations. Appendix
B presents a modification of the Skogestad PI settings
for improved disturbance compensation, used in the
derivation of the proposed PI controller setting. Ap-
pendix C shows abbreviations and nomenclature.

In this paper, the same symbol (letter) will be used
for variables in time-domain as in the Laplace domain.
This simplifies the notation. It is assumed that the
meaning of the symbol is clear from the context.

MATLAB and SIMULINK (MathWorks, Inc.) are
used for numerical computations and simulations. Lab-
VIEW (National Instruments, Inc.) is used to imple-
ment the temperature control system for the real air
heater.

2. Relaxed Ziegler-Nichols PI
tuning

2.1. Derivation of the tuning formulas

The following PI controller function is assumed:

u (t) = uman +Kce (t) +
Kc

Ti

∫ t

0

e (τ) dτ (5)

Skogestad (2004) has provided PI settings for a num-
ber of different types of process dynamics, among
which are “integrator plus time-delay” and “time-
constant plus time-delay”. Assuming that Skogestad’s
rule-of-thumb about setting the user-specified closed
loop time-constant, Tc, equal to the process time-delay,
τ , his PI settings for these two process types are actu-
ally identical as long as the relation between the time-
constant of the “time-constant plus time-delay” pro-
cess and the time-delay satisfies

T ≥ 8τ (6)

In the following, it is assumed that eq. (6) is satisfied
for the process to be controlled. Thus, an “integrator
plus time-delay” process is assumed, with the following
transfer function:

∆y(s)

∆u(s)
= Hp(s) =

Kip

s
e−τs (7)

The Skogestad PI settings for this process are:

Kc =
1

Kip (Tc + τ)
(8)

Ti = cs (Tc + τ) (9)

The parameter cs is introduced here. The original PI
settings in Skogestad (2004) correspond to cs = 4 in
eq. (9). For “integrator plus time-delay” processes
with an “input” process disturbance, the disturbance
compensation appears as unnecessarily slow with cs =
4. To obtain a faster disturbance compensation while
retaining acceptable stability margins, a value of cs
smaller than 4 can be used. It is found that values
around 2 are proper values. Thus, cs = 2 is proposed.
The implications of various values of cs are investigated
in Appendix B.

The user must select a proper value of Tc in eqs.
(8) and (9). Skogestad provides the following rule-of-
thumb:

Tc = τ (10)

With cs = 2 and the rule-of-thumb eq. (10), eqs. (8)
and (9) become

Kc =
1

2Kipτ
(11)

Ti = 4τ (12)

which may be denoted the modified Skogestad PI set-
tings for “integrator plus time-delay” processes.

The Skogestad PI settings, also with cs = 2, typically
yield acceptable stability of the control system, while
Ziegler and Nichols PI settings often give poor stability,
with oscillatory responses (as demonstrated in several
applications in Section 3). The PI settings, eqs. (11)
and (12), will now be exploited to relax the original ZN
PI settings, eqs. (1)-(2).

For an “integrator plus time-delay” process, Kip and
τ can be estimated from Kcu and Pu as follows, Yu
(1999), DiRuscio (2010):

Kip =
2π

KcuPu
(13)

τ =
Pu
4

(14)

As pointed out in Seborg et al. (2004), process param-
eters Kip and τ can be used in any model-based con-
troller tuning method. Here, the (modified) Skogestad
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PI settings, eqs. (11) and (12), are used. Inserting eqs.
(13) and (14) into eqs. (11) and (12) gives

Kc =
Kcu

π
= 0.32Kcu (15)

Ti = Pu (16)

which will be referred to as the (default) Relaxed
Ziegler-Nichols (R-ZN) PI settings.

Comparing with ZN and TL

Compared with the (original) ZN PI settings, eqs. (1)-
(2), the gain is smaller and the integral time is some-
what larger in the R-ZN PI settings, indicating im-
proved stability.

Compared with the TL PI settings, eqs. (3)-(4), the
R-ZN gain is almost the same, while the R-ZN integral
time is smaller, indicating faster integral action, i.e.
the control error is brought faster to zero, however,
somewhat reduced stability can be expected.

Enhanced relaxation

Above, the closed loop time-constant is set equal to
the (estimated) process time-delay, cf. eq. (10). Par-
ticularly in applications where the process has zero or
negligible time-delay but some lag, the default R-ZN
PI settings may result in poor stability (and the ZN
settings may even give instability). Acceptable stabil-
ity can be obtained with enhanced relaxation of the PI
settings. To this end, we propose

Tc = krτ (17)

where kr ≥ 1 is a relaxation parameter to be set by
the user. The default PI settings, eqs. (6) and (6), are
obtained with kr = 1. Enchanced relaxation of the PI
settings is obtained with kr > 1. Using eq. (17) in eqs.
(8) and (9), and setting cs = 2 in (9), give

Kc =
2

π (kr + 1)
Kcu (18)

and

Ti =
kr + 1

2
Pu (19)

The usefulness of enhanced R-ZN tuning is demon-
strated in Section 4.

