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Abstract

In this work, a new strategy to design passive energy dissipation systems for vibration control of large
structures is presented. The method is based on the equivalence between passive damping systems and
fully decentralized static velocity-feedback controllers. This equivalence allows to take advantage of recent
developments in static output-feedback control design to formulate the passive-damping design as a single
optimization problem with Linear Matrix Inequality constraints. To illustrate the application of the
proposed methodology, a passive damping system is designed for the seismic protection of a five-story
building with excellent results.
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1 Introduction

Over the last decades, the design of energy dissipa-
tion systems (EDSs) to reduce the dynamic response of
large structures has become a very active research field.
Good examples of the advances in this field are the
numerous structural vibration control (SVC) systems
proposed to mitigate the seismic vibrational response
of large buildings and other civil structures. These
SVC systems include different kinds of passive, active,
and semiactive actuation devices, and a wide variety
of control methodologies and techniques [Spencer and
Nagarajaiah (2003), Ikeda (2009), Li and Huo (2010)].

To deal with the challenging problems associated to
the design of these highly complex control systems, re-
cent developments in control theory have been incorpo-
rated to SVC. This makes it possible to consider some
relevant practical issues such as nonlinear actuation

devices, parameter uncertainties, wireless implementa-
tion of communication systems, actuator saturation,
actuation and sensor failures, structural information
constraints, limited frequency domain, or multistruc-
ture systems [Du and Lam (2006), Swartz and Lynch
(2009), Chen et al. (2010), Palacios-Quiñonero et al.
(2011), Zhang et al. (2011b), Palacios-Quiñonero et al.
(2012a,b)].

Passive energy dissipation devices, such as viscous
fluid dampers, viscoelastic dampers, friction dampers,
etc., are simple, compact, and reliable. Effective and
relatively inexpensive EDSs for vibration control of
large structures can be designed by implementing a set
of passive dampers at suitable locations of the struc-
ture.

One of the main problems in the design of passive
EDSs consists in determining the damping capacity
of the different dampers. Traditionally, this prob-
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lem has been solved through a trial-and-error proce-
dure, and assuming that the dampers are identical.
In general, passive dampers exhibit a nonlinear be-
havior. However, approximate linear models can be
used in the design of passive EDSs. For viscous fluid
dampers, the damping force can be considered propor-
tional to the velocity. In this case, the passive damp-
ing system is equivalent to a fully decentralized static
velocity-feedback control system, and the powerful de-
sign strategies of feedback control can be used to define
a systematic procedure to compute the passive damp-
ing constants. This line of work has been successfully
used in the early work of Gluck et al. (1996), and ex-
tended in Agrawal and Yang (1999) and Yang et al.
(2002).

It has to be highlighted, however, that this new ap-
proach is not exempt of difficulties, which are mainly
related to the computational cost of designing decen-
tralized static output-feedback controllers. For exam-
ple, the design methodology proposed in Agrawal and
Yang (1999) is based on the linear quadratic regula-
tor (LQR) theory and the decentralized static output-
feedback controller is computed by means of an iter-
ative procedure, which requires solving complex ma-
tricial equations at each step. The methodology pro-
posed in Yang et al. (2002) uses the more advanced H∞
and H2 control theories and Linear Matrix Inequality
(LMI) formulations but, again, the decentralized static
output-feedback controller is computed by means of an
iterative procedure which, in this case, requires solving
an optimization problem with LMI constraints at each
step.

Recently, an effective strategy to compute static
output-feedback controllers was presented by Rubió-
Massegú et al. (2012a). This strategy is based on
a simple transformation of the LMI variables that
allows computing structured output-feedback control
gain matrices by solving a single optimization problem
with LMI constraints. The objective of the present pa-
per is to apply these recent advances in static output-
feedback control in the design of passive EDSs for
structural vibration control of large structures. To il-
lustrate the application of the proposed methodology,
a passive EDS is designed for the seismic protection of
a five-story building with excellent results.

The rest of the paper is organized as follows. Sec-
tion 2 is devoted to discuss the equivalence between
passive linear damping systems and fully decentral-
ized static velocity-feedback controllers. For clarity
and notational simplicity, the main ideas are presented
through a three-degree-of-freedom mass-spring-damper
system. In Section 3, the new methodology to compute
decentralized static output-feedback H∞ controllers is
summarized. In Section 4, a passive EDS and a state-
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Figure 1: Mechanical system with passive dampers for
vibrational response mitigation

feedback H∞ controller are designed for seismic protec-
tion of a five-story building. Numerical simulations of
the free and controlled vibrational responses together
with the corresponding control actions are presented
and compared. Finally, in Section 5, conclusions are
drawn and some directions for future work are pro-
posed.

