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Abstract

We address the problem of state feedback translational motion control of a spacecraft formation through
a modified sliding surface controller using variable gains and I2 action for disturbance rejection. The
exponential varying gains ensure faster convergence of the state trajectories during attitude maneuver
while keeping the gains small (and the system less stiff) for station keeping. Integral action is introduced
for rejection of disturbances with a constant nonzero mean such as aerodynamic drag. A direct consequence
is a drop in energy consumption when affected by sensor noise and a decrease in size of the error states
residual when operating close to the equilibrium point. A large number of simulation results are presented
to show the control performance.
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1 Introduction

In recent years, formation flying has become an in-
creasingly popular subject of study introduced as a
new method of performing space operations. By re-
placing large and complex spacecraft with an array of
simpler micro-satellites brings out new possibilities and
opportunities of cost, redundancy and improved reso-
lution aspects of onboard payload. Spacecraft forma-
tion flying can be defined as a set of spacecraft moving
together with control laws inherently coupled trough
dynamic states. This coupling can be in translational
and/or rotational degrees of freedom and in position
and/or velocity Scharf et al. (2004). The main chal-
lenge for these types of space missions is the increased
requirement of synchronization between leader and fol-
lower spacecraft, and robust and reliable control of rel-
ative positions is necessary to make the spacecraft co-
operate to gain the possible advantages made feasible
by spacecraft formations. At this end, behaviors like
reconfiguration, formation keeping and collision avoid-
ance are essential for a spacecraft formation to fulfill
its desired mission.

Because of the great interest in spacecraft formation
flying, modeling and control has received a lot of at-
tention –cf. Kristiansen (2008) and references therein.
Basically there are two different approaches for mod-
eling spacecraft formations: Cartesian coordinates and
orbital elements. The orbital element method is often
used to design formations concerning low fuel expendi-
ture because of the relationship towards natural orbits,
while Cartesian models often are used where an orbit
with fixed dimensions are studied. The simplest model
of relative motion between two spacecraft is linear and
known as the Hill Hill (1878) or Clohessy-Wiltshire
equations Clohessy and Wiltshire (1960). These lin-
ear models are based on assumptions of circular or-
bits, no orbital perturbations and small relative dis-
tance between spacecraft compared with the distance
from the formation to the center of the Earth. Nonlin-
ear models as presented in e.g. McInnes (1995); Wang
and Hadaegh (1996) and later in (Schaub and Junkins,
2003, Ch. 14), Yan et al. (2000b); Ploen et al. (2004)
and Kristiansen (2008) were derived for arbitrary or-
bital eccentricity and with added terms for orbital per-
turbations, which are utilized in this paper.
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Numerous different approaches have been proposed
for the leader-follower control problem –cf. Scharf
et al. (2004) including linear feedback control Yan
et al. (2000a) linear quadratic optimal control Kapila
et al. (1999) and model predictive control Manikonda
et al. (1999) to name a few. Many tracking con-
trollers are based on the sliding surface Slotine and
Li (1987) and the PD+ Paden and Panja (1988) con-
trollers which are celebrated controllers for robot ma-
nipulators –cf. Kelly et al. (2005) on tracking control
of robot manipulators. In Kristiansen and Nicklasson
(2009) a thorough review is presented on these types
of tracking controllers adapted for spacecraft forma-
tion. Variable gains have been utilized on different ap-
plications such as the inverted 3D pendulum problem
Chaturvedi et al. (2009) and spacecraft attitude con-
trol Schlanbusch et al. (2010) where in the latter it was
shown that by using exponential gains the trajectories
of the closed-loop system converged faster than using
static gains, while keeping the gains small for station
keeping, reducing the sensibility to measurement noise.

In this paper the results of Schlanbusch et al. (2010)
are extended in two different directions and adapted for
translational control of spacecraft formations. First,
the weighting of the exponential gains are considered
for the error of each axis as a state dependent diagonal
matrix instead of the state dependent scalar; second,
I2 action is introduced (cf. Ortega et al. (1995) for
output feedback PI2D regulator for robot manipula-
tors) to reduce the residual of the physical state vector
caused by unknown disturbances. Numerous simula-
tion results are presented comparing performance be-
tween the derived controller, a regular sliding surface
controller and the strategy presented in Schlanbusch
et al. (2010).

