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Abstract

This paper deals with the kinematic synthesis problem of a 3-RRR spherical parallel manipulator, based
on the evaluation criteria of the kinematic, kinetostatic and dynamic performances of the manipulator. A
multiobjective optimization problem is formulated to optimize the structural and geometric parameters
of the spherical parallel manipulator. The proposed approach is illustrated with the optimum design of
a special spherical parallel manipulator with unlimited rolling motion. The corresponding optimization
problem aims to maximize the kinematic and dynamic dexterities over its regular shaped workspace.
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1 Introduction

A three Degrees of Freedom (3-DOF) spherical paral-
lel manipulator (SPM) is generally composed of two
pyramid-shaped platforms, namely, a mobile platform
(MP) and a fixed base that are connected together by
three identical legs, each one consisting of two curved
links and three revolute joints. The axes of all joints
intersect at a common point, namely, the center of ro-
tation. Such a spherical parallel manipulator provides
a three degrees of freedom rotational motion. Most
of the SPMs find their applications as orienting de-
vices, such as camera orienting and medical instrument
alignment (Gosselin and Hamel, 1994; Li and Payan-
deh, 2002; Cavallo and Michelini, 2004; Chaker et al.,
2012). Besides, they can also be used to develop ac-
tive spherical manipulators, i.e., wrist joint (Asada and
Granito, 1985).

In designing parallel manipulators, a fundamental
problem is that their performance heavily depends on
their geometry (Hay and Snyman, 2004) and the mu-

tual dependency of the performance measures. The
manipulator performance depends on its dimensions
while the mutual dependency among the performances
is related to manipulator applications (Merlet, 2006b).
The evaluation criteria for design optimization can be
classified into two groups: one relates to the kinematic
performance of the manipulator while the other relates
to the kinetostatic/dynamic performance of the ma-
nipulator (Caro et al., 2011). In the kinematic con-
siderations, a common concern is the workspace (Mer-
let, 2006a; Kong and Gosselin, 2004; Liu et al., 2000;
Bonev and Gosselin, 2006). The size and shape of
the workspace are of primary importance. Workspace
based design optimization can usually be solved with
two different formulations, the first formulation aim-
ing to design a manipulator whose workspace contains
a prescribed workspace (Hay and Snyman, 2004) and
the second approach being to design a manipulator
whose workspace is as large as possible (Lou et al.,
2005). In Ref. (Bai, 2010), the SPM dexterity was op-
timized within a prescribed workspace by identifying
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(a) (b)

Figure 1: 3-RRR unlimited-roll SPM: (a) CAD model, (b) application as spherically actuated joint.

the design space. It is known from (Gosselin and An-
geles, 1989) that the orientation workspace of a SPM
is a maximum when the geometric angles of the links
are equal to 90o. However, maximizing the workspace
may lead to a poor design with regard to the manip-
ulator dexterity and manipulability (Stamper et al.,
1997; Durand and Reboulet, 1997). This problem can
be solved by properly defining the constraints on dex-
terity (Merlet, 2006a; Huang et al., 2003). For the
optimum design of SPMs, a number of works focus-
ing on the kinematic performance, mainly the dexter-
ity and workspace, have been reported, whereas, the
kinetostatic/dynamic aspects receive relatively less at-
tention. In general, the design process simultaneously
deals with the two previously mentioned groups, both
of which include a number of performance measures
that essentially vary throughout the workspace. On the
kinetostatic aspect, the SPM stiffness is an important
consideration (Liu et al., 2000) to characterize its elas-
tostatic performance. When they are used to develop
spherically actuated joint, not only the MP angular
displacement but also the translational displacement of
the rotation center should be evaluated from the Carte-
sian stiffness matrix of the manipulator and should be
minimized. Moreover, the dynamic performance of the
manipulator should be as high as possible.