2 Decentralized velocity-feedback
control and passive dampers

Let us consider the mechanical system schematically
depicted in Figure 1. For 1 ≤ i ≤ 3, mi denote
the masses; ci and ki are, respectively, the structural
damping and stiffness coefficients; qi(t) is the displace-
ment of the ith mass with respect to the reference
frame O; and fi(t) are the external force disturbances.
Moreover, a second set of linear dampers with damp-
ing constants ĉi have been included. The objective of
this additional damping system is helping to mitigate
the vibrational response induced by the external dis-
turbances.

The system motion can be described by the second-
order model

Mq̈(t) +
(
C + Ĉ

)
q̇(t) +Kq(t) = f(t), (1)

where

q(t) = [q1(t), q2(t), q3(t)]T (2)

is the vector of displacements, M is the mass matrix

M =

 m1 0 0
0 m2 0
0 0 m3

, (3)
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Figure 2: Mechanical system with active force actua-
tion devices

C is the structural damping matrix

C =

 c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3

, (4)

Ĉ is the vibration control damping matrix

Ĉ =

 ĉ1 + ĉ2 −ĉ2 0
−ĉ2 ĉ2 + ĉ3 −ĉ3

0 −ĉ3 ĉ3

, (5)

K is the structural stiffness matrix

K =

 k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

, (6)

and

f(t) = [f1(t), f2(t), f3(t)]T (7)

is the vector of external force disturbances. Matrices
M , C, and K determine the structural characteristics
of the system and are supposed to have given values.
The objective of the present work is to design a pas-
sive damping system to reduce the vibrational response
induced by the external disturbance f(t). In terms of
the system matrices, the objective is to find an effective
strategy to determine a suitable matrix Ĉ.

Let us now consider the mechanical system displayed
in Figure 2, where the blue rectangles ai, 1 ≤ i ≤ 3,
represent ideal active force-actuation devices, which
produce actuation forces ui(t) as indicated in the fig-
ure.
Using the vector of control forces

u(t) = [u1(t), u2(t), u3(t)]T (8)

and the control location matrix

Tu =

 1 −1 0
0 1 −1
0 0 1

 , (9)

the motion of the actively controlled system can be
described by the following second-order model:

Mq̈(t) + Cq̇(t) +Kq(t) = f(t) + fu(t), (10)

where fu(t) is the vector of actuation forces, which can
be expressed in the form

fu(t) = Tuu(t). (11)

Next, we consider the vector of relative displacements

xr(t) = [x1(t), x2(t), x3(t)]T , (12)

where 
x1(t) = q1(t),

x2(t) = q2(t)− q1(t),

x3(t) = q3(t)− q2(t).

(13)

If we design a state-feedback controller to drive the ac-
tuation devices ai, the control actions can be computed
in the form

u(t) =

[
g11 g12 g13 g14 g15 g16
g21 g22 g23 g24 g25 g26
g31 g32 g33 g34 g35 g36

]

x1(t)
x2(t)
x3(t)
ẋ1(t)
ẋ2(t)
ẋ3(t)

 .
(14)

Obviously, a practical implementation of this controller
would require sensors of relative position and relative
velocity, and also a full communication system. For a
static velocity-feedback controller, the control actions
can be computed in the form

u(t) =

[
g11 g12 g13
g21 g22 g23
g31 g32 g33

] ẋ1(t)
ẋ2(t)
ẋ3(t)

 . (15)

A practical implementation of this second control strat-
egy requires sensors of relative velocity and also a full
communication system. Finally, for a fully decentral-
ized velocity-feedback controller, the control actions
can be computed in the form

u(t) =

[
u1(t)
u2(t)
u3(t)

]
=

[
g11 0 0
0 g22 0
0 0 g33

] ẋ1(t)
ẋ2(t)
ẋ3(t)

 .
(16)

Let us suppose that a controller with the structure
given in eq. (16) is available and, moreover, that all the
elements gii are negative. In this case, we can write