The rest of the paper is organized as follows: prelim-
inaries are presented in Section 2, controller design in
Section 3, simulation results in Section 4 and wrapping
up with conclusions in Section 5.

2 Modelling

In the following, the time derivative of a vector x is de-
noted by ẋ, i.e. ẋ = dx/dt, and moreover, ẍ = d2x/dt2.
The Euclidian norm of a vector and the induced L2

norm of a matrix is denoted by ‖·‖, and R+ as the set
of all positive numbers. The cross-product operator
is denoted S(·), such that S(x)y = x × y. Reference
frames are denoted by F (·), and in particular, the stan-
dard Earth-Centered Inertial (ECI) frame is denoted
F i. The angular velocity of Fa relative to Fb, refer-
enced in Fc is denoted by ωcb,a. Matrices representing

rotation or coordinate transformation from Fa to Fb
are denoted Rb

a. When the context is sufficiently ex-
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Figure 1: Reference coordinate frames.

plicit, arguments of a function, vector or matrix may
be omitted.

2.1 Cartesian coordinate frames

The coordinate reference frames used throughout the
paper are shown in Figure 1, and defined as follows:
Leader orbit reference frame: The leader orbit
frame, denoted F l, has its origin located in the cen-
ter of mass of the leader spacecraft. The er axis in the
frame coincide with the vector rl ∈ R3 from the center
of the Earth to the spacecraft, and the eh axis is par-
allel to the orbital angular momentum vector, pointing
in the orbit normal direction. The eθ axis completes
the right-handed orthonormal frame. More rigorously,
the basis vectors of the frame are defined as

er :=
rl
rl
, eθ := S(eh)er and eh :=

h

h
, (1)

where h = S(rl)ṙl is the angular momentum vector of
the orbit, h = ‖h‖ and rl = ‖rl‖.
Follower orbit reference frame: This frame has its
origin in the center of mass of the follower spacecraft,
and is denoted Ff . The vector pointing from the cen-
ter of the Earth to the frame origin is denoted rf ∈ R3.
The frame is specified by a relative orbit position vec-
tor p = [x, y, z]

>
expressed in F l components, and

its unit vectors align with the basis vectors of F l. Ac-
cordingly,

p=Rl
i(rf−rl)=xer+yeθ+zeh ⇒ rf =Ri

lp+rl. (2)

2.2 Formation dynamics

The relative orientation of reference frames may be rep-
resented by a rotation matrix R ∈ SO(3) = {R ∈
R3×3 : R>R = I, det(R) = 1} which is the special
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orthogonal group of order three, and its time deriva-
tive can according to (Egeland and Gravdahl, 2002, p.
240) be written as

Ṙa
b = S(ωaa,b)R

a
b = Ra

bS(ωba,b). (3)

The fundamental differential equation of the two-body
problem can be expressed as (Battin, 1999, Ch. 3)

r̈s =− µ

r3s
rs +

fds
ms

+
fas
ms

, (4)

where fds ∈ R3 is the perturbation term due to exter-
nal effects, fas ∈ R3 is the actuator force and ms is the
mass of the spacecraft. Subscript s denotes the space-
craft in question, so s = l, f for the leader and follower
spacecraft respectively. The spacecraft masses are as-
sumed to be small relative to the mass of the Earth
Me, so µ ≈ GMe, where G is the gravitational con-
stant. According to (2) the relative position between
the leader and follower spacecraft may be expressed as

Ri
lp = rf − rl, (5)

and by differentiating twice

Ri
lp̈ + 2Ri

lS(ωli,l)ṗ (6)

+ Ri
l

(
S2(ωli,l) + S(ω̇li,l)

)
p = r̈f − r̈l.

