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Abstract

A simple Linear Quadratic (LQ) optimal controller of velocity (incremental) form with approximately the
same properties as a conventional PID controller of velocity form is presented, i.e. integral action. The
proposed optimal controller is insensitive to slowly varying system and measurement trends and has the
ability of stabilizing any linear dynamic system under weak assumptions such as the stabilizability of the
system and the detectability of the system seen from the performance index.

Keywords: MIMO systems, optimal controller, integral action, PI controller, Kalman filter, system
identification

1. Introduction

The famous Linear Quadratic (LQ) optimal controller
for linear Multiple Input and Multiple Output (MIMO)
systems (se. e.g. Kwakernaak and Sivan (1972) and
Anderson and Moore (1989)), has some remarkable
properties due to the guaranteed nominal stability of
the closed loop controlled system (under weak condi-
tions such as the stabilizability of the system and the
detectability of the system seen from the objective).

On the other hand, this LQ optimal controller has
not attained the position it deserves. One reason for
this is probably that it has been difficult to compare the
LQ optimal controller with a standard PID controller
which has received a great deal of attention owing to
its simplicity and its practical applications.

In this paper we will show how we may use the
standard LQ optimal controller to design stabilizing
controllers for MIMO systems with approximately the
same properties that a PI controller has on velocity
(incremental) form.

The proposed controller is remarkably simple and

it has almost the same structure and properties as a
standard PID controller, i.e., the controller has integral
action.

The proposed controller also has the properties
of stabilizing any detectable and stabilizable linear
MIMO system. Hence, the resulting controller may be
used as a first choice controller for controlling a linear
system.

The main contributions of this paper are itemized as
follows:

• A LQ optimal controller for discrete time systems
with approximately the same properties as a stan-
dard PID controller is proposed.

• The proposed LQ optimal controller may be used
for finding stabilizing controllers with integral ac-
tion for complex MIMO systems.

• The proposed LQ optimal controller is insensitive
to constant or slowly varying process and measure-
ment noise.

• The proposed controller is suitable for controlling
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non-linear systems when a linear state space model
is available. This linear model may be the result
of linearizing a non-linear model or the result of
system identification.

• The proposed LQ optimal controller is illustrated
on four non-linear process models, e.g. the
quadruple tank process Johansson (2002).

• The proposed LQ optimal controller is in this pa-
per also illustrated with practical experiments on a
quadruple tank laboratory process. System iden-
tification is used to identify a state space model
on innovations form (The Kalman filter) and used
in the design of the proposed LQ controller. This
strategy may be viewed as a ”model free” LQ opti-
mal controller strategy because only process data
are used.

The main differences of the proposed MIMO PI LQ
optimal controller and a conventional PI controller is
that the optimal controller consists of both output and
state feedback, while a conventional PI controller con-
sists of output feedback and is suitable only for decen-
tralized Single Input Single Output (SISO) systems.

However, the same strategy as used in this paper in
order to develop the proposed simple MIMO LQ op-
timal PI controller will be used to formulate a simple
Model Predictive Controller (MPC) with integral ac-
tion in a upcoming paper. See e.g. Maciejowski (2002)
for the MPC controller.

The rest of the paper is organized as follows. In
Section 2 the optimal control problem is defined. In
Section 3 the problem solution and the proposed LQ
optimal controller with integral action for MIMO sys-
tems are presented. In Section 5 the optimal controller
is compared with the conventional PI controller and
the main differences and similarities are pointed out.
In Section 6 the proposed LQ optimal controller with
integral action is demonstrated on the problem of con-
trolling some systems described with non-linear mod-
els, e.g. the quadruple tank process Johansson (2002)
as well as three other examples. In Section 7 the pro-
posed LQ optimal controller with integral action is il-
lustrated in a practical experiment on the quadruple
tank process. The first principles model is also com-
pared with system identification based models. Some
conclusions follow in Section 8. In Appendix A a MAT-
LAB m-file script is provided for the easy application
of the proposed method for LQ optimal controller with
integral action.

2. Problem formulation

Given a process model

xk+1 = Axk +Buk + v, (1)

yk = Dxk + w, (2)

where xk ∈ Rn is the state vector, uk ∈ Rr is the control
input vector, yk ∈ Rm is the output (measurement)
vector, and A, B and D are known system matrices
of appropriate dimensions. The disturbances v and
w are both unknown, i.e., v is an unknown constant
or a slowly varying process disturbance, and w is an
unknown constant or a slowly varying measurement
noise vector.