ĉi = −gii, 1 ≤ i ≤ 3, (17)

and the vector of control forces takes the following
form:

fu(t)=

[
1 −1 0
0 1 −1
0 0 1

][ −ĉ1 0 0
0 −ĉ2 0
0 0 −ĉ3

] ẋ1(t)
ẋ2(t)
ẋ3(t)

 .
(18)
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Finally, from eq. (13), we get

fu(t) = −
[

ĉ1 −ĉ2 0
0 ĉ2 −ĉ3
0 0 ĉ3

][
q̇1(t)

q̇2(t)− q̇1(t)
q̇3(t)− q̇2(t)

]

= −
[

ĉ1 + ĉ2 −ĉ2 0
−ĉ2 ĉ2 + ĉ3 −ĉ3
0 −ĉ3 ĉ3

][
q̇1(t)
q̇2(t)
q̇3(t)

]
. (19)

In summary, the vector of actuation forces can be writ-
ten in the form

fu(t) = −Ĉq̇(t) (20)

and, consequently, the values of the damping coef-
ficients ĉi can be obtained from the decentralized
velocity-feedback control gain matrix as indicated in
eq. (17).

Remark 1 Obviously, the discussed method can only
be applied if we are able to compute effective decen-
tralized velocity-feedback controllers.

3 Design of static output-feedback
H∞ controllers

Let us consider the system

S :


ẋ(t) = Ax(t) +Bu(t) + Ew(t),

y(t) = Cy x(t),

z(t) = Czx(t) +Dzu(t),

(21)

where x(t)∈Rn is the state, u(t)∈Rm is the control in-
put, w(t)∈Rr is the disturbance input, y(t)∈Rp is the
observed output, and z(t)∈Rnz is the controlled out-
put. A, B, E, Cy, Cz, and Dz are known, real and
constant matrices of appropriate dimensions. A static
output-feedback controller has the form

u(t) = Gy(t), (22)

where G is a constant control gain matrix. From
eqs. (21) and (22), we obtain the following closed-loop
system:

S
CL

:

{
ẋ(t) = ĀG x(t) + Ew(t),

z(t) = C̄G x(t),
(23)

where

ĀG = A+BGCy, C̄G = Cz +DzGCy. (24)

The H∞ control approach considers the largest energy
gain from disturbance to controlled output

γG = sup
‖w‖

2
6=0

‖z‖2
‖w‖

2

, (25)

where w(t) and z(t) denote, respectively, the distur-
bance input and controlled output in eq. (21), and ‖ · ‖2
is the usual continuous 2-norm

‖f‖2 =

[∫ ∞
0

{f(t)}Tf(t) dt

]1/2
. (26)

The control design objective is to obtain a gain matrix
G̃ which simultaneously produces a stable closed-loop
matrix ĀG̃ and an optimally small value γG̃. Using the
closed-loop transfer function from the disturbance w(t)
to the controlled output z(t)

TG(s) = C̄G(sI − ĀG)−1E, (27)

the value γG̃ can be expressed as the H∞-norm of TG̃

γG̃ = ‖TG̃(s)‖∞ = sup
ω

σ̄[TG̃(jω)], (28)

where σ̄[·] denotes the maximum singular value.
According to the Bounded Real Lemma [Boyd et al.

(1994)], for a prescribed γ > 0, the following two state-
ments are equivalent:

1. ‖TG(s)‖∞ < γ, and ĀG is stable.

2. There exists a symmetric positive-definite matrix
X∈Rn×n such that the matrix inequality[

ĀGX +XĀT
G + γ−2EET ∗

C̄GX −I

]
< 0 (29)

holds, where ∗ denotes the transpose elements in
the symmetric positions.

From eqs. (24) and (29), we obtain the nonlinear matrix
inequality (MI–A) displayed in Figure 3, which can be
converted into the following LMI:[

AX +XAT +BY + Y TBT + ηEET ∗
CzX +DzY −I

]
< 0

(30)
by introducing the new variables

Y = GCyX, η = γ−2. (31)

The continuous-time output-feedback H∞ control de-
sign problem can now be formulated as the following
optimization problem:{

maximize η

subject to X > 0, η > 0 and the LMI in eq. (30),

(32)
where the matrices X and Y are the optimization vari-
ables. If an optimal value ηopt is attained for the ma-

trices X̃, Ỹ , and a control matrix G̃ satisfying

Ỹ = G̃CyX̃ (33)
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[
AX +XAT +BGCyX +XCT

y G
TBT + γ−2EET ∗

CzX +DzGCyX −I

]
< 0 (MI–A)

