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Abstract

This paper presents adaptable methods for achieving fast collision detection using the GPU and Nvidia
CUDA together with Octrees. Earlier related work have focused on serial methods, while this paper
presents a parallel solution which shows that there is a great increase in time if the number of operations
is large. Two different models of the environment and the industrial robot are presented, the first is
Octrees at different resolutions, the second is a point cloud representation. The relative merits of the two
different world model representations are shown. In particular, the experimental results show the potential
of adapting the resolution of the robot and environment models to the task at hand.
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1 INTRODUCTION

Traditionally, the main industrial impact of robot tech-
nology has lied in domains containing repetitive rou-
tine tasks, in particular; manufacturing and automo-
tive industries. In such environments, objects inside
the workspace of the robot are most often either fixed
at a known location or moving according to a priori
determined and known patterns. Hence, the robot
programs can be written such that these objects are
avoided. Recently, there have been several initiatives to
use industrial robots in un-, or semi-structured outdoor
environments. As an illustrative example, consider the
case of robot automation in the Oil and Gas (O&G)
industry, Anisi et al. (2010, 2011). As a general trend
within that industry, most of the easy accessible oil and
gas fields have already been exploited, leaving the more
remote and geo- politically challenging reserves for fu-
ture exploration. Given the importance and focus of
the oil and gas industry related to safety, environmen-
tal impact, cost efficiency and increased production,
the potential for more extensive use of automation in

general, and robot technology in particular, is evident.
Within the oil and gas industry, the use of robotics

has so far been limited to special functions such as
sub-sea and pipeline intervention and inspections us-
ing Remotely Operated Vehicles (ROVs), automation
of drilling operations and well tractors. The degree
of autonomy in these applications has however been
very low, meaning that the robots are either remotely
controlled, or that the robot follows a priori deter-
mined routes and hence has no ability to cope with
environmental variations and uncertainty. The non-
determinism mainly is due to mismatch between ex-
isting world model and the exact location of process
components in the physical world. As presence of
unexpected obstacles can not be ruled out in semi-
structured environments typically found in the oil and
gas industry, collision-free route cannot be guaranteed
solely by offline programming. To avoid collisions in
such settings, online, sensor-based collision detection
and avoidance methods must be adopted. Collision
detection considers the problem of indicating the pres-
ence of unmodelled obstacles while collision avoidance
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aims at finding an alternative path around discovered
obstacles leading to the target. To this end, use of ex-
ternal sensors, e.g., laser-, ultrasound- and vision sen-
sors is necessary and the robot programs must be able
to process these data and adjust accordingly online.

There are not many papers describing mapping of
the environment in combination with collision detec-
tion in an industrial robotic setup. The work presented
in Henrich et al. (1998) shows the concept of modeling
the robot and the environment, and finding the short-
est distance to the obstacles. However, the approach in
Henrich et al. (1998) is based on simple models of both
the robot and of the environment, and the models are
created offline. In contrast, the work presented in this
paper uses a more detailed offline generated model of
the robot, which in real life applications will not change
during the time of the operation, but as apposed to
Henrich et al. (1998) it presents an online mapping of
the environment.

Ramisa uses the Microsoft Kinect together with
a robotic manipulator for grasping wrinkled cloth
Ramisa et al. (2012). As with this paper, the Kinect is
used to gather depth data. As apposed to this paper,
the Kinect is mounted on a structure external to the
robot and not on one of the robot axes.

Dziegielewski’s work on accurate mapping, von
Dziegielewski et al. (2012), shows that combining map-
ping and CUDA is not a new teqnique, even though the
use of the CUDA cores are different in this paper. The
mapping presented in this paper is different from von
Dziegielewski et al. (2012) in that the presented ap-
proach uses point clouds rather than a mesh based ap-
proach. The approach based on a point cloud is faster,
but in some cases less informative.

This paper does not discuss different techniques for
fast nearest neighbour search (NNS) such as NNS via
k-d trees Elseberg et al. (2012), because all the points
are a part of the calculation, such methods will not
improve the calculation time. The focus for this paper
is to present how the calculation time in some cases
could be decreased in collision detection applications
by using the GPU, the result is based on our own al-
gorithms developed for CUDA and CPU together with
with open source CPU-based algorithms. CPU-based
algorithms distance calculation which are performed on
single core would perform better on multiple cores, this
is not considered in this paper.