Among the evaluation criteria for optimum geomet-
ric parameters design, an efficient approach is to solve
a multiobjective optimization problem, which takes all
or most of the evaluation criteria into account. As the
objective functions are usually conflicting, no single so-
lution can be achieved in this process. The solutions

of such a problem are non-dominated solutions, also
called Pareto-optimal solutions. Some multiobjective
optimization problems of parallel manipulators (PMs)
have been reported in the last few years. Hao and Mer-
let proposed a method different from the classical ap-
proaches to obtain all the possible design solutions that
satisfy a set of compulsory design requirements, where
the design space is identified via the interval analy-
sis based approach (Hao and Merlet, 2005). Ceccarelli
et al. focused on the workspace, singularity and stiff-
ness properties to formulate a multi-criterion optimum
design procedure for both parallel and serial manipu-
lators (Ceccarelli et al., 2005). Stock and Miller for-
mulated a weighted sum multi-criterion optimization
problem with manipulability and workspace as two ob-
jective functions (Stock and Miller, 2003). Krefft and
Hesselbach formulated a multi-criterion elastodynamic
optimization problem for parallel mechanisms while
considering workspace, velocity transmission, inertia,
stiffness and the first natural frequency as optimization
objectives (Krefft and Hesselbach, 2005). Altuzarra et
al. dealt with the multiobjective optimum design of a
parallel Schönflies motion generator, in which the ma-
nipulator workspace volume and dexterity were consid-
ered as objective functions (Altuzarra et al., 2009).

In this work, a multiobjective design optimization
problem is formulated. The design optimization prob-
lem of the 3-DOF spherical parallel manipulator con-
siders the kinematic performance, the accuracy and the
dynamic dexterity of the mechanism under design. The
performances of the mechanism are also optimized over
a regular shaped workspace. The multiobjective de-
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(a) (b)

Figure 2: Architecture of a general SPM: (a) overview, (b) parameterization of the ith leg.

sign optimization problem is illustrated with a 3-RRR
SPM shown in Figure 1, which can replace the serial
chains based wrist mechanisms. The non-dominated
solutions, also called Pareto-optimal solutions, of the
multiobjective optimization problem are obtained with
a genetic algorithm.

2 Manipulator Architecture

The spherical parallel manipulator under study is a
novel robotic wrist with an unlimited roll motion (Bai,
2010; Bai et al., 2009), which only consists of three
curved links connected to a mobile platform (MP). The
mobile platform is supposed to be quite stiffer than the
links, which is considered as a rigid body. The three
links are driven by three actuators moving indepen-
dently on a circular rail of model HCR 150 from THK
via pinion and gear-ring transmissions. Thanks to the
circular guide, the overall stiffness of the mechanism is
increased. Moreover, such a design enables the SPM
to generate an unlimited rolling motion, in addition to
limited pitch and yaw rotations.

A general spherical parallel manipulator is shown in
Figure 2(a) (Liu et al., 2000). Figure 2(b) represents
the parameters associated with the ith leg of the SPM,

i = 1, 2, 3. The SPM is composed of three legs that
connect the mobile-platform to the base. Each leg is
composed of three revolute joints. The axes of the revo-
lute joints intersect and their unit vectors are denoted
by ui, wi and vi, i = 1, 2, 3. The arc angles of the
three proximal curved links are the same and equal to
α1. Likewise, the arc angles of the three distal curved
links are the same and equal to α2. The radii of the
link midcurves are the same and equal to R. Geometric
angles β and γ define the geometry of the two pyrami-
dal base and mobile platforms. The presented SPM in
Figure 1(a) is a special case with γ = 0. The origin O
of the reference coordinate system Fa is located at the
center of rotation.

3 Kinematic and Kinetostatic
Modeling of the SPM

The kinematics of the SPMs has been well docu-
mented (Gosselin and Angeles, 1989), which is not re-
peated in detail here. Hereafter, the orientation of the
mobile platform is described by the orientation repre-
sentation of azimuth-tilt-torsion (φ − θ − σ) (Bonev,
2008), for which the rotation matrix is expressed as

Q =

cφcθc(φ− σ) + sφs(φ− σ) cφcθs(φ− σ)− sφc(φ− σ) cφsθ
sφcθc(φ− σ)− cφs(φ− σ) sφcθs(φ− σ) + cφc(φ− σ) sφsθ

−sθc(φ− σ) −sθs(φ− σ) cθ

 (1)
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where φ ∈ (−π, π], θ ∈ [0, π), σ ∈ (−π, π], and s(·) =
sin(·), c(·) = cos(·).