By inserting (4), the right hand side of (6) may be
written as

r̈f− r̈l = − µ

r3f
rf+

fdf
mf

+
faf
mf

+
µ

r3l
rl −

fdl
ml
− fal
ml

, (7)

and by inserting (2) into (7), it is found that

mf (r̈f − r̈l) =−mfµ

[(
1

r3f
− 1

r3l

)
rl +

Ri
lp

r3f

]
+ faf + fdf −

mf

ml
(fal + fdl). (8)

Moreover, by inserting (8) into (6), and rearranging
the terms

mf p̈ + Ct(ω
l
i,l)ṗ+Dt(ω̇

l
i,l,ω

l
i,l, rf )p (9)

+nt(rl, rf ) = Fa + Fd,

where

Ct(ω
l
i,l) = 2mfS(ωli,l) (10)

is a skew-symmetric matrix,

Dt(ω̇
l
i,l,ω

l
i,l, rf )=mf

[
S2(ωli,l)+S(ω̇li,l)+

µ

r3f
I

]
, (11)

may be viewed as a time-varying potential force, and

nt(rl, rf ) = µmfR
l
i

[
1

r3f
− 1

r3l

]
rl (12)

is a nonlinear term. The composite perturbation force
Fd and the composite relative control force Fa are
given respectively by

Fd=Rl
i

(
fdf−

mf

ml
fdl

)
, Fa=Rl

i

(
faf−

mf

ml
fal

)
. (13)

Note that all forces f are given in inertial frame. If
the forces are computed in another frame, the rotation
matrix should be replaced accordingly. The orbit an-
gular velocity and angular acceleration can be written
as ωii,l = S(rl)vl/r

>
l rl, and

ω̇ii,l =
r>l rlS(rl)al − 2v>l rlS(r>l )vl

(r>l rl)
2

(14)

respectively. Then ωli,l = Rl
iω

i
i,l and ω̇li,l =

S(ωll,i)R
l
iω

i
i,l + Rl

iω̇
i
i,l = −S(ωli,l)R

l
iω

i
i,l + Rl

iω̇
i
i,l.

3 Control Problem

For control of the relative translation, a sliding surface
controller with I2 action and variable gains, inspired
by the one derived for trajectory tracking of robot ma-
nipulators Slotine and Li (1987), is incorporated. The
following assumptions are posed

Assumption 1 It is assumed that the leader space-
craft is perfectly controlled in its orbit, so that fal =
−fdl, hence Fa = faf and Fd = fdf .

Assumption 2 All references functions are contin-
uous and bounded such that ‖p̈d(t)‖ < βp̈ ∈ R+,
‖ṗ(t)‖ < βṗ ∈ R+ and ‖pd(t)‖ < βp ∈ R+ for all
t ≥ t0, and furthermore, the orbital angular velocity of
the leader spacecraft is continuous and bounded such
that ‖ωli,l‖ < βl ∈ R+ for all t ≥ t0.

Assumption 3 The perturbation vector can be writ-
ten as

fdf = a + b(t) (15)

where a is considered as a constant mean while b(t) is
considered as a higher frequency component, and the
latter is assumed upper bounded such that ‖b(t)‖ ≤ βd
and ‖ḃ(t)‖ ≤ βḋ for all t ≥ t0.

The assumption given in (15) is reasonable for typi-
cal disturbances working on spacecraft such as aero-
dynamic drag, J2 effect caused by uneven mass dis-
tribution of the Earth, Solar radiation and third-body
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perturbing forces which all can be seen as state depen-
dent, slow varying and even in some cases constant.

The control goal is to design a tracking control law
for the system (9) which is able to track a time vary-
ing reference represented by p̈d(t), ṗd(t) and pd(t)
fulfilling ėp(t) = ev(t), where the error functions are
defined as ep := p − pd = [epx, epy, epz]

> and
ev := ṗ− ṗd = [evx, evy, evz]

>. To this end:

Proposition 1 Under Assumptions 1–3, the solution
trajectories of the system (9) in closed-loop with the
control law

faf =mf p̈r + Ct(ω
l
i,l)ṗr + D(ω̇li,l,ω

l
i,l, rf )p (16)

+ nt(rl, rf )−Kpep − kiζ − kaξ −Kds

ζ̇ =ep, (17)

ξ̇ =kaev, (18)

s =[sx, sy, sz]
> = ṗ− ṗr = ev + γep, (19)

ṗr =ṗd − γep, (20)

p̈r =p̈d − γev, (21)

where Kp = kpdiag{ek1e
2
px , ek1e

2
py , ek1e

2
pz} and

Kd = kddiag{ek2s2x , ek2s
2
y , ek2s

2
z}, tuning parame-

ters kp, ki, ka, kd ∈ R+, and γ = ki/k
2
a, is con-

verging uniformly towards the set {(ep, ev, ζ, ξ) ∈
R12 : ‖[ep, ev]‖ ≤ δ}, where δ is to be defined, for
all initial values as t→∞.