The remaining of this paper is organized as follows.
Section 2 provides the problem formulation. Following
that, the details of the system setup are given in Sec-
tion 3. The experimental study conducted in this work
is presented in Section 4 while Section 5 gives thorough
discussions of the results. Finally, Section 6 provides
concluding remarks and discussions on future work.

2 PROBLEM FORMULATION

For industrial robots executing pre-planned tasks
within a workcell, the concept of introducing new
objects to the work cell without explicitly re-
programming the robot controller is a research topic
deserving further attention and development. The
common thing to do if a new object is added to the
robot work cell is to stop the production. If the new
object does not occlude the robot path while it manip-
ulates any of the objects in the environment, the pro-
cess could be started again without implications. On
the other hand, if the new objects obstructs the path,
a new path must be created by the operator. In the
near future, it could be desirable to operate the robot
in an industrial location with a reduced amount of pro-
tective fences. In such setups, it is important that the
robot system is capable of detecting new objects and
their locations. Hence, the robot must be part of a
more adaptive system, with the possibility to dynam-
ically introduce new objects to the scene. This raises
the question about how the information about the ob-
jects should be made available to the robot controller.
As described in previous work Kaldestad et al. (2012b)
and Kaldestad et al. (2012a), one of these techniques
could be manual input of a map. Depending on the ap-
plication, the approach of manual input could have sig-
nificant drawbacks. In addition, there are at least two
drawbacks with respect to time. A manual human in-
put of a map takes time and reduces performance. The
second issue is the time aspect related to the resources
of the human, which may be better utilised with other
tasks. Because of these drawbacks, autonomous map
generation using an external sensor is advocated. Next,
the placement of the sensor is not trivial, and since the
industrial robots to be used should potentially be ca-
pable to move on linear tracks along the floor or the
ceiling, it is often desirable to mount the sensor on the
robot.

To avoid excessive amounts of 3D sensor data, it
is desirable to compress or reduce the data to increase
performance. One approach that ensures that the data
in the map does not exceed predefined space limits is
the Octree approach.

Using robot manipulators in combination with Oc-
trees has been done before Faverjon (1984), Hayward
(1986) and there already exist methods for collision de-
tection, based on overlapping Octrees. In most cases
however, it is not desirable to wait until an actual col-
lision before giving a warning, therefore using another
approach such as representing the robot by an oversized
Octree solves the problem with having the warning at
time of impact, but it does not address the issue of
generating a message when the robot approaches an
object.
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One of the advantages of using Octrees, is that the
3D position information is equally distributed in the
Cartesian space. This approach has of course both
its advantages and drawbacks, and for that reason we
have also compared it to using point clouds directly.
One of the main advantages of using an Octree rep-
resentation of both the robot and the environment, is
especially when a large number of points are present
within a small volume, and often these points may not
give additional valuable information to act on. In such
settings, all of these points which belong to their re-
spective place in the Octree, will be reduced to one
cube.

The trend is to explore more and more complex
methods, but it is a necessity to simplify in order to
stay within reasonable time limits. Still, a few years
back, in late 2005 the computer frequency of the Intel
and, a bit later, the AMD CPUs’ stalled Ross (2008).
Due to the heat dissipated and the power consumed
by increasing the clock, it was found more reason-
able to increase the number of processing areas on
one CPU. This was followed by Nvidia’s hardware and
software architecture Compute Unified Device Archi-
tecture CUD (2006) (CUDA) in 2006. Because the
programmer would benefit by Moore’s law, a doubling
of the transistor count every two years, which resulted
in a doubling of the CPU frequency every second year
up to 2005, today, other technologies could be used to
continue improving application execution time. The
CUDA architecture is one excellent technology to use
when there are large parallel computational problems,
such as calculating distances between points.

In this paper two main questions are addressed.
First, how well will an Octree structure behave in terms
of computational efficiency, compared to a pure point
cloud. Second, what will be the fastest way to detect
a collision or near collision, if all the known location
on the robot and in the environment are compared,
given the previously mentioned representations, using
the CPU or CUDA (GPU).