AQXQ
QT +QX

Q
QTAT +ARX

R
RT +RX

R
RTAT +BY

R
RT +RY T

R
BT + ηEET ∗

CzQXQ
QT + CzRXR

RT +DzYRR
T −I

 < 0 (LMI–B)

Figure 3: Matrix inequalities

can be determined, then the corresponding static
output-feedback controller

u(t) = G̃y(t) (34)

defines a stable closed-loop matrix ĀG̃ with an associ-
ated H∞-norm

γG̃ = (ηopt)
−1/2. (35)

Remark 2 It should be noted that eq. (33) only pro-
vides an implicit definition of the gain matrix G̃ and,
in general, this equation can not be properly solved to
obtain G̃.

Using a suitable set of transformations of the LMI vari-
ables, a simple and explicit formulation for the gain
matrix G̃ can be obtained. Moreover, decentralized
static output-feedback controllers can also be designed
by imposing an appropriate zero–nonzero structure on
the new LMI variables. Next, we summarize the main
ideas of this design strategy; a detailed discussion can
be found in Rubió-Massegú et al. (2012a).

Given a full row-rank output matrix Cy with dimen-
sions p×n, p ≤ n, we consider an n×(n−p) matrix Q,
whose columns are a basis of Ker(Cy); and the Moore-
Penrose pseudo-inverse of Cy, which is given by

R = CT
y (CyC

T
y )−1. (36)

From matrices Q and R, we define the following trans-
formations:

X = QX
Q
QT +RX

R
RT , Y = Y

R
RT , (37)

where X
Q

, X
R

are symmetric positive-definite matrices
with respective dimensions (n−p)× (n−p), p×p; and
Y
R

is an m×p matrix. Using the transformations given
in eq. (37), the LMI in eq. (30) takes the form (LMI–
B) displayed in Figure 3. If the following optimization
problem{

maximize η

subject to X
Q
> 0, X

R
> 0, η > 0, and (LMI–B),

(38)

is solvable with an optimum value η̃opt attained by the

matrices X̃
Q

, X̃
R

, and Ỹ
R

, then the control matrix

G̃ = Ỹ
R

(
X̃

R

)−1
(39)

defines a static output-feedback controller

u(t) = G̃ y(t) (40)

with stable closed-loop matrix ĀG̃, and H∞-norm

γG̃ ≤ (η̃opt)
−1/2. (41)

Remark 3 Note that the expression for the output-
feedback control matrix given in eq. (39) is analogous
to the formulation normally used in the design of state-
feedback H∞ controllers. Structured output-feedback
controllers can be designed in the usual way by taking
X

R
as a block-diagonal matrix and Y

R
with the zero-

nonzero structure desired for G̃.

Remark 4 The presented control design methodology
can be applied to compute decentralized static velocity-
feedback controllers. This fact allows implementing the
ideas proposed in Section 2 in designing passive damp-
ing systems for structural vibration control.

Remark 5 Setting structural constraints on the con-
trol matrix G̃ implies a loss of free LMI variables, which
can lead to greater γ-values and may even produce in-
feasibility.

Remark 6 The optimization problem in eq. (38) is a
particular case of the optimization problem presented
in eq. (32) with the additional constraints given in
eq. (37). Hence, we will have ηopt ≥ η̃opt and, con-
sequently, (η̃opt)

−1/2 will only provide an upper bound
of the H∞-norm γG̃ as indicated in eq. (41).

4 Application to seismic protection
of buildings

In this section, the ideas presented in Section 2 and
Section 3 are applied to design a passive damping sys-
tem for seismic protection of a five-story building. In
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Figure 4: Five story-building mechanical model, actu-
ation forces, and external disturbance

Subsection 4.1, second-order and first-order mathemat-
ical models of the building are provided. In Subsec-
tion 4.2, a static state-feedback H∞ controller is de-
signed, which will be taken as a reference in the per-
formance assessment of the proposed passive damping
system. Next, in Subsection 4.3, a decentralized static
output-feedback H∞ controller is designed to compute
the damping coefficients for the passive damping sys-
tem. Finally, numerical simulations of the free and
controlled vibrational response of the building are pre-
sented and compared in Subsection 4.4. The full-scale
North–South Hachinohe 1968 seismic record is used as
external disturbance in these numerical simulations.