Under the prescribed coordinate system, unit vector
ui is expressed in the base frame Fa below:

ui =
[
− sin ηi sin γ cos ηi sin γ − cos γ

]T
(2)

where ηi = 2(i− 1)π/3, i = 1, 2, 3.
Unit vector wi of the intermediate revolute joint axis

in the ith leg is expressed in Fa as:

wi =

−sηisγcα1 + (cηisθi − sηicγcθi)sα1

cηisγcα1 + (sηisθi + cηicγcθi)sα1

−cγcα1 + sγcθisα1

 (3)

The unit vector vi of the last revolute joint axis in
the ith leg, is a function of the mobile-platform orien-
tation, namely,

vi = Qv∗
i (4)

where v∗
i corresponds to the unit vector of the last rev-

olute joint axis in the ith leg when the mobile platform
is in its home configuration:

v∗
i =

[
− sin ηi sinβ cos ηi sinβ cosβ

]T
(5)

3.1 Kinematic Jacobian matrix

Let ω denote the angular velocity of the mobile-
platform, the screws velocity equation via the ith leg
can be stated as

$ω =

[
ω
0

]
= θ̇i$̂

i
A + ψ̇i$̂

i
B + ξ̇i$̂

i
C (6)

with the screws for the revolute joints at points Ai, Bi
and Ci expressed as

$̂iA =

[
ui
0

]
, $̂iB =

[
wi

0

]
, $̂iC =

[
vi
0

]
Since the axes of the two passive revolute joints in each
leg lie in the plane BiOCi, the following screw is recip-
rocal to all the revolute joint screws of the ith leg and
does not lie in its constraint wrench system:

$̂ir =

[
0

wi × vi

]
(7)

Applying the orthogonal product (◦) (Tsai, 1998) to
both sides of Eqn. (6) yields

$̂ir ◦ $ω = (wi × vi)
T
ω = (ui ×wi) · viθ̇i (8)

As a consequence, the expression mapping from the
mobile platform twist to the input angular velocities is
stated as:

Aω = Bθ̇ (9)

with

A =
[
a1 a2 a3

]
, ai = wi × vi (10a)

B = diag
[
b1 b2 b3

]
, bi = (ui ×wi) · vi (10b)

where θ̇ =
[
θ̇1 θ̇2 θ̇3

]T
. Matrices A and B are the

forward and inverse Jacobian matrices of the manipu-
lator, respectively. If B is nonsingular, the kinematic
Jacobian matrix J is obtained as

J = B−1A (11)

3.2 Cartesian stiffness matrix

The stiffness model of the SPM under study is estab-
lished with virtual spring approach (Pashkevich et al.,
2009), by considering the actuation stiffness, link de-
formation and the influence of the passive joints. The
flexible model of the ith leg is represented in Figure 3.
Figure 3(b) illustrates the link deflections and varia-
tions in passive revolute joint angles.

Let the center of rotation be the reference point of
the mobile platform. Analog to Eqn. (6), the small
displacement screw of the mobile-platform can be ex-
pressed as:

$iO =

[
∆φ
∆p

]
= ∆θi$̂

i
A + ∆ψi$̂

i
B + ∆ξi$̂

i
C (12)

where ∆p = [∆x, ∆y, ∆z]
T

is linear displacement of

the rotation center and ∆φ = [∆φx, ∆φy, ∆φz]
T

is
the MP orientation error. Note that this equation only
includes the joint variations, while for the real manip-
ulator, link deflections should be considered as well.

The screws associated with the link deflections are
formulated as follows:

$̂iu1 =

[
ri

riC × ri

]
, $̂iu2 = $̂iC , $̂

i
u3 =

[
ni

riC × ni

]
(13)

$̂iu4 =

[
0
ri

]
, $̂iu5 =

[
0
vi

]
, $̂iu6 =

[
0
ni

]
where ni = wi × vi is the normal vectors of plane
BiOCi, ri = wi × ni, and riC is the position vector of
point Ci from O. The directions of the vectors ri and
ni are identical to ∆ui4 and ∆ui6, respectively.