One question may arise: Why not just apply origi-
nal ZN settings and adjust Kc and Ti directly? While
this is of course an option, we think that it better to
use a meaningful single parameter, kr, to obtain the PI
settings. The benefit of reducing the number of con-
troller parameters to adjust from two to one is actually
substantial. Skogestad’s tuning method is an excellent

example of this: From the user’s perspective, adjusting
Tc, which has a meaningful interpretation, to obtain
the PI settings is a much simpler task than adjusting
Kc and Ti directly.

2.2. Some derived results

Estimation of control system response-time

The control system response-time, Tr, can be estimated
from the ultimate period, Pu, as explained in the fol-
lowing. The typical setting of kr = 1 is here assumed.
Then the PI settings are eqs. (6) and (6). Assume that
the setpoint is changed as a step. Then the response
in the process output reaches 63% of its final value at
time (approximately)

Tr ≈ τ + Tc =
Pu
4

+
Pu
4

=
Pu
2

(20)

Tr is here the 63% rise-time, or response-time, of the
control system. As an example of eq. (20), see Figure
9 where the response in air heater temperature due to
a setpoint step is plotted. In that example, Pu = 15 s,
giving Tr ≈ Pu/2 = 7.5 s, which is in good accordance
with the plotted response in Figure 9.

Retuning the PI controller

Equations (18) and (19) can be used to retune a PI
controller safely. Note that the factor (kr + 1) appears
in the denominator of eq. (18) and in the numerator
of eq. (19). For example, assume that it is desired to
decrease the present value of Kc by a factor of 2 (to
obtain a smoother control signal). This gain reduction
should be acccompanied by an increase of Ti by a factor
2. (This inversely proportional adjustment also follows
directly from Skogestad’s formulas, eqs. (8) and (9).)

3. Applications

3.1. Overview

In the following subsections, PI settings with the (orig-
inal) Ziegler-Nichols closed loop method, the R-ZN
closed loop method, and the TL method are applied
to the following three cases:

• A simulated control system for an “integrator with
time-delay” process (Section 3.3).

• A simulated control system for a “time-constant
with time-delay” process (Section 3.4).

• A practical temperature control system for a lab-
oratory air heater (Section 3.5). The process
dynamics is roughly “time-constant with time-
delay”.

85



Modeling, Identification and Control

The PI settings will be compared using quantitive
measures of performance and robustness defined in Sec-
tion 3.2.

For easy reference, the various PI settings formulas
are summarized in Table 1. In the examples, Kcu and
Pu are found from the method of relay oscillations de-
scribed in Appendix A.

Table 1: PI settings formulas.

ZN R-ZN TL
Kc 0.45Kcu 0.32Kcu 0.31Kcu

Ti
Pu

1.2 Pu 2.2Pu

3.2. Measures of performance and
robustness

The measures used in this paper for comparing the
various methods of PI controller tuning can be grouped
into performance and robustness measures described in
the detail in the following.

3.2.1. Performance

IAE at setpoint change

In the tests the setpoint is changed as a step. The
setpoint tracking is measured with the IAE (Integral
of Absolute Error) index calculated over a proper time
interval as

IAEs =

∫ tf

ti

|e| dt (21)

where e is the control error, ti is the initial time, se-
lected as the time of the step change, and tf is a proper
final time. A reduced IAEs value indicates improved
setpoint tracking.

IAE at process disturbance change

In the tests a process disturbance is changed as a step.
The disturbance compensation is measured with

IAEd =

∫ tf

ti

|e| dt (22)

A reduced IAEd value indicates improved disturbance
compensation.

Response time

The response time, Tr [s], is here defined as the inverse
of the bandwidth defined as the amplitude crossover
frequency, ωc [rad/s]:

Tr =
1

ωc
(23)

Tr indicates the speed of the response of the control
system due to a setpoint step change. Tr is approxi-
mately the time-constant of the control system. ωc is
equal to the phase crossover frequency, ω180d

, of the
loop brought to marginal stability by a reduction of
the phase of the loop while the amplitude is retained,
as by an increase of the loop time-delay:

Tr =
1

ω180d

=
Pu
2π

(24)

where Pu [s] is the (ultimate) period of the oscillations
at marginal stability.