4.1 Building model

Let us consider the five-story building schematically
depicted in Figure 4. The building motion can be de-
scribed by the second-order differential equation

Mq̈(t) + Cq̇(t) +Kq(t) = Tuu(t) + Tww(t), (42)

where M , C, and K, are the mass, damping, and stiff-
ness matrices, respectively. The vector of displace-
ments relative to the ground is

q(t) = [q1(t), q2(t), q3(t), q4(t), q5(t)]T , (43)

where qi(t), 1 ≤ i ≤ 5, represents the lateral displace-
ment of the ith story si with respect to the ground
level s0. We assume that, between the consecutive sto-
ries si−1 and si, an actuation device ai has been imple-
mented, which exerts a control action ui(t) as indicated

in Figure 4(b). The vector of control actions is

u(t) = [u1(t), u2(t), u3(t), u4(t), u5(t)]T , (44)

Tu is the control location matrix, w(t)∈R denotes the
seismic ground acceleration, and Tw is the excitation
location matrix. The particular values of the matri-
ces M , C, K, Tu, and Tw used in this paper are the
following:

M = 103 ×


215.2 0 0 0 0
0 209.2 0 0 0
0 0 207.0 0 0
0 0 0 204.8 0
0 0 0 0 266.1

 , (45)

C = 103×


260.2 −92.4 0 0 0
−92.4 219.6 −81.0 0 0

0 −81.0 199.5 −72.8 0
0 0 −72.8 186.7 −68.7
0 0 0 −68.7 127.4

 ,
(46)

K = 106 ×


260 −113 0 0 0
−113 212 −99 0 0

0 −99 188 −89 0
0 0 −89 173 −84
0 0 0 −84 84

 , (47)

Tu =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

 , Tw = −M


1
1
1
1
1

 , (48)

where masses are in kg, damping coefficients in Ns/m,
and stiffness coefficients in N/m. The mass and stiff-
ness values in eqs. (45) and (47) are similar to those cor-
responding to the Kajima-Sizuoka building presented
in Kurata et al. (1999); the damping matrix C has
been computed as a Rayleigh damping matrix with a
2% damping ratio on the first and fifth modes [Chopra
(2007)].

From the second-order model given in eq. (42), we
can derive a first-order state-space model

S
I

: ẋ
I
(t) = A

I
x
I
(t) +B

I
u(t) + E

I
w(t), (49)

by taking the state vector

x
I
(t) =

[
q(t)
q̇(t)

]
. (50)

The state matrix in eq. (49) has the structure

A
I

=

[
[0]

5×5
I
5

−M−1K −M−1C

]
, (51)

while the control and disturbance input matrices are,
respectively,

B
I

=

[
[0]

5×5

M−1Tu

]
, E

I
=

[
[0]

5×1

−[1]
5×1

]
, (52)
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A =103 ×



0 0 0 0 0 0.0010 0 0 0 0
0 0 0 0 0 0 0.0010 0 0 0
0 0 0 0 0 0 0 0.0010 0 0
0 0 0 0 0 0 0 0 0.0010 0
0 0 0 0 0 0 0 0 0 0.0010

−0.6831 0.5251 0 0 0 −0.0008 0.0004 0 0 0
0.6831 −1.0652 0.4732 0 0 0.0006 −0.0011 0.0004 0 0
0 0.5402 −0.9515 0.4300 0 0 0.0004 −0.0010 0.0004 0
0 0 0.4783 −0.8645 0.4102 0 0 0.0004 −0.0009 0.0003
0 0 0 0.4346 −0.7258 0 0 0 0.0004 −0.0008



B =10−5 ×



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.4647 −0.4647 0 0 0
−0.4647 0.9427 −0.4780 0 0

0 −0.4780 0.9611 −0.4831 0
0 0 −0.4831 0.9714 −0.4883
0 0 0 −0.4883 0.8641


, E =



0
0
0
0
0
−1
0
0
0
0


Figure 5: System matrices of the first-order model with interstory drifts and interstory velocities as state

variables

Gs = 107×


0.2610 −0.3046 0.1131 −0.1075 −0.1084 −0.2281 −0.1348 −0.0324 −0.0356 −0.0188
−0.3488 0.4113 −0.1358 0.2960 −0.5236 −0.1050 −0.2345 −0.1116 −0.0276 −0.0326
0.3801 −0.7608 0.6698 0.0290 −0.4281 −0.1052 −0.1333 −0.1933 −0.0355 −0.0538
0.4170 −0.0836 −0.7695 0.7284 −0.0265 −0.0517 −0.0887 −0.1111 −0.1612 −0.0377
0.1032 0.0593 0.1569 −1.0576 1.1411 −0.0692 −0.0580 −0.0346 −0.0827 −0.0616