By considering the link deflections ∆ui1...∆u
i
6 and

variations in passive joint angles and adding all the
deflection freedoms to Eqn. (12), the mobile platform
deflection in the ith leg is stated as

$iO =∆θi$̂
i
A + ∆ψi$̂

i
B + ∆ξi$̂

i
C + ∆ui1$̂

i
u1 + ∆ui2$̂

i
u2

+ ∆ui3$̂
i
u3 + ∆ui4$̂

i
u4 + ∆ui5$̂

i
u5 + ∆ui6$̂

i
u6 (14)

The previous equation can be written in a compact
form by separating the terms related to the variations
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(a)

(b)

Figure 3: Flexible model of a single leg: (a) virtual
spring model, where Ac stands for the actua-
tor, R for revolute joints and MP for the mo-
bile platform, (b) link deflections and joint
variations in the ith leg.

in the passive revolute joint angles and those related
to the actuator and link deflections, namely,

$iO = Jiθ∆ui + Jiq∆qi (15)

with

Jiθ =
[
$̂iA $̂iu1 $̂iu2 $̂iu3 $̂iu4 $̂iu5 $̂iu6

]
(16a)

Jiq =
[
$̂iB $̂iC

]
(16b)

∆ui =
[
∆θi ∆ui1 ∆ui2 ∆ui3 ∆ui4 ∆ui5 ∆ui6

]T
(16c)

∆qi =
[
∆ψi ∆ξi

]T
(16d)

Let the external wrench applied to the end of the ith
leg be denoted by fi, the constitutive law of the ith leg
can be expressed as

fi =

[
Krr Krt

KT
rt Ktt

]
i

[
∆φ
∆p

]
→ fi = Ki$

i
O (17)

On the other hand, the wrench applied to the articu-
lated joints in the ith leg being denoted by a vector τi,
the equilibrium condition for the system is written as,

Ji
T

θ fi = τi, J
iT

q fi = 0, ∆ui = Ki−1

θ τi (18)

Combining Eqns. (15), (17) and (18), the kinetostatic
model of the ith leg can be reduced to a system of two
matrix equations, namely,[

Siθ Jiq
Jiq
T

02×2

] [
fi

∆qi

]
=

[
$iO
02×1

]
(19)

where the sub-matrix Siθ = JiθK
i−1

θ Ji
T

θ describes the
spring compliance relative to the center of rotation,
and the sub-matrix Jiq takes into account the passive
joint influence on the mobile platform motions.

Ki−1

θ is a 7× 7 matrix, describing the compliance of
the virtual springs and taking the form:

Ki−1

θ =

[
Ki−1

act 01×6

06×1 Ki−1

L

]
(20)

where Ki
act corresponds to the stiffness of the ith actua-

tor. Ki
L of size 6×6 is the stiffness matrix of the curved

link in the ith leg, which is calculated by means of the
Euler-Bernoulli stiffness model of a cantilever. In Fig-
ure 3(b), ∆u1, ∆u2 and ∆u3 show the three moment
directions while ∆u4, ∆u5 and ∆u6 show the three
force directions, thus, using Castigliano’s theorem (Hi-
bbeler, 1997), the compliance matrix of the curved link
takes the form:

Ki−1

L =


C11 C12 0 0 0 C16

C12 C22 0 0 0 C26

0 0 C33 C34 C35 0
0 0 C34 C44 C45 0
0 0 C35 C45 C55 0
C16 C26 0 0 0 C66

 (21)

where the corresponding elements are given in Ap-
pendix A.