Proof:

By inserting the control law (16)-(21) into the dy-
namics (9) and performing the coordinate transforma-
tion

z = ξ − 1

ka
a +

ki
ka
ζ, (22)

the following closed-loop dynamics are obtained

mf ṡ = −(CtKd)s−Kpep − kaz + b(t). (23)

Defining x = [e>p , s>, z>]>, the following Lyapunov
Function Candidate (LFC) is proposed

V (x) =
1

2

(kp
k1

[
ek1e

2
px + ek1e

2
py + ek1e

2
pz − 3

]
+ s>mfs + z>z

)
, (24)

which is positive definite and proper, which is shown
next by finding functions α(x), α(x) ∈ K∞ such that
α(x) ≤ V (x) ≤ α(x). Imposing standard Euclidian
norms, the following may be written

V (x) ≤1

2

[
3
kp
k1

(
ek1‖x‖

2

− 1
)

+ (1 +mf )‖x‖2
]
. (25)

As typically an exponential function outgrows a
squared function thus a constant c is needed such that
ec‖x‖

2 − 1 ≥ ‖x‖2, which is satisfied for

c ≥ sup
x∈R9

ln(‖x‖2 + 1)

‖x‖2
= 1 .

Hence from (25)

V (x) ≤ α(x) := c1

(
ec2‖x‖

2

− 1
)
, (26)

where c1 := 2 max {kp/k1, 1 +mf} and c2 :=
max{k1, 1}.

Next, a quadratic lower bound on V is found. Re-
calling that

ex =

∞∑
n=0

xn

n!
≥ 1 + x, (27)

obtaining(
ek1e

2
px +ek1e

2
py +ek1e

2
pz−3

)
≥k1(e2px+e2py+e2pz). (28)

Accordingly from (25)

α(x) := c3‖x‖2, (29)

where c3 = 1/2 min{kp,mf , 1}. Next, the total time
derivative of V along the closed-loop trajectories is
evaluated, i.e.

V̇ (t,x)=−s>(Ct+Kd) s−s>Kpep−e>v Kpep (30)

− s>kaz + s>b(t) + z>
(
kaev +

ki
ka

ep

)
.

By inserting (19) and defining γ := ki/k
2
a, obtaining

V̇ (t,x) ≤− s>kds− e>p γkpep + s>b(t), (31)

≤− χ>pχ+ βd‖χ‖,

where χ = [e>p , s>]> and P = diag{γkpI, kdI}. By
defining δ := βd/pm where pm is the smallest eigen-
value of P it is ensured that V̇ (x) ≤ 0 for all ‖χ‖ ≥ δ,
and thus uniform practical stability of the equilibrium
point is obtained, i.e. V (t2) ≤ V (t1), ∀ t2 > t1 > t0
when ‖χ‖ ≥ δ, and thus it follows that the state x is
bounded. To prove convergence Barbalat’s lemma is
applied. Note that Barbalat’s lemma is imposed in a
conservative manner, i.e., to ensure that the physical
states converge to the set {x ∈ R9 : ‖χ‖ ≤ δ} which
contains the origin. By differentiation of (31)

V̈ (t,x)=2s> (Ct + Kd) s + 2s>Kpep + 2s>kaz (32)

−2s>b(t)− 2e>p kpev − s>(C>t + Kd)b(t)

−epKpb(t)−z>kab(t)+b(t)>b(t)+s>ḃ(t),
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where all members are either shown to be bounded or
bounded by hypothesis, thus V̈ (t,x) is bounded, which
proves that V̇ (t,x) is uniformly continuous. Moreover,
since V (x) is lower bounded and V̇ (t,x) is negative
semi-definite for ‖χ‖ ≥ δ, Barbalat’s lemma is imposed
to obtain that ‖χ‖→ δ as t→∞. �

Remark 1 The assumption of perfectly control leader
and its bounded orbital angular velocity can be relaxed
by following the lines of (Grøtli, 2010, Ch. 4.2). In
the latter paper, a control law for the leader is utilized,
leading to a stability proof based on cascaded system
including a bound on the leader references similar to
Assumption 2 for the follower spacecraft.