Setpoint tracking versus disturbance compensation

For systems where the setpoint is constant, which is
the case in many practical process control systems, it
can be claimed that good disturbance compensation is
more important than good setpoint tracking. In the ex-
amples presented in the following sections, disturbance
compensation is emphasized.

3.2.2. Stability robustness (stability margins)

Gain margin, GM

For the cases based on simulations GM is calculated
from the loop transfer function, HL(s), using the mar-
gin function in MATLAB. HL(s) is

HL(s) = Hc(s)Hp(s) (25)

where Hc(s) is the controller transfer function, and
Hp(s) is the process transfer function.

For the practical case (air heater) an adjustable gain,
∆K, is inserted into the loop (between the controller
and the process), see Figure 1. Initially, ∆K = 1. The

Process

w/actuator

and sensor 

and filter

ySP Cont-

roller

d

ymfu
DK (t-Dt)

Adjustable 

gain

Adjustable

time-delay

Disturbance

Process 

measurementSetpoint

Figure 1: An adjustable gain and time-delay are in-
serted into the loop to find the stability
margins (gain margin and phase margin)
experimentally.

(ultimate) value ∆Ku that brings the control system to
the stability limit so that the responses are sustained
oscillations, is found experimentally (by trials). The
gain margin is then

GM = ∆Ku (26)
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Phase margin, PM

For the cases based on simulations PM is calculated
from the loop transfer function using the margin func-
tion in MATLAB.

For the practical case (air heater) an adjustable time-
delay, ∆τ [s], is inserted into the loop (between the
controller and the process), see Figure 1. Initially,
∆τ = 0. For each of the tuning methods, the value ∆τu
that brings the control system to the stability limit, i.e.
causing sustained oscillations, is found experimentally.
The period, Pu [s], of the oscillations is measured. The
corresponding phase margin is

PM [deg] = 360
∆τu
Pu

(27)

Equation (27) is derived in Haugen (2012) (Ap-
pendix 1).

Proper values of GM and PM

Seborg et al. (2004) propose the following ranges for
proper values of the stability margins:

1.7 = 4.6 dB ≤ GM ≤ 4.0 = 12.0 dB (28)

and
30o ≤ PM ≤ 45o (29)

Since poor control system stability must be avoided,
the lower limits of GM and PM can be regarded as
critical, while the upper limits are not.

3.3. Application: Simulated “integrator
plus time-delay” process

3.3.1. Process description

The process to be controlled is an “integrator plus
time-delay” process:

ẏ(t) = Kipu(t− τ) +Kdd(t) (30)

which has transfer function as in eq. (7). The process
parameter values are: Kip = 1 s−1, Kd = 1, τ = 1 s.

3.3.2. PI controller tuning from relay oscillations

Kcu and Pu are found from relay oscillations. Figure 2
shows plots of the sustained oscillations during the re-
lay tuning, cf. Appendix A. From the plots,Atri = 1.0.
The square wave in the control signal has amplitude
Asq = 1.

Equation (47) in Appendix A gives

Kcu =
πAsq
2Atri

=
π · 1
2 · 1

= 1.57 (31)
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Figure 2: Responses during relay tuning

It is interesting that the ultimate gain using a P con-
troller also gives Kcu = 1.57. Hence, the Fourier-series
approximations used to derive eq. (47) give a very pre-
cise result in this case.

Furthermore, from the plots,

Pu = 4.0 s (32)

Various PI settings are calculated from the above
values of Kcu and Pu using the formulas in Table 1.
The PI settings are shown in Table 2.

3.3.3. Performance and stability robustness of the
control system

Figure 3 shows responses in the process output variable
(y) and the controller output (u) with a step change
of the temperature setpoint (ysp) and a step change of
the disturbance (d) for the three different PI settings
shown in Table 2.

GM, PM and Tr are calculated from the model.
IAEs is calculated time-series over the interval t =
[2 s, 40 s]. IAEd is calculated over t = [40 s, 80 s].
Table 2 summarizes the performance and robustness
measures.

Below are a number of observations made in Table 2
(the abbreviations are as in Table 2):

• Setpoint tracking :

IAEs: ZN and TL are the best, and almost equal,
but ZN suffers from large overshoot.
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Figure 3: Responses with various PI settings.

Table 2: Controller settings and performance and ro-
bustness measures for simulated control sys-
tem for ”integrator plus time-delay” process
with different PI settings.