Figure 6: State-feedback gain matrix Gs

where [0]n×m represents a zero-matrix of the indicated
dimensions, In is the identity matrix of order n, and
[1]n×1 denotes a vector of dimension n with all its en-
tries equal to 1. Next, we consider the vector of inter-
story drifts

xr(t) = [q1, q2 − q1, q3 − q2, q4 − q3, q5 − q4]
T
, (53)

and define the new state vector

x(t) =

[
xr(t)
ẋr(t)

]
, (54)

which can be expressed as

x(t) = Cx
I
(t) (55)

with

C =



1 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 1


.

(56)

The new state-space model is

S : ẋ(t) = Ax(t) +Bu(t) + Ew(t), (57)

with

A = CA
I
C−1 , B = CB

I
, E = CE

I
. (58)

The particular values of the matrices A, B and E are
presented in Figure 5.

4.2 State-feedback H∞ controller design

In this subsection, we assume that the actuation de-
vices ai displayed in Figure 4(b) are ideal force actua-
tors and we design a state-feedback H∞ controller

u(t) = Gs x(t) (59)

to drive the actuation system. By setting the output
matrix Cy = I10 in eq. (21), the control design method-
ology discussed in Section 3 can be applied to compute
the control gain matrix Gs. Note that the difficulties
discussed in Remark 2 do not apply to this particu-
lar case, and solving the convex optimization problem
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Figure 7: Five-degree-of-freedom mass-spring-damper representation of the five-story building with passive-
damping actuation system

given in eq. (32) leads to the equation

Ỹ = GsX̃, (60)

which can be easily solved for Gs, resulting

Gs = Ỹ
(
X̃
)−1

. (61)

For the controlled-output matrices

Cz =

[
I
10

[0]
5×10

]
, Dz = 10−6.25 ×

[
0

10×5

I
5

]
, (62)

the optimization problem in eq. (32) produces the con-
trol gain matrix Gs displayed in Figure 6 with H∞-
norm

γGs
= 0.8266. (63)

Remark 7 As indicated in Section 2, note that a prac-
tical implementation of the state-feedback controller
u(t) = Gsx(t) would require sensors of interstory drifts
and interstory velocities, and also a full communication
system.

4.3 Design of the passive damping system

Now, let us assume that the actuation devices ai in
Figure 4(b) are passive dampers with adjustable damp-
ing constants ĉi. Looking at the representation of the
five-story building model as a five-degree-of-freedom
mass-spring-damper system displayed in Figure 7, and
considering the discussion in Section 2, it follows that
the passive damping system can be suitably tuned by
designing a decentralized velocity-feedback controller

u(t) = Gd y(t) (64)

with

y(t) = ẋr(t), (65)

and taking the damping constants

ĉi = −[gd]ii, 1 ≤ i ≤ 5, (66)

where [gd]ii are the elements of the diagonal matrix Gd.
To this end, we consider the model in eq. (21) with the
output matrix

Cy =
[
[0]5×5 I5

]
, (67)

together with the matrices Cz and Dz given in eq. (62).
Next, we solve the optimization problem given in
eq. (38) constraining the LMI matrices X

R
and Y

R
to

diagonal form in order to compute a diagonal gain ma-
trix Gd.

A first attempt at solving the LMI optimization
problem with the Matlab Robust Control Toolbox [Balas
et al. (2011)] fails, and the problem is reported to be
infeasible. However, as pointed out in Rubió-Massegú
et al. (2012a), this difficulty can be conveniently cir-
cumvented by adding a small perturbation to the sys-
tem matrix. Using the perturbed state matrix

Â = A+ ∆A, (68)

with
∆A = −0.01× I10, (69)

the following decentralized velocity-feedback control
matrix results:

Gd =106×


−6.506 0 0 0 0

0 −4.343 0 0 0
0 0 −3.455 0 0
0 0 0 −2.914 0
0 0 0 0 −2.648

 ,
(70)

which, according to the discussion in Section 2, defines
a passive damping system with damping constants