The matrix Jiθ of size 6 × 7 is the Jacobian matrix
related to the virtual springs and Jiq of 6 × 2, the one
related to revolute joints in the ith leg. The Carte-
sian stiffness matrix Ki of the ith leg is obtained from
Eqn. (19),

fi = Ki$
i
O (22)

where Ki is a 6×6 sub-matrix, which is extracted from
the inverse of the 8× 8 matrix on the left-hand side of
Eqn. (19). From f =

∑3
i=1 fi, $O = $iO and f = K$O,

the Cartesian stiffness matrix K of the system is found
by simple addition, namely,

K =

3∑
i=1

Ki (23)
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3.3 Mass matrix

The mass in motion of the mechanism influences the
dynamic performance, such as inertia, acceleration,
etc., hence, formulating the mass matrix is one impor-
tant procedure in the dynamic analysis. Mass matrix
is the function of manipulator dimensions and material
properties, i.e., link lengths, cross-sectional area, mass
density. Generally, the manipulator mass matrix (iner-
tia matrix) can be obtained on the basis of its kinetic
energy. The total kinetic energy T includes the energy
Tp of the mobile platform, Tl of the curved links and
Ts of the slide units:

• The kinetic energy of the mobile platform is

Tp =
1

2
mpv

T
p vp +

1

2
ωT Ipω (24)

with

vp = R cosβp× ω, Ip = diag [Ixx Iyy Izz] (25)

where mp is the mass of the mobile-platform and
Ixx, Iyy, Izz are the mass moments of inertia of the
mobile-platform about x-, y-, z-axes, respectively.

• The kinetic energy of the curved links is

Tl =
1

2

3∑
i=1

(
mlv

iT

l vil + Ilψ̇
2
i

)
(26)

with

vil =
1

2
R
(
θ̇iwi × ui + vi × ω

)
(27a)

Il =
1

2
mlR

2

(
1− sinα2 cosα2

α2

)
(27b)

ψ̇i = − (ui × vi) · ω
(ui ×wi) · vi

= jψi · ω (27c)

where ml is the link mass and Il is its mass mo-
ment of inertia about wi.

• The kinetic energy of the slide units is

Ts =
1

2

(
Ign

2
g +msR

2
s

)
θ̇T θ̇ (28)

where ms is the mass of the slide unit and Rs is
the distance from its mass center to z-axis. Ig is
the mass moment of inertia of the pinion and ng
is the gear ratio.

Consequently, the SPM kinetic energy can be written
in the following form

T = Tp + Tl + Ts =
1

2
θ̇TMθ̇ (29)

Figure 4: The representation of the regular workspace
for the SPM with a pointing cone.

with the mass matrix M of the system is expressed as

M =

(
msR

2
s + Ign

2
g +

1

4
mlR

2 sin2 α1

)
13

+ JT
(
Ip +mpR

2 cos2 β[p]T×[p]×

+
1

4
mlR

2
3∑
i=1

[vi]
T
×[vi]× + Il

3∑
i=1

jψij
T
ψi

)
J (30)

where [·]× stands for the skew-symmetric matrix whose
elements are from the corresponding vector and 13 is
the Identity matrix.

4 Design Optimization of the
Spherical Parallel Manipulator

The inverse kinematic problem of the SPM can have
up to eight solutions, i.e., the SPM can have up to
eight working modes. Here, the diagonal terms bi of
the inverse Jacobian matrix B are supposed to be all
negative for the SPM to stay in a given working mode.
In the optimization procedure, criteria involving kine-
matic and kinetostatic/dynamic performances are con-
sidered to determine the mechanism configuration and
the dimension and mass properties of the links. More-
over, the performances are evaluated over a regular
shaped workspace free of singularity, which is speci-
fied as a minimum pointing cone of 90o opening with
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Figure 5: Design variables of the 3-RRR SPM.

360o full rotation, i.e., θ ≥ 45o and σ ∈ (−180o, 180o],
see Figure 4.