ZN R-ZN TL
Kc 0.71 0.50 0.49
Ti [s] 3.3 4.0 8.8
IAEs 7.9 8.1 8.0
IAEd 2.8 4.5 9.0
GM 1.9 2.7 3.1

GM [dB] 5.4 8.8 9.7
PM [deg] 24.9 34.1 48.6
Tr [s] 1.3 s 1.8 2.0

Tr: ZN is the best, while R-ZN and TL do not
differ much.

• Disturbance compensation:

IAEd: ZN is clearly best. R-ZN is in turn clearly
better than TL as the R-ZN has a value which is
50% of the value of TL.

• Stability robustness (margins):

GM: ZN is poor, and actually below the lower limit
in ineq. (28). R-ZN and TL do not differ much
and have acceptable values.

PM: Again ZN is poor, and below the lower limit
in ineq. (29). R-ZN gives a somewhat small, but
acceptable, value. TL gives large value, possibly

unnecessarily large as it is larger than the higher
limit in ineq. (29).

The low stability margins with ZN are apparent
in the oscillatory responses with the ZN settings,
see Figure 3.

Comments and conclusions

The Ziegler-Nichols PI settings give poor control loop
stability margins. The TL and the R-ZN settings give
acceptable stability margins. With emphasis on dis-
turbance compensation rather than setpoint tracking,
the R-ZN settings are better than the TL settings.

3.4. Application: Simulated
“time-constant plus time-delay”
process

3.4.1. Process description

The process to be controlled is a “time-constant plus
time-delay” process (assuming the time-delay is at the
input-side):

T ẏ(t) = −y(t) +Ku(t− τ) +Kdd(t) (33)

The process parameter values are: K = 8, Kd = 8, τ =
1 s.

The time-constant being 8 times the time-delay
makes the Skogestad PI settings for a “time-constant
plus time-delay” process become identical with the
settings for an “integrator plus time-delay” process.
Therefore, the condition for using Skogestad tuning
for “integrator plus time-delay” processes, ineq. (6),
is satisfied.

3.4.2. PI controller tuning from relay oscillations

The ultimate gain and the ultimate period are found
from relay oscillations. Figure 4 shows plots of the
sustained oscillations during the relay tuning. The re-
sponse in y are approximately triangular, so eq. (47)
is used to calculate Kcu . From Figure 4,Atri = 0.94,
Asq = 1. Equation (47) gives

Kcu =
πAsq

2Atri
=
π · 0.94

2 · 1
= 1.48 (34)

The ultimate gain using a P controller gives Kcu = 1.65
which differs somewhat from 1.48. Still, Kcu = 1.48 is
used to stick to relay tuning, and using 1.48 rather
than 1.65 is safe (conservative) regarding control loop
stability.

Furthermore, from Figure 4,

Pu = 3.78 s (35)
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Figure 4: Responses during relay tuning

Various PI settings are calculated from the above
values of Kcu and Pu using the formulas in Table 1.
The PI settings are shown in Table 2.

3.4.3. Performance and stability robustness of the
control system

Figure 5 shows responses in the process output variable
(y) and the controller output (u) with a step change
of the temperature setpoint (ysp) and a step change of
the disturbance (d) for the three different PI settings
shown in Table 3.

GM, PM and Tr are calculated from the model. IAEs
is calculated over the interval t = [2 s, 40 s]. IAEd is
calculated over t = [40 s, 80 s]. Table 3 summarizes
the performance and robustness measures.

Table 3: Controller settings and performance and ro-
bustness measures for simulated control sys-
tem for ”time-constant plus time-delay” pro-
cess with different PI settings.

ZN R-ZN TL
Kc 0.75 0.53 0.52
Ti [s] 3.2 3.8 8.3
IAEs 6.1 5.8 4.3
IAEd 2.1 3.6 7.9
GM 1.7 2.6 3.0

GM [dB] 4.8 8.1 9.7
PM [deg] 22.3 32.2 60.1
Tr [s] 1.2 1.7 1.9
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Figure 5: Responses with various PI settings.

Below are a number of observations made in Table 2
(the abbreviations are as in Table 2):

• Setpoint tracking :

IAEs: TL is best.

Tr: ZN is best, while R-ZN and TL do not differ
much.

• Disturbance compensation:

IAEd: ZN is clearly best. R-ZN is in turn clearly
better than TL. R-ZN has a value which is 45 %
of the value of TL.

• Stability robustness (margins):

GM: Strictly, all settings give acceptable values,
but ZN is on the lower limit.

PM: ZN is poor, and below the lower limit in ineq.
(29). R-ZN gives a somewhat small, but accept-
able, value. TL gives a large value, possibly unnec-
essarily large as it is larger than the higher limit
in ineq. (29).