3 SYSTEM SETUP

The setup depicted in Fig. 3 consists of an ABB
IRB1600-1.45 robot, an IRC5 industrial controller and
a Microsoft Kinect sensor mounted on the robot’s 4th

link, see Fig. 1. The larger environment Fig. 2, con-
tains a second robot, an object on a rotary axis and
protective walls inside the reachable workspace of the
IRB1600 robot. Except the IRB1600 and the Kinect,
all the other objects are static and part of the environ-
ment. Communication with the robot is done in a
network connection with a separate computer (PCrob).
A second computer in the network (PCobs) with Nvidia

Figure 1: ABB IRB1600-1.45 robot with Microsoft
Kinect sensor mounted on the 4th link.

Figure 2: ABB IRB1600-1.45 robot and surrounding
environment.

280 GTX CUDA-Enabled graphics card, was used for
managing 3D-point data, which includes different mod-
els of the robot and the environment. The environment
map is updated by gathering the Kinect distance data
and storing it to the map. Further, robot motor angles
are received from PCrob, and used to transform the en-
vironment Kinect data in addition to transforming a
point model of the robot. Before the Kinect-data is
inserted to an Octree or point cloud, it is filtered using
a distance filter, and it is also run through a statistical
outliers removal to remove noisy depth readings. The
transformed environment map is then used to calculate
the distance from the robot to the environment.
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Figure 3: Overview of system components.

4 EXPERIMENTS

Figure 4: Example of concatenated point cloud of envi-
ronment generated with Kinect sensor.

Given one or several concatenated point clouds of
the environment as shown for example in Fig. 4, an
Octree representation can be generated. In this paper
the Octree class in the Point PCL library Rusu and
Cousins (2011) (PCL) is used. Six different Octree im-
plementations have been compared with an approach
working directly on a point cloud. The approaches were
compared with respect to computational time and the
number of Octree elements. Different sidelengths of
the Octree cubes were used (1mm, 10mm and 100mm).
In addition, the representation of the IRB1600 robot
and the environment could be with different cube side-
lengths. Fig. 5 shows a representation where 100mm
cube sidelengths were used for the IRB1600 robot and
1mm sidelengths were used to represent the environ-
ment. Notice that only the centre points of the cubes
are shown in the figure. The representation of the
robot was generated from a CAD file, while the rep-
resentation of the environment was generated using
the Kinect sensor. Fig. 6 shows another representa-
tion where 10mm side lengths were used for both the
robot and the environment, here the cubes are shown.

The different approaches were compared based on

Figure 5: Illustration of centre points in Octree.
100mm sidelengths were used for the robot
and 1mm sidelengths for the environment.

Figure 6: Illustration of both centre points and cubes
in Octree with 10mm sidelengths for both the
robot and the environment.

computational time, which was found when calculating
the smallest distance Lmin between all the robot points
Ri and all the environment points Ej , ie.

Lmin = min
i,j
‖Ri − Ej‖ (1)

When using a point cloud, all the robot points gen-
erated from the CAD file were compared with all the
points generated by the Kinect sensor. When using an
Octree, the centre points in all the robot cubes were
compared with the centre points in all the environment
cubes.

The minimum collision distance for an Octree repre-
sentation of both the environment and the manipulator
is given by

Lmin < ‖cs‖ (2)

while for an uncompressed and un-approximated point
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cloud it is given by

Lmin = 0 (3)

where cs is the vector pointing from the cube centre to
one of its corners.