4.1 Design variables

Variables α1, α2, β and γ are part of the geometric
parameters of a 3-RRR SPM and γ = 0 for the ma-
nipulator under study. Moreover, the radius R of the
link midcurve is another design variable and the cross
section of the links is supposed to be a square of side
length a. These variables are shown in Figure 5. As a
consequence, the design variable vector is expressed as
follows:

x = [α1, α2, β, a, R] (31)

4.2 Objective functions

The kinematic performance is one of the major con-
cerns in the manipulator design, of which a criterion
is the evaluation of the dexterity of SPMs. A com-
monly used criterion to evaluate this kinematic per-
formance is the global conditioning index (GCI) (Gos-
selin and Angeles, 1991), which describes the isotropy
of the kinematic performance. The GCI is defined over
a workspace Ω as

GCI =

∫
Ω
κ−1(J)dW∫

Ω
dW

(32)

where κ(J) is the condition number of the kinematic
Jacobian matrix (11). In practice, the GCI of a robotic

manipulator is calculated through a discrete approach
as

GCI =
1

n

n∑
i=1

1

κi(J)
(33)

where n is the number of the discrete workspace points.
As a result, the first objective function of the optimiza-
tion problem is written as:

f1(x) = GCI → max (34)

Referring to the kinematic dexterity, an important
criterion to evaluate the dynamic performance is dy-
namic dexterity, which is made on the basis of the
concept of Generalized Inertia Ellipsoid (GIE) (Asada,
1983). In order to enhance the dynamic performance
and to make acceleration isotropic, the mass ma-
trix (30) should be optimized to obtain a better dy-
namic dexterity. Similar to GCI, a global dynamic in-
dex (GDI) is used to evaluate the dynamic dexterity,
namely,

GDI =
1

n

n∑
i=1

1

κi(M)
(35)

where κi(M) is the condition number of the mass ma-
trix of the ith workspace point. Thus, the second ob-
jective function of the optimization problem is written
as:

f2(x) = GDI → max (36)

4.3 Optimization constraints

In this section, the kinematic constraints, condition-
ing of the kinematic Jacobian matrix and accuracies
due to the elastic deformation are considered. Con-
straining the conditioning of the Jacobian matrix aims
to guarantee dexterous workspace free of singularity,
whereas limits on accuracy consideration ensures that
the mechanism is sufficiently stiff.

4.3.1 Kinematic constraints

According to the determination of design space re-
ported in (Bai, 2010), the bounds of the parameter
α1, α2 and β subject to the prescribed workspace are
stated as:

45o ≤ β ≤ 90o, 45o ≤ α1, α2 ≤ 135o (37)

The sequence of the first, second and third slide units
appearing on the circular guide counterclockwise is
constant. In order to avoid collision, the angles θij be-
tween the projections of vectors wi and wj in the xy
quadrant, i, j = 1, 2, 3, i 6= j, as shown in Figure 6,
have the minimum value, say 10o. To avoid collision
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Figure 6: Slide unit configuration of the 3-DOF SPM.

and make the mechanism compact, the following con-
straints should be satisfied:

θ12, θ23, θ31 ≥ εθ = 10o (38)

R0 = 0.120 m ≤ R sinα1 ≤ Rs = 0.200 m

Moreover, the SPM should not reach any singularity
in its orientation workspace. Therefore, the following
conditions should be satisfied.

det(A) ≥ ε, bi = (ui ×wi) · vi ≤ −ε (39)

where A is the forward Jacobian matrix of the manip-
ulator defined in Eqn. (9) and ε > 0 is a previously
specified tolerance set to 0.001.

4.3.2 Conditioning number of the kinematic
Jacobian matrix

Maximizing the GCI and constraining the kine-
matic Jacobian matrix cannot prevent the prescribed
workspace away from ill-conditioned configurations.
For the design optimization in order to achieve a dex-
terous workspace, the minimum of the inverse condi-
tion number of the kinematic Jacobian matrix κ−1(J),
based on 2-norm, should be higher than a prescribed
value throughout the workspace, say 0.1, namely,

min(κ−1(J)) ≥ 0.1 (40)

4.3.3 Accuracy constraints

The accuracy constraints of the optimization prob-
lem for the SPM are related to the dimensions of

Table 1: The lower and upper bounds of the design
variables x.