Comments and conclusions

The Ziegler-Nichols PI settings give poor control loop
stability as the PM is too small. The rest of the com-
ments are identical with those for the “integrator plus
time-delay” case in Section 3.3: The TL and the R-ZN
settings give acceptable stability margins. With em-
phasis on disturbance compensation rather than set-
point tracking, the R-ZN settings are better than the
TL settings.
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3.5. Application: Practical temperature
control system

3.5.1. Process description

Figure 6 shows an air heater laboratory station. The

Figure 6: Temperature control system for an air heater
(laboratory rig)

temperature of the air outlet is controlled by adjusting
the control signal (voltage) to the heater. The temper-
ature is measured with a Pt100 element. A measure-
ment filter with time-constant 0.5 s is used to attenuate
measurement noise. The National Instruments USB-
6008 is used as analog I/O device. The control system
is implemented in LabVIEW (National Instruments)
running on a PC. The fan rotational speed, and the air
flow, can be adjusted manually with a potentiometer.
Changes of the air flow comprises a process disturbance
giving an impact on the temperature. The measured
voltage drop across the potensiometer is represented
by the variable F in percent. Thus, F represents the
air flow disturbance.1

The nominal operating point of the system is tem-
perature at 35 oC and air flow F = 50 %.

Figure 7 shows the open loop, or process, step re-
sponse in the filtered temperature, ymf , due to a step
in the heater control signal, u. The response indicates
that the process dynamics is roughly “time-constant
with time-delay”, with time-constant ≈ 37 s and time-
delay ≈ 3 s which is about 8% of the time-constant.

1 Additional information about the air heater is available at
Haugen (2013).
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Figure 7: Open loop step response in filtered tempera-
ture, ymf , due to a step in the heater control
signal, u.

3.5.2. PI controller tuning from relay oscillations

Kcu and Pu are found from relay oscillations. Figure
8 shows plots of the sustained oscillations during the
relay tuning. The oscillations in temperature (process
measurement) looks more sinusoidal than triangular.
Therefore, Kcu is calculated using eq. (45).

From Figure 8, Asin = 0.75 oC and Asq = 2.5 V.
Equation (45) gives

Kcu =
4Asq

πAsin
=

4 · 2.5 V

π · 0.75 oC
= 4.24

V
oC

(36)

From Figure 8,

Pu = 15.0 s (37)

Various PI settings are calculated from the above
values of Kcu and Pu using the formulas in Table 1.
The PI settings are shown in Table 4. Both standard R-
ZN and enhanced R-ZN tuning are applied, with kr = 1
and kr = 2, respectively.

3.5.3. Performance and stability robustness of the
control system

Figures 9, 10, 11, and 12 show responses in the air
temperature (ymf ) and the controller output (u) due
to a step change of the temperature setpoint (ysp) and a
step change of the disturbance (d) for the four different
PI settings shown in Table 4.
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Figure 8: Responses during relay tuning

Performance and stability robustness measures are
calculated from the time-series as explained in Sec-
tion 3.2. IAEs is calculated over the interval
t = [100 s, 180 s]. IAEd is calculated over t =
[200 s, 280 s]. Table 4 summarizes the performance
and robustness measures.

Table 4: Controller settings and performance and ro-
bustness measures for practical temperature
control system for different PI settings.

ZN
R-ZN
kr = 1

R-ZN
kr = 2

TL

Kc 1.91 1.35 0.90 1.32
Ti [s] 12.5 15.0 22.5 33.0
IAEs 16.2 12.3 10.6 10.3
IAEd 4.3 4.9 7.5 11.8
GM 1.5 1.8 2.8 2.6

GM [dB] 3.5 5.1 8.9 8.3
∆τu [s] 1.6 2.6 7.7 5.7
Pu [s] 24.0 31.0 50.0 39.0

PM [deg] 24.0 30.2 55.4 52.6
Tr [s] 3.8 4.9 8.0 6.2

Below are a number of observations made in Table 4
(the abbreviations are as in Table 4):

• Setpoint tracking :

IAEs: TL and R-ZN with kr = 1 and with kr = 2
do not differ much and are clearly better than ZN
which is due to the large overshoot and oscillatory
response with ZN.
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Figure 9: Responses with Ziegler-Nichols PI settings

Tr: ZN is clearly best. It gives fast control. R-ZN
with kr = 1 is also relatively fast.

• Disturbance compensation:

IAEd: ZN and R-ZN with kr = 1 are much better
than both R-ZN with kr = 2 and TL. R-ZN with
kr = 1 give only 36% of that of TL. Relaxed ZN
with kr = 2 is also clearly better than TL.

• Stability robustness (margins):

GM: ZN is poor, and actually below the lower limit
in ineq. (28). R-ZN with kr = 1 is small, but just
within the limits.