Table 1 shows the experimental results for a rela-
tively small point cloud. Eq. (1) was parallelised and
run on a graphics card (GPU) with 240 cores using
the CUDA library. Specifically the CUDA time in-
cludes the transfer of data to the GPU memory (two
float arrays), the execution of two kernels; Where the
first calculates the distance between tow coordinates in
R3 and the second kernel finds the minimum value of
the previous distances. Finally the minimum value is
returned to the CPU. In addition, the computational
time of Eq. (1) was tested on the CPU (Intel Core-i5 3.3
GHz) without parallelisation. As expected, the compu-
tational time depends on the number of point-to-point
distance calculations. When using the largest Octree
representation (100mm side lengths for both robot and
environment) the required calculation time is 0.070 and
0.008 seconds respectively for the GPU and the CPU.
It is interesting to notice that for this coarse repre-
sentation the CPU calculation is actually faster than
the GPU calculations, most likely caused by the ini-
tial setup time required for the GPU calculations. For
all the other representations (smaller Octree cubes and
directly on point cloud), the CUDA-based GPU calcu-
lations are faster than the CPU calculations. For exam-
ple for the Octree 10+1mm representation in Table 1
the GPU calculation takes 4.647 seconds compared to
the CPU calculation of 18.276 seconds which makes the
GPU calculation approximately 4 times faster. Table 2
shows the same result for a point cloud approximately
5 times larger. The same speed comparison for the Oc-
tree 10+1mm representation in this case shows that the
GPU calculation is more than 20 times faster than the
CPU calculation. Fig. 7 illustrate the computational
time vs. the number of point-to-point calculations for
both the GPU and the CPU. The number of point-
to-point calculations is given by the multiplication of
robot and environment points. The most time consum-
ing operation was when applying eq. (1) to the point
cloud. For the smallest point cloud set, Table 1 which
requires 3.7 billion operations, the GPU was approxi-
mately 20 times faster than the CPU. The difference in
speed increased even more for the largest point cloud
in Table 2, consisting of 18 billion operations, in this
case the CUDA approach was 32 times faster than the
CPU. Fig. 7 summarises the number of elements with
respect to time. The table shows that for a small num-
ber of operations, the CPU calculation time is lower
than the CUDA time, but somewhere between 250,000
to 1,700,000 operations, the GPU is faster than the
CPU.
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Figure 7: Computational time vs. number of point-to-
point operations.

5 DISCUSSION

From the results in Table 1 and 2 it can be seen that for
a smaller number of operations with 303 robot elements
and 800 environment elements totaling 303 · 800 =
242400 operations, the CPU is 8.75 times faster than
the GPU. Here, one operation is defined as one distance
calculation. On the other hand, for a bit finer resolu-
tion of the Octree, 100mm for the robot and 10mm for
the environment, there are 10,073,235 operations, but
in this case the graphics card is 2.37 times faster than
the CPU. The results presented in this paper, shows
that for a smaller number of operations, it would be
faster to let the CPU handle the calculations. The tip-
ping point comes at around 10 million operations, when
it is faster to let the GPU handle the calculations.

The graphics card used in this research, the Nvidia
GTX 280 with 240 cores, was a card introduced in
2008. In comparison, state of the art today, a Nvidia
GTX 690 introduced in 2012 has core count 12.8 times
larger, with 3072 cores total. Based on the number of
cores, not taken the difference in clock speed into con-
sideration, the Nvidia GTX 690 should perform several
factors better than the GTX 280. But this speed-up
would not just depend on the number of cores directly.
As discussed in Gregg and Hazelwood (2011), for cases
where huge amounts of data have to be copied to the
graphics cards memory, which in this case is the num-
ber of elements in the point cloud / Octree, the total
time could be increased drastically.

When comparing the pros and cons of the point
cloud and the Octree as two different means to present
the environment, it was found that that the Octree is
ideal for setups where the exact coordinate location
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Method CUDA CPU Robot Environment
Time Time Elements Elements

Point cloud 9.694 197.455 19 221 192 953
Octree 1+1mm 3.369 42.567 10 809 107 213
Octree 10+1mm 4.647 18.276 4 397 111 395
Octree 100+1mm 0.443 1.254 303 112 639
Octree 10+10mm 2.049 5.494 4 397 33 574
Octree 100+10mm 0.156 0.369 303 33 245
Octree 100+100mm 0.070 0.008 303 800

Table 1: Experimental results with a relatively small point cloud of environment. Octree X+Y mm means cubes
with X mm sidelength for the robot and Y mm sidelength for the environment.