Note that the variables uk and yk in the model Eqs.
(1) and (2) are the actual input and output variable,
respectively. Furthermore, note that the model Eqs.
(1) and (2) may arise from linearizing non-linear mod-
els around some nominal steady state and input vari-
ables, or from system identification based on trended
variables. Hence, in these cases, the external noise vari-
ables v and w are known, but the resulting control al-
gorithm to be presented in this paper is insensitive to
these noise variables. Furthermore the system and the
measurements may be influenced by drifts and in these
cases the noise variables v and w may be unknown and
slowly varying. Hence, the model Eqs. (1) and (2) is a
realistic model.

We will study the LQ optimal controller when it is
subjected to the following scalar performance index,

Ji = 1
2x

T
NSxN

+ 1
2

∑N−1
k=i ((yk − r)TQ(yk − r) + ∆uTk P∆uk), (3)

where ∆uk = uk − uk−1 is the control increment (de-
viation) and r is a reference signal and S, Q and P are
symmetric positive semi-definite weighting matrices of
appropriate dimensions, i is the initial time and often
i = 0 for simplicity of notation. The reference vector
may be a time variant but for reasons of simplicity of
the problem solution, we put rk = r. The reference r
is treated as constant or slowly varying in the design
phase of the LQ optimal controller with integral action
for MIMO systems.

For large or infinite prediction horizons N or when
S is chosen as the solution to the Riccati equation of
the problem, then Eq. (3) is equivalent to using the
index

Ji =
1

2

∞∑
k=i

((yk − r)TQ(yk − r) + ∆uTk P∆uk). (4)
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3. Problem solution

In order to solve the LQ optimal control problem we
need a model which is independent of the unknown
disturbances v and w in Eqs. (1) and (2). For the sake
of generality we will focus on state space modeling.

From the state Equation (1) we have

∆xk+1 = A∆xk +B∆uk, (5)

where ∆xk = xk−xk−1. From the measurement equa-
tion (2) we have

yk = yk−1 +D∆xk. (6)

Augmenting (5) with (6) gives the state space model[
∆xk+1

yk

]
=

[
A 0n×m

D Im×m

] [
∆xk

yk−1

]
+

[
B
0m×r

]
∆uk, (7)

yk =
[

D Im×m
] [ ∆xk

yk−1

]
. (8)

The performance index (3) with r = 0 and the state
space model (7) and (8) define a standard LQ control
problem. If r is a non-zero constant reference then the
measurements equation (8) can be written as

yk − r = yk−1 − r +D∆xk. (9)

The state and output equations (7) and (8) can then
be rewritten as

x̃k+1︷ ︸︸ ︷[
∆xk+1

yk − r

]
=

Ã︷ ︸︸ ︷[
A 0n×m

D Im×m

] x̃k︷ ︸︸ ︷[
∆xk

yk−1 − r

]
+

B̃︷ ︸︸ ︷[
B
0m×r

]
∆uk, (10)

ỹk︷ ︸︸ ︷
yk − r =

D̃︷ ︸︸ ︷[
D Im×m

] x̃k︷ ︸︸ ︷[
∆xk
yk−1 − r

]
. (11)

The state space model (10) and (11) with the perfor-
mance index (3) define a standard LQ optimal control
problem.

Hence, we have a strictly proper state space model
of the form

x̃k+1 = Ãx̃k + B̃∆uk, (12)

ỹk = D̃x̃k (13)

Note that the index (4) yields

Ji =
1

2

∞∑
k=i

(ỹTk Qỹk + ∆uTk P∆uk)

=
1

2

∞∑
k=i

(x̃Tk Q̃x̃k + ∆uTk P∆uk), (14)

where the weighting matrix is Q̃ = D̃TQD̃.

Hence, the state space model given by Eqs. (12) and
(13) with the performance index given by Eq. (14)
define a standard LQ optimal control problem. We
here assume P > 0, the pair (Ã, B̃) is stabilizable and
that the pair (C, Ã) is detectable where C is the square
root matrix of Q̃ such that Q̃ = CTC, in order for an
optimal solution to exist.

The solution to the LQ optimal control problem, i.e.
minimizing the performance index (14) with respect
to the control deviation ∆uk subject to the state Eq.
(12), is given by the state feedback

∆uk = Gx̃k, (15)

and where the feedback matrix G in eq. (15) is ob-
tained as

G = −(P + B̃TRB̃)−1B̃TRÃ, (16)

where R is the positive solution to the discrete time
algebraic Riccati equation

R = Q̃+ ÃTRÃ− ÃTRB̃(P + B̃TRB̃)−1B̃TRÃ

= Q̃+GTPG+ (Ã+ B̃G)TR(Ã+ B̃G), (17)

where the last formulation of the Riccati equation is
known as the Joseph’s stable version which ensures
symmetry of the solutionR. The solution to the LQ op-
timal control problem, Eqs.(16) and (17) is well known
in the literature, see e.g. Anderson and Moore (1989)
p. 53 or Lemma 11.2.1 in Söderström (1994) p. 291.