PM: Again ZN is poor, and below the lower limit
in ineq. (29). R-ZN with kr = 1 is small, but
just within the limits. TL has a large value, pos-
sibly unnecessarily large since it is larger than the
higher limit in ineq. (29). R-ZN with kr = 2 has
a very large value.

The low stability margins with ZN are apparent in
the oscillatory responses with the ZN settings. R-
ZN with kr = 1 seems to give acceptable stability
as seen from time-series. R-ZN with kr = 2 and
TL both give smooth, but slow, responses.

Comments and conclusions

The Ziegler-Nichols PI settings give poor control loop
stability. The TL and the R-ZN settings both with
kr = 1 and kr = 2 give acceptable stability margins,
though R-ZN with kr = 1 gives small margins. R-ZN
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Figure 10: Responses with R-ZN PI settings with kr =
1.

with kr = 1 give clearly the best disturbance compen-
sation, and since the stability margins are within the
acceptable limits, it gives the prefered PI settings in
this application.

If it is important with smooth responses, both TL
and R-ZN with kr = 2 can be used. Among these two,
we prefer the latter because it gives best disturbance
compensation, and because the R-ZN settings are ad-
justable, while the TL settings are fixed.

4. Relaxed tuning for processes
with no time-delay but with lags

Closed loop PI tuning with the standard Ziegler-
Nichols method, the TL method, or even the R-ZN
tuning method with the default setting kr = 1 may
not work well if the process has no, or negligible time-
delay, however, some lag is assumed. The resulting
stability may be very poor. Such cases may occur in
e.g. temperature control, Haugen et al. (2013) and bio-
gas flow control of bioreactors, Haugen and Lie (2013).
However, enhanced R-ZN tuning with a proper kr > 1
seems to work well. An explanation of the resulting
poor stability is that, due to the lack of a time-delay,
the phase characteristic is relatively flat around the
critical frequencies, making the phase margin small.

Now, an extreme case is assumed, and enhanced R-
ZN PI tuning is used. The value of kr that is found
useful in this case may be used in other less extreme
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Figure 11: Responses with R-ZN PI settings with kr =
2.

cases to obtain proper stability. Note that for processes
with a noteable time-delay the R-ZN PI settings with
the default value kr = 1, i.e. eqs. (6)-(6), should be
used.

Assume that the process is an integrator without
any time-delay but with two lags in the form of time-
constant terms where one of the time-constants is one
tenth of the other. Specifically, the following process
transfer function model is assumed:

y(s) =
1

s(T1s+ 1)(T2s+ 1)

[
Kipu(s) +Kdd(s)

]
(38)

where u is control variable and d is disturbance. Time-
constant T1 may represent a process lag due to e.g.
dynamics of a heating element or a valve or a pump or
represent inhomogeneous conditions in a tank, while
T2 may represent the time-constant of a measurement
filter. The integrator, 1/s, may represent e.g. energy
or material balance. The following parameter values
are assumed: Kip = 1 s−1 Kd = 1, T1 = 1 s, and
T2 = 0.1 s. In less extreme cases the difference between
the two time-constants are less, and there may also be
a non-zero time-delay.

The relay method is used, giving Kcu = 10.24 and
Pu = 2.02 s. The three PI tuning methods mentioned
in the beginning of the present section are tested. Fig-
ure 13 shows their responses. With TL tuning and
R-ZN tuning with kr = 1 the control system is stable,
but the stability is poor. With Ziegler-Nichols tuning,
the system is unstable!
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Figure 12: Responses with TL PI settings
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Figure 13: Responses with various PI settings.

By trial-and-error it is found that R-ZN tuning with
kr = 4 works well. Hence, with kr = 4 in (18) and (19)
the PI settings become

Kc = 0.13Kcu (39)

and
Ti = 2.5Pu (40)

Figure 14 shows simulated responses. Table 5 shows
PI settings and stability margins.

Comments and conclusion:

• GM is large, but is accepted here.

• PM is small and just outside the acceptable range
where 30.0o is the critical limit, cf. ineq. (29).

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

y
sp

: Red. y: ZN: Blue

0 10 20 30 40 50 60 70 80
−1

0

1

2
u

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5
d

t [s]

Figure 14: Responses with PI controller tuned with the
R-ZN method with kr = 4.

Table 5: Controller settings and performance and ro-
bustness measures for simulated PI control
system for an ”integrator with two lags” pro-
cess with R-ZN tuning with kr = 4.