ĉ1 = 6.506× 106, ĉ2 = 4.343× 106, ĉ3 = 3.455× 106

ĉ4 = 2.914× 106, ĉ5 = 2.648× 106.
(71)

The optimal γ-value obtained in the solution of the
LMI optimization problem is

γd = (η̃opt)
−1/2 = 0.8642. (72)

This means that the H∞-norm of the passive damp-
ing system is only about a 5% greater than the value
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Figure 8: Maximum singular values for TG(jω)

corresponding to the state-feedback controller. The ex-
cellent behavior of the passive damping system can be
clearly appreciated in the graphics of maximum singu-
lar values of the pulse transfer functions TGs(jω) (blue
dashed line) and TGd

(jω) (red solid line) displayed in
Figure 8.

Remark 8 The initial infeasibility of the LMI opti-
mization problems associated to the design of static
output-feedback controllers for structural vibration
control is a strange and poorly understood phe-
nomenon. From a practical perspective, extensive nu-
merical simulations show that using a perturbed state
matrix in the form given in eqs. (68) and (69) is a very
effective strategy to overcome the problem. A more
general formulation of the transformations given in
eq. (37) has been recently presented in Rubió-Massegú
et al. (2012b), which can help to provide a more satis-
factory solution to this feasibility problem.

Remark 9 As indicated in Remark 6, the value γd
in eq. (72) is an upper bound of the H∞-norm γGd

.
The actual value of γGd

, computed from eq. (28), is
γGd

= 0.8609. This value corresponds to the peak of
the red solid line in Figure 8.

4.4 Numerical simulations

In this subsection, the full-scale North-South 1968
Hachinohe seismic record (see Figure 9) is used as
ground acceleration input to carry out numerical simu-
lations of the free and controlled responses of the five-
story building. In Figure 10, the upper graphic shows
the maximum absolute interstory drifts obtained for
three different configurations: (i) uncontrolled build-
ing (black squares), (ii) controlled building with ideal
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Figure 9: Full-scale North–South 1968 Hachinohe seis-
mic record
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Figure 10: Maximum absolute interstory drifts and
control efforts

force actuation devices driven by the centralized state-
feedback controller defined by the gain matrix Gs (blue
circles), and (iii) controlled building with the passive
damping system defined by the damping constants
given in eq. (71) (red asterisks). These configurations
are denoted in the legend as Free, State-feedback and
Passive, respectively. The corresponding maximum
absolute actuation forces are displayed in the lower
graphic using the same symbols and colors.

Together with the typical good behavior of the
state-feedback H∞ controllers, the graphics show that
the passive damping system achieves practically the
same maximum absolute interstory drifts as the state-
feedback controller, requiring also similar levels of con-
trol effort. The behavior exhibited by the passive
damping system is certainly remarkable, especially if
we take into account that it can operate without sen-
sors, with null power requirements, and no communi-
cation system.
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5 Conclusions and future directions

In this work, a new strategy to design passive energy
dissipation systems for vibration control of large struc-
tures has been presented. The method is based on the
equivalence between passive damping systems and fully
decentralized static velocity-feedback controllers. Us-
ing recent developments in static output-feedback con-
trol design, the constants of the passive dampers can
be computed by solving a single optimization problem
with Linear Matrix Inequality constraints. The ap-
plication of the proposed methodology has been illus-
trated by designing a passive energy dissipation sys-
tem for seismic protection of a five-story building. Nu-
merical simulations of the building vibrational response
confirm the excellent behavior of the proposed passive
damping system.

It should be highlighted that the new approach can
be of interest in a wide variety of research fields where
the mitigation of undesirable vibrational responses is
a major concern. Examples of practical interest can
be found, for instance, in seismic protection of multi-
building systems [Yang et al. (2003), Matsagar and
Jangid (2005), Bhaskararao and Jangid (2006), Kim
et al. (2006), Bharti et al. (2010), Zhu et al. (2011),
Palacios-Quiñonero et al. (2012c)], automotive indus-
try [Zhang et al. (2011a), Li et al. (2012a), Zapateiro
et al. (2012)], or offshore wind power generation [Col-
well and Basu (2009), Li et al. (2012b)]. Consequently,
further research effort needs to be aimed at exploring
additional applications of the proposed methodology.
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