Now from eq. (15) we find the following controller
on incremental (velocity) form

∆uk =

G︷ ︸︸ ︷[
G1 G2

] x̃k︷ ︸︸ ︷[
∆xk
yk−1 − r

]
, (18)

which can be rewritten as uk = uk−1 + ∆uk or as

uk = uk−1 +G1∆xk +G2(yk−1 − rk), (19)

where we are putting r = rk in eq. (18) to obtain the
proposed controller eq. (19). The resulting controller
eq. (19) has an appealing structure very similar to a PI
controller on velocity form. See Sec. 5 for comparison.

Possible constraints are handled as with conventional
PI controllers on velocity (incremental) form, e.g. as in
Åström and Hägglund (1995) p.82. Notice also that it
is simple to limit the rate of change ∆uk of the control
signal, and the control signal uk, using the proposed
LQ controller in eqs. (18) and (19).

A MATLAB m-file script for computing the LQ op-
timal feedback matrices G1 and G2 with the model
matrices A, B, D and the weighting matrices Q and P
as arguments is provided in Appendix A.
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The weighting matrices Q ≥ 0 and P > 0 are usually
chosen by some trial and error procedure for acceptable
responses and performance. The weighting matrices
may often be chosen as simple diagonal matrices, e.g.
as P = I and Q = qI where I is the identity matrix and
q > 0 a tuning parameter. See Sec. 6 for illustrating
examples.

The LQ optimal controller (18) gives a zero steady
state error, i.e. y = r in steady state, since the closed
loop system is stable owing to the properties of the
LQ optimal controller (assuming the control variables
are not saturated, i.e. the control variables are within
allowed bounds).

Notice that it is possible to use Q̃ ∈ R(n+m)×(n+m)

in Eq. (14) directly as a weighting matrix in order
to increase the degree of freedom in tuning the LQ
optimal controller feedback matrices in Eq. (19). But
owing to reasons of simplicity, we propose the strategy
as presented.

4. State observer for the state
deviation

The states are seldom measured in practice. In this
case we can use a state observer or Kalman filter,
Jazwinski (1989), Söderström (1994), to define the de-
viation state ∆xk. However, another solution is to de-
fine ∆xk in terms of some past and known outputs
. . . , yk−1, yk and some known inputs . . . , uk−1 and the
model matrices A, B and D.

A common solution to the problem of estimating the
state, xk, in a model of the form (1) and (2) in which
the noise is colored, is to include a random walk (in-
tegrator) in order to estimate the non-zero part of the
noise, v̄k in addition to the state estimate x̄k. This
is necessary in order for the innovations to become
white. One can thereafter form the state deviation
∆x̄k = x̄k − x̄k−1 which is needed in the control al-
gorithm. However, another more simple solution in
this situation is to design an observer for the deviation
model (5) and (6). This gives a state observer for ∆x̄k
of the form

∆x̄k+1 = A∆x̄k +B∆uk +K(yk − yk−1 −D∆x̄k), (20)

where the initial estimate ∆x̄0 should be specified. A
natural choice is ∆x̄0 = 0.

System identification, e.g. the subspace system iden-
tification method DSR in Di Ruscio (2009) may also be
used to directly identify the model matrices A, B, D
and the Kalman filter gain K needed in the observer
eq. (20). The DSR identified model matrices A, B
and D may then also be used to develop the proposed

LQ controller eq. (19). This ”model free” LQ opti-
mal controller strategy is implemented on a practical
laboratory process and illustrated with experimental
results in Sec. 7.

Using a state observer in connection with the optimal
controller eq. (19) leads to a Linear Quadratic Gau-
sian (LQG) controller, (see e.g. Ch. 11 in Söderström
(1994)). We are aware of the possible robustness prob-
lems with LQG controllers as demonstrated in, Doyle
(1978). However, this possible problem is also involved
in the common and widely used MPC controllers.

5. Connection with the PI
controller

In this section we compare the structure of the pro-
posed LQ controller eq. (19) with a PI controller on
velocity (incremental) form.