Method CUDA CPU Robot Environment
Time Time Elements Elements

Point cloud 25.268 833.228 19 221 958 021
Octree 1+1mm 5.29 124.213 10 809 308 069
Octree 10+1mm 2.450 52.897 4 397 322 638
Octree 100+1mm 0.754 4.101 303 370 194
Octree 10+10mm 1.459 13.639 4 397 85 277
Octree 100+10mm 0.246 1.053 303 94 670
Octree 100+100mm 0.068 0.008 303 814

Table 2: Experimental results with a relatively large point cloud of environment.

is not needed. If the exact measurement information
is needed the uncompressed and un-approximate point
cloud is the best approach. It is notable that by in-
creasing the resolution of the Octree to the floating
point representation, one may match the accuracy of
the point cloud representation. However, this special
case may be giving the system much more total over-
head than using the point cloud directly. Another pos-
itive thing with the Octree is the inherent compression
of the sensor data, which is distributed by steps of one
cube side. Varying the cube size, gives a density and
hence different compression, which in turn reduces the
number of elements and therefore also the calculation
time.

By expanding the collision detection algorithms, it
is possible to tell on which link, and at which location
there is soon to be a collision. This information could
be very valuable to an adaptive system, because the
robot representation could be changed on the fly to
change the resolution of the robot model and there are
two main reasons to do so. First, by having a lower res-
olution of the robot when it is far away from other ob-
jects will decrease the calculation time, which in some
cases have the desirable outcome that the robot could
follow a path at higher velocity. Second, if the robot
is approaching to do a part manipulation, the resolu-
tion of e.g. the wrist could be increased such that no

collision is reported by passing objects on a very short
range, an example of this is shown in 8. To be able
to choose when the links should change resolution will
require a modification of (3)

Lmin −RCdist < ‖cs‖
RCdist < Lmin + ‖cs‖

where RCdist is the user defined resolution change pa-
rameter such that PCobs increases the resolution of a
particular joint or a collection of joints if the corre-
sponding part is greater. For a new resolution a new
value for RCdist has to be chosen. Of course the values
of RCdist would be chosen before robot task program
execution, to make the system more independent from
human input at execution time.

In this paper, all the points in the scene were
checked, but another approach could be to check only
the points which the robot could reach in the next step
(plus a safety margin). This could be done by doing a
quick conservative calculation of where each robot joint
could be positioned at the next time step and make the
calculations only in the surrounding volume.

A challenge when the robot should adapt to the
environment is to differentiate between the physical
changes that are expected and should happen, and the
changes that not are supposed to happen. One exam-
ple of such expected changes could be when the robot
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manipulates one or more objects in the environment.
As this is a part of the normal operation, it should
not raise a collision detection, which again means that
the robot should be able to interact, or put in another
words, “collide” with the object. To address this, one
may associate an attribute with each object. As a sim-
plistic example, let these attributes have the following
values: “green”, “orange” and “red”. The elements of
the static part of the scene, i.e., the areas that should
not change during the time of operation and the robot
is not allowed to interact with it, are marked “orange”.
Objects that the robot should interact with, should
be marked with “green”. Finally, objects introduced
which are new to the scene should be marked as “red”.
Further, it should also be associated a distance to each
of the three attributes. The new unknown objects in
the room, marked with “red”, are expected to have
higher uncertainty associated with them, compared the
original environment, and hence, the associated colli-
sion detection distance should therefore be larger than
that for the static environment. The static environ-
ment would then warn about collision at closer dis-
tance than for the new objects. Finally, the objects
to be manipulated would have zero distance or no dis-
tance, which means that interaction with these objects
should not result in a collision detection.

6 CONCLUSIONS AND FUTURE
WORK

This paper shows that the traditional approach with
intersecting Octree cubes could be challenged by the
emerging massively parallel GPU technology, bringing
additional information such as near collision. CUDA
could reduce the calculation time significantly for a
large number of operations, on the other hand, for
a smaller number of calculations, the CPU is faster.
In addition, this paper shows that it is beneficial
to use an Octree representation of the environment
if the computational time should be kept low. In
addition, it is proposed to be using different reso-
lution for the robot and the environment models,
which will yield higher performance for an adapt-
able system. It has been shown that the developed
CUDA algorithms in many cases outperforms the
proposed CPU implementation and that GPU-based
algorithms could be a favorable choice in real-
time industrial robot collision detection applications.

Future work will focus on using and expanding the
methods which have been developed in this paper. The
next steps will focus on collision avoidance, which re-
quires an accurate mapped environment and fast cal-

Figure 8: Example of different Octree resolutions on
the robot.

culations to the nearest objects. In addition to this,
developing methods for including newly discovered ob-
jects that have entered into the environment during
operation, to the world map needs further attention.
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