Kc 1.3
Ti [s] 5.2
GM 6.7

GM [dB] 16.5
PM [deg] 29.4

However, the value of 29.4o is here regarded as
acceptable since it is for an assumed extreme case.
With kr = 5 PM = 34.3o which is within the range
given by ineq. (29), but simulations indicate that
the control system becomes unnecessarily sluggish
with kr = 5 applied for less extreme cases.

• How can one know that a process has one or more
lags and no or negligible time-delay, so that the
enhanced relaxed tuning should be applied? Phys-
ical insight may be useful: If the sensor or actuator
is located close to the main process (which can be
e.g. a reactor vessel), the time-delay may be neg-
ligible compared to time-constant lags. A process
step response test is also an option, but then an
open loop controller tuning method, as the Skoges-
tad method (2003, 2004), may be applied directly.
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5. Discussion

The proposed new set of PI settings are based on tun-
ing rules derived by Ziegler and Nichols (1942), tuning
rules derived by Skogestad (2004), and the modeling
of the process as an “integrator plus time-delay” ac-
cording to Yu (1999). The validity and applicability
of the proposed PI settings rely on assumptions made
by these authors. The sensitivity of the present results
with respect to such assumptions has not been inves-
tigated here. However, two simulation tests and one
practical test indicate that the proposed tuning works
as assumed.

In the simulations it is assumed that the process
disturbance is an input disturbance as it acts on the
process at the same place, dynamically, as the control
signal does. In most practical processes the main dis-
turbances are actually input disturbances. We have not
investigated the consequences for our results of moving
the disturbance to the process output.

It is found that for processes with no, or a negligible
time-delay, but with some lags in the form of time-
constants, R-ZN tuning with kr = 1 may give poor
stability (This applies to ordinary ZN and TL tuning,
too). However, proper stability may be obtained with
enhanced relaxation of the tuning, and kr = 4 seems to
be a proper value at least for processes without time-
delay but with two lags with one being one tenth of the
other. The conditions that make the selection kr = 4
unsuccessful have not been investigated, but for pro-
cesses where the time-constants are closer, the PI set-
tings with kr = 4 will certainly be safe (conservative).

6. Conclusions

The main result of this paper is a proposed new set of
PI settings which uses the same information as in the
Ziegler-Nichols closed loop method, namely knowledge
about the ultimate gain, Kcu , and the ultimate period,
Pu: The proposed settings are:

Kc = 0.32Kcu

Ti = Pu

These settings are modifications, or relaxations, of the
original Ziegler-Nichols PI settings, and they give im-
proved control system stability. In this paper, the pro-
posed setting have been successfully applied to two sim-
ulated control systems and to a practical temperature
control system of an air heater.

Comparing with the TL PI settings, which also are
based on knowledge of the ultimate gain and the ul-
timate period, the proposed PI settings give clearly
better disturbance compensation.

The proposed PI settings have an adjustable param-
eter which can be used to obtain enhanced relaxation
which is useful for processes with zero or negligible
time-delay but some lags (time-constants).
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A. Finding the ultimate gain and
period from relay oscillations

In the original Ziegler-Nichols closed loop method the
user must find, typically by trial-and-error, the ulti-
mate controller gain value, Kcu , of a P controller which
makes the responses in the control system become sus-
tained oscillations. The user must also read off the
ultimate period, Pu, of the oscillations. Kcu and Pu
are then used to calculate the PI settings with the fol-
lowing formulas:

Kc = 0.45Kcu (41)

Ti =
Pu
1.2

(42)

Åstrøm and Hägglund (1995) introduced a relay,
or on-off, controller to replace the P controller in
the tuning phase, thereby avoiding the possibly time-
consuming trial-and-error procedure as the oscillations
come automatically. During the relay tuning the con-
trol signal is a square wave.
Kcu can be estimated from the relay oscillations as

follows. Assume that the amplitude of the square wave
is

Asq =
uon − uoff

2
(43)

where uon and uoff are the values of the controller out-
put when the relay is in the on- and off-state, respec-
tively. The square wave is approximated by its funda-
mental sinusoidal component of its Fourier series. The
fundamental sinusoid is known to have amplitude

Asq,F =
4Asq

π
(44)

Sinusoidal oscillations

With relay-based oscillations, for many practical pro-
cesses the filtered process measurement is approxi-
mately sinusoidal. Assume that the measurement has
amplitude Asin. The control error, which is the input
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to the relay, then also has amplitude Asin. The equiv-
alent gain of the relay function, which is used as the
ultimate gain in eq. (41), is

Kcu =
Asq,F

Asin
=

4Asq

πAsin
= 1.27

Asq

Asin
(45)

The ultimate period, Pu, needed in eq. (42) is the
period of the oscillations.

Triangular oscillations

If the process dynamics is pure “integrator plus time-
delay” the relay-based oscillations in the process mea-
surement are not sinusoidal, but triangular. Let Atri

be the amplitude of these triangular oscillations. The
fundamental sinusoidal component of the triangular os-
cillation is known to have amplitude

Atri,F =
8Atri

π2
(46)

The equivalent gain of the relay function, which is used
as the ultimate gain in eq. (41), is

Kcu =
Asq,F

Atri,F
=
πAsq

2Atri
= 1.57

Asq

Atri
(47)

The ultimate period, Pu, in eq. (42) is the period of
the oscillations.

If the process dynamics is “time-constant plus time-
delay” with the time-constant being much larger than
the time-delay, and without other process dynamics
(lags), the relay-based oscillations appear more trian-
gular than sinusoidal. In these cases, eq. (47) can be
used.

B. Impact of the proposed
parameter cs in the modified
Skogestad PI settings

Simulations are used to investigate the implications of
using various values of parameter cs in eq. (9).

The process to be controlled is an “integrator with
time-delay” process given by eqs. (30) with Kip = 1
s−1, Kd = 1 and τ = 1 s. The PI controller is tuned
with the (modified) Skogestad tuning formulas, eqs.
(8) and (9).

Figure 15 shows simulations for the following values
of cs:

• cs = 1.5 which is the the value corresponding to
the IMC settings for an “integrator with time-
delay” process by Chien and Fruehauf (1990).

• cs = 2 which is the value used in the present paper.
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Figure 15: Simulations of control systems for an “in-
tegrator with time-delay” process with Sko-
gestad controller tuning with cs = 1.5, cs =
2, and cs = 4.

• cs = 4 which is Skogestad’s original value.

Table 6 shows a number of characteristics of the sim-
ulated control system for the three values of cs. GM,
PM and Tr are calculated from the model, cf. Sec-
tion 3.2. IAEs is calculated time-series as explained in
Section 3.2 over the interval t = [2 s, 40 s]. IAEd is
calculated over t = [40 s, 80 s].

Table 6: Results with c = 1.5, c = 2, and c = 4 in the
(modified) Skogestad PI tuning formulas for
an “integrator with time-delay” process.

cs = 1.5 cs = 2 cs = 4
Kc 0.5 0.5 0.5
Ti[s] 3 4 8
IAEs 9.6 8.1 7.8
IAEd 4.5 4.5 8.0
GM 2.6 2.7 3.0

PM [deg] 26.9 34.1 46.9
Tr [s] 1.7 1.8 1.9

Comments and conclusions

In Table 6, PM = 26.9 for cs = 1.5 which is regarded
as a poor value since it is lower than the lower limit in
ineq. (29).

95



Modeling, Identification and Control

With cs = 2 and cs = 4 the stability margins are
acceptable.

IAEd with cs = 2 is 56% of IAEd with cs = 4, in-
dicating a considerable improved disturbance compen-
sation with cs = 2. This is also clearly seen in the
simulations.

We prefer cs = 2 over cs = 4 in the Skogestad PI
settings formulas for “integrator plus time-delay” pro-
cesses since the disturbance compensation is improved.

C. Abbreviations and nomenclature

C.1. Abbreviations

GM: Gain margin.

IAE: Integral of absolute error.

PI: Proportional plus integral (control).

PM: Phase margin.

R-ZN: Relaxed Ziegler-Nichols.

ZN: Ziegler-Nichols (original method).

TL: Tyreus-Luyben.

SIMC: Simple Internal Model Control.

C.2. Nomenclature

Asin: Amplitude of sinusoidal wave in control error or
in process (output) measurement.

Asq: Amplitude of square wave in control signal.

Atri: Amplitude of triangular wave in control error or
in process (output) measurement.

Au: Amplitude of the on-off control signal.

cs: Parameter introduced in the integral time settings
in the Skogestad method.

d is process disturbance.

∆: Deviation from operating point.

e: Control error. e = ysp − y.

kr: The relaxation parameter in the Relaxed Ziegler-
Nichols method.

K is process gain.

Kc [s]: Controller proportional gain.

Kd is disturbance gain.

Kip [s]: Process integrator gain.

Pu [s]: Period of sustained oscillations.

T [s]: Process time-constant.

Tc [s]: Closed loop time-constant.

Ti [s]: Controller integral time.

Tr [s]: Response-time, or 63% rise time of step re-
sponse.

τ [s]: Process time-delay.

u: Control signal (controller output).

uman: Manual control signal (control bias).

y: Process output measurement.

ysp: Setpoint
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