α1 [deg] α2 [deg] β [deg] a [m] R [m]
xlb 45 45 45 0.005 0.120
xub 135 135 90 0.030 0.300

the curved link and the maximum positional deflec-
tion of the rotation center and angular deflection of
the moving-platform subject to a given wrench applied
on the latter. The control loop stiffness is Ki

act =
106 Nm/rad. Let the static wrench capability be spec-
ified as the eight possible combinations of moments
m = [±10, ±10, ±10] Nm, while the allowable maxi-
mum positional and rotational errors for the workspace
points are 1 mm and 2o = 0.0349 rad, respectively,
thus, the accuracy constraints can be written as:

‖∆p‖n =
√

∆x2
n + ∆y2

n + ∆z2
n ≤ εp (41)

‖∆φ‖n =
√

∆φ2
x, n + ∆φ2

y, n + ∆φ2
z, n ≤ εr

where the linear and angular displacements are com-
puted from $O = K−1f with the Cartesian stiffness
matrix (23) and εp = 1 mm, εr = 0.0349 rad.

4.4 Formulation of the multiobjective
optimization problem

Mathematically, the multi-objective design optimiza-
tion problem for the spherical parallel manipulator can
be formulated as:

maximize f1(x) = GCI (42)

maximize f2(x) = GDI

over x = [α1, α2, β, a, R]

subject to g1 : θ ≥ 45o

g2 : R0 ≤ R sinα1 ≤ Rs
g3 : θ12, θ23, θ31 ≥ εθ = 10o

g4 : det(A) ≥ ε, (ui ×wi) · vi ≤ −ε
g5 : min(κ−1(J)) ≥ 0.1

g6 :
√

∆x2
n + ∆y2

n + ∆z2
n ≤ εp

g7 :
√

∆φ2
x, n + ∆φ2

y, n + ∆φ2
z, n ≤ εr

xlb ≤ x ≤ xub

i = 1, 2, 3

where xlb and xub, respectively, are the lower and up-
per bounds of the variables x given by Table 1.
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Table 2: Algorithm parameters of the implemented NSGA-II

Population Generation Directional crossover Crossover Mutation Distribution
size probability probability probability index
40 200 0.5 0.9 0.1 20

Table 3: Three Pareto-optimal solutions

Design Variables Objectives
ID α1 [deg] α2 [deg] β [deg] a [m] R [m] GCI GDI
I 56.2 81.0 89.8 0.0128 0.1445 0.366 0.711
II 51.6 84.3 89.9 0.0133 0.1533 0.453 0.665
III 47.2 90.8 89.2 0.0127 0.1641 0.536 0.625

4.5 Pareto-optimal solutions

For the proposed SPM, the actuation transmission
mechanism is a combination of actuator of model
RE 35 GB and gearhead of model GP 42 C from
Maxon (Maxon, 2012) and a set of gear ring-pinion
with ratio ng = 8. Moreover, the components are sup-
posed to be made of steel, thus, E = 210 Gpa, ν = 0.3.
Moreover, the moving platform is supposed to be a reg-
ular triangle, thus, the MP and link masses are given
by

mp =
3
√

3

4
ρhR2 sin2 β, ml = ρa2Rα2 (43)

where ρ is the mass density and h = 0.006 m is the
thickness of the moving platform. The total mass ms

of each slide unit, including the mass of the actuator,
gearhead, pinion and the manufactured components, is
equal to ms = 2.1 kg.

The previous formulated optimization problem (42)
is solved by the genetic algorithm NSGA-II (Deb et al.,
2002) with Matlab, of which the algorithm parameters
are given in Table 2.

The Pareto front of the formulated optimization
problem for the SPM is shown in Figure 7 and three
optimal solutions, i.e., two extreme and one intermedi-
ate, are listed in Table 3.