Remark 2 By inserting s = ev + γep and γ = ki/k
2
a

into the control law, it can be seen that the proportional
term is on the form −(Kdki/k

2
a + Kp)ep which means

that the proportional gain will increase by increasing
the gain for the integration of the position error, while
decrease with fast integration of the velocity error.

Remark 3 In the control law and simulations it will
be assumed that all constants are unknown, but as
many of the disturbances for spacecraft can be reason-
ably well modeled as f̂ bdf , this could be added to the

overall analysis such that f̃ bdf = f bdf − f̂ bdf = ã + b̃(t).
This strategy could reduce the upper bound such that
‖b̃(t)‖ < βd̃ < βd, based on the quality of the distur-
bance modeling.

4 Simulation Results

In this section simulation results are presented for two
different scenarios showing the features of the control
law (16). The first simulation results show that the
integral action manages to reduce the residual of the
practical result, i.e. by comparing (16) with the same
controller except with ka = ki = 0. In the second run of
simulations the control law (16)-(21) is compared with
an ordinary sliding surface controller as in (Kristiansen,
2008, p. 60) given by

f ′af =mf p̈r+Ct(ω
l
i,l)ṗr+D(ω̇li,l,ω

l
i,l, rf )p+nt(rl, rf )

− kpep − kds (33)

Moreover, a comparison with a sliding surface version
based on the concept of Schlanbusch et al. (2010) given
by

f ′′af =mf p̈r+Ct(ω
l
i,l)ṗr+D(ω̇li,l,ω

l
i,l, rf )p+nt(rl, rf )

− kpek1‖ep‖2ep − kdek2‖s‖
2

s, (34)

is also performed, where the gains are scalar and vary
according to the total length of the error vectors in-
stead of the length along each axis separately. Through

these comparisons, it is shown that using variable gain
matrices reduces the energy consumption without in-
creasing the settling time.

Simulations were performed in Simulink using a fixed
step Runge-Kutta ODE3 solver with step size of 0.01 s.
The spacecraft orbit was chosen as elliptic with apogee
at 750 km and perigee at 600 km altitude, inclination
of 71◦ and the right ascension of the ascending node
and argument of perigee at 0◦. Measurement noise is
introduced as σBn = {x ∈ Rn : ‖x‖ ≤ σ} and add
a suitable amount to the error functions according to
ẽp = ep+1×10−3B3 and ẽv = ev+5×10−4B3. Atmo-
spheric drag and uneven mass distribution of the Earth
(J2) were added according to (Kristiansen, 2008, Ch.
3.5) where all perturbations typically are continuous
and slowly varying, while atmospheric drag often can
be considered close to constant for near circular orbits.

To evaluate and compare the performance of the con-
trollers the following performance functionals are uti-
lized

Jp =

∫ tf

t0

e>p epdt, Jv =

∫ tf

t0

e>v evdt

Ju =

∫ tf

t0

f>af fafdt, (35)

where t0 and tf define the start and end of the sim-
ulation window, respectively. The functional Jp and
Jv describe the integral functional error of the position
and velocity error, while Ju describes the integral of
the applied control force.

For our first scenario the initial conditions were cho-
sen as p(t0) = [20, − 80, 0]> m and ṗ(t0) = 0,
pd = [10, 20, − 30]> m and ṗd = p̈d = 0, with
controller parameters kp = 0.1, kd = 7, k1 = 10−4,
k2 = 0.01, ki = 10−4 and ka =

√
10 × 10−1. Simu-

lation results for a translational maneuver are shown
in Figure 2 and performance functionals presented in
Table 1, which both show that by introducing integral
action, the system response is slower during maneu-
ver. On the other hand, by looking at Figure 3 it can
be seen that the relative distance error decreases by
applying I2 action, even if the disturbances are time
varying.