A conventional PI controller can be written as

u = Kp
1 + Tis

Tis
(r − y) = Kp(r − y) +

Kp

Ti

1

s
(r − y). (21)

Defining the PI controller state z, as

z =
1

s
(r − y). (22)

Hence, the PI controller can in continuous time be writ-
ten as

ż = r − y, (23)

u = Kp(r − y) +
Kp

Ti
z. (24)

A discrete formulation of the PI controller is then

zk+1 − zk = h(r − yk), (25)

uk = Kp(r − yk) +
Kp

Ti
zk, (26)

where h is the sampling interval. A deviation formula-
tion of the PI controller is then found as follows

uk − uk−1
= Kp(r − yk) +

Kp

Ti
zk − (Kp(r − yk−1) +

Kp

Ti
zk−1)

= −Kp(yk − yk−1) +
Kp

Ti
(zk − zk−1). (27)

From (25) we have that zk − zk−1 = h(r− yk−1). Sub-
stituting this into (27) gives

uk = uk−1 +G1(yk − yk−1) +G2(yk−1 − r). (28)

where

G1 = −Kp, G2 = −Kp

Ti
h. (29)
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Furthermore, using that yk = Dxk + w gives

uk = uk−1 +G1D∆xk +G2(yk−1 − r). (30)

The above discussion shows that the PI controller is
exactly of the same structure as the LQ optimal con-
troller (19). The difference is that the optimal con-
troller takes feedback from the deviation state vector
∆xk = xk−xk−1 while the PI-controller only uses feed-
back from the output deviation ∆yk = D∆xk.

6. Numerical examples

Example 6.1 (Quadruple tank process)
Consider the quadruple tank process, Johansson
(2002), with the non-linear state space model derived
from mass balances and Bernoulli’s/Torricelli’s law.
By equating the potential energy and kinetic energy,
i.e. mgh = 1

2mv
2 and solving for the velocity we ob-

tain v =
√

2gh. Multiplying with the area, a, of the
outlet hole of the tank we obtain the volumetric flow-
rate, q, out of the tank as q = av = a

√
2gh.

Hence, a mass balance of the four tank process gives
the state space model

A1ẋ1 = −a1
√

2gx1 + a3
√

2gx3 + γ1k1u1, (31)

A2ẋ2 = −a2
√

2gx2 + a4
√

2gx4 + γ2k2u2, (32)

A3ẋ3 = −a3
√

2gx3 + (1− γ2)k2u2, (33)

A4ẋ4 = −a4
√

2gx4 + (1− γ1)k1u1, (34)

where Ai ∀ i = 1, . . . , 4 is the cross-section area of tank
i, ai ∀ i = 1, . . . , 4 is the cross-section area of the outlet
pipe of tank i.

The flow k1u1 from pump 1 may be divided into a
flow γ1k1u1 into tank 1 and a flow (1 − γ1)k1u1 to
tank 4, i.e. such that the flow from pump number 1
is k1u1 = γ1k1u1 + (1 − γ1)k1u1. Similarly, the flow
k2u2 from the second pump may be divided into a flow
γ2k2u2 into tank 2 and a flow (1 − γ2)k2u2 into tank
3. Here γ1 and γ2 are fixed parameters. The system is
non-minimum phase when choosing these parameters
such that, 0 < γ1 +γ2 < 1, and the system is minimum
phase when, 1 < γ1 + γ2 < 2. The numerical values
for the above parameters, as well as nominal values for
the states and control inputs, are chosen as presented
in Johansson (2002).

The 4 tank process is studied in a number of papers,
see e.g. Gatzke et al. (2000) where Internal Model Con-
trol (IMC) and Dynamic Matrix Control (DMC) were
used to control the 4 tank process. Here we use the
proposed LQ optimal controller with integral action as
presented in Sec. 3.

The results after using the LQ optimal controller, eq.
(19), in order to control the non-linear model eqs. (31)-
(34) are presented in Figures 1 and 2. The weighting

matrices were chosen simply as P = I2 and Q = I2 for
both the minimum and non-minimum phase cases.
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Figure 1: Simulation of the quadruple tank process and
the minimum phase case in Example 6.1 with
LQ optimal control with integral action.
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Figure 2: Simulation of the quadruple tank process and
the non-minimum phase case in Example 6.1
with LQ optimal control with integral action.

Example 6.2 (Isothermal chemical reactor)
A chemical isothermal reactor with a reaction sA→k B
, which can be modeled as

ẋ1 =
u1
V

(u2 − x1)− skx21, (35)

ẋ2 = −u1
V
x2 + kx21, (36)

where V = 1, k = 1 and s = 2. u1 is the flow rate, u2
the feed concentration, V the volume and k a reaction
velocity constant. The states x1 and x2 are the molar
compositions of the substances A and B respectively.

The steady state control variables us1 = 10 and us2 =
1 give the steady states xs1 = 0.8541 and xs2 = 0.0729.
Linearizing around the steady state gives the linear