Figure 8 illustrates the variational trends as well as
the inter-dependency between the objective functions
and design variables by means of a scatter matrix. The
lower triangular part of the matrix represents the cor-
relation coefficients whereas the upper one shows the
corresponding scatter plots. The diagonal elements
represent the probability density charts of each vari-
able. The correlation coefficients vary from −1 to 1.
Two variables are strongly dependent when their cor-
relation coefficient is close to −1 or 1 and independent
when the latter is null. Figure 8 shows:

• both objectives functions GCI and GDI are
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Figure 7: The Pareto front of the multiobjective opti-
mization problem for the SPM.

strongly dependent as their correlation coefficient
is equal to −0.975;

• both objectives functions GCI and GDI are
strongly dependent on all design variables as all
of the corresponding correlation coefficients are
greater than 0.6;

• GCI is slightly more dependent than GDI of the
design variables as all the corresponding correla-
tion coefficients of former are greater than those
of latter;

• GDI is less dependent on the design variables β
and a than the other variables although the two
former variables influence the SPM mass, this is
due to the large portion of the slide unit mass in
the total mechanism mass.
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Figure 8: Scatter matrix for the objective functions and the design variables.
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Figure 9: Design variables as functions of objectives for
the Pareto-optimal solutions.

Figure 9 displays the design variables as functions
of the objectives. It is noteworthy that the higher
GCI, the lower α1, conversely, the higher GDI, the
higher α1. This phenomenon is opposite with respect
to variable α2. The design variable β converges to 90o

approximately, which indicates that β = 90o is the pre-
ferred geometric parameter for the SPM under study.
The lower link midcurve R and higher a lead to higher
GDI. The three sets of of design variables correspond-
ing to the three Pareto-optimal solutions depicted in
Table 3 are shown in Figure 9 with solid markers.

5 Conclusions

In this paper, the geometric synthesis of spherical par-
allel manipulators is discussed. A multiobjective de-
sign optimization problem based on the genetic algo-
rithm was formulated in order to determine the mech-
anism optimum structural and geometric parameters.
The objective functions were defined on the basis of the
criteria of both kinematic and kinetostatic/dynamic
performances. This approach is illustrated with the
optimum design of an unlimited-roll spherical parallel
manipulator, aiming at maximizing the kinematic and
dynamic dexterities to achieve relatively better kine-
matic and dynamic performances simultaneously. It is
found that the parameter β being equal to 90o is a pre-
ferred structure for the SPM under study. Finally, the
Pareto-front was obtained to show the approximation
of the optimal solutions between the various (antago-
nistic) criteria, subject to the dependency of the per-
formance. The future work will aim to maximize the
orientation workspace and optimize the cross-section
type of the curved links.
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Appendix A

The elements of the compliance matrix (21) for the
curved beam

C11 =
R

2

(
s1

GIx
+

s2

EIy

)
(A-1a)

C12 =
s8R

2

(
1

GIx
− 1

EIy

)
(A-1b)

C16 =
R2

2

(
s2

EIy
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GIx

)
(A-1c)

C22 =
R

2

(
s2

GIx
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s1

EIy

)
(A-1d)

C26 =
R2

2

(
s4

GIx
− s2

EIy

)
(A-1e)

C33 =
Rα2

EIz
(A-1f)
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s5R
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s6R
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EIz
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E
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s2

G

)
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s3R

3

2EIz
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C45 =
s8R

2A

(
1

E
− 1

G

)
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s4R
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2EIz
(A-1j)

C55 =
R
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(s1

G
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+
s2R
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2EIz
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C66 =
Rα2

GA
+
R3

2

(
s3

GIx
+

s2

EIy

)
(A-1l)

with

s1 = α2 + sinα2 cosα2 (A-2a)

s2 = α2 − sinα2 cosα2 (A-2b)

s3 = 3α2 + sinα2 cosα2/2− 4 sinα2 (A-2c)

s4 = 1− cosα2 − sin2 α2/2 (A-2d)

s5 = sinα2 − α2 (A-2e)

s6 = cosα2 − 1 (A-2f)

s7 = 2 sinα2 − α2 − sinα2 cosα2 (A-2g)

s8 = − sin2 α2 (A-2h)

where E is the Young’s modulus and G = E/2(1 + ν)
is the shear modulus with the Poisson’s ratio ν. Ix, Iy
and Iz are the moments of inertia, respectively. A is
the area of the cross-section.
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