The results from the second simulation scenario are
presented in Table 2 from 10, 000 simulations for trans-
lational maneuvers without disturbances and noise us-
ing controller gains kp = 0.1, kd = 10 and γ = 0.001
for (33), and in addition k1 = 10−4 and k2 = 10−2 for
(16) and (34). Note that ka = ki = 0 to study the ef-
fect of gain matrices compared to variable scalar gains
and static gains. Random initial values for the initial
relative position and velocity errors were utilized, with
standard deviation of 50 and five, respectively. This
was done to show that using exponential gains where
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Table 1: Values of performance functionals for translational maneuver and station keeping

Jp Jv Ju
Ctrl. (16), t ∈ [0, 500] 3.43× 105 133 5803
Ctrl. (16), ka = ki = 0, t ∈ [0, 500] 2.40× 105 159 5551
Ctrl. (16), t ∈ [3000, 10000] 7.765 1.1× 10−4 1.59
Ctrl. (16), ka = ki = 0, t ∈ [3000, 10000] 46.4 4.9× 10−4 1.60
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Figure 2: Relative position, relative velocity and con-
trol force for translational maneuver by slid-
ing surface control with exponential gains
with (plots 1, 3 and 5) and without (plots
2, 4, 6) I2 action.
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Figure 3: Relative distance error by sliding surface con-
trol with exponential gains with and without
I2 action during station keeping.

Table 2: Average value of performance functionals for
rigid-body over 10, 000 simulations

Jp Jv Ju
Ctrl. (16) 1.29× 106 1.13× 103 3.76× 104

Ctrl. (33) 2.01× 106 884 2.67× 104

Ctrl. (34) 1.25× 106 1.37× 103 5.48× 104

each axis is weighted differently based on its own error,
makes the system work faster than when using static
gains, while consuming less energy compared to a con-
trol law utilizing exponential gains based on the total
length (scalar) of the error vector.

As shown in Schlanbusch et al. (2010) it can be seen
that by using variable gains, the gains are large when
the solution trajectory is far away from the equilibrium
point and goes towards kp and kd when the errors con-
verge towards zero. Thus in general, smaller kp and kd
is utilized in (16) compared to (33) for similar perfor-
mance during transition. This means that the system
will be less stiff when working close to the equilibrium
and thus less affected by sensor noise. For a spacecraft
it follows that less energy is consumed during station
keeping which often is a large part of the operation
time. As for practical purposes it seems reasonable to
introduce a supervisor which will modify the gains dur-
ing the different stages of spacecraft operation by e.g.
using (16) for station keeping while setting ki = ka = 0
during maneuvers.
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5 Conclusions

In this paper, an improvement of the the existing slid-
ing surface control law is presented by introducing vari-
able proportional and derivative gains for control of a
leader-follower spacecraft formation, and included in-
tegral action to reduce the residual of the error norm
caused by unknown disturbances. It was shown that
the solution trajectories of the closed-loop system con-
verged uniformly to a set which could be arbitrarily
diminished by increasing the controller gains for all
initial values under the effect of disturbances. Simu-
lation results showed that the integral action was ca-
pable of diminishing the residual caused by typical dis-
turbances encountered by spacecraft, and also that the
proposed controller in general works faster than the
ordinary sliding surface controller with an increase in
power consumption or can work equally fast but be less
sensitive to sensor noise during station keeping.
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Kelly, R., Santibáñez, V., and Loria, A. Control of
robot manipulators in joint space. Advanced text-
books in control engineering. Springer Verlag. ISBN:
1-85233-994-2., 2005.

Kristiansen, R. Dynamic Synchronization of Space-
craft - Modeling and Coordinated Control of Leader-
Follower Spacecraft Formations. Ph.D. thesis, Dept.
Engineering Cybernetics, Norwegian University of
Science & Technology, 2008.

Kristiansen, R. and Nicklasson, P. J. Spacecraft for-
mation flying: A review and new results on state
feedback control. Acta Astronautica, 2009. 65(11-
12):1537–1552. doi:10.1016/j.actaastro.2009.04.014.

Manikonda, V., Arambel, P. O., Gopinathan, M.,
Mehra, R. K., and Hadaegh, F. Y. A model pre-
dictive control-based approach for spacecraft forma-
tion keeping and attitude control. In Proc. Amer-
ican Control Conf. San Diego, CA, USA, 1999.
doi:10.1109/ACC.1999.786367.

McInnes, C. R. Autonomous ring formation for a
planar constellation of satellites. AIAA Journal of
Guidance, Control and Dynamics, 1995. 18(5):1215–
1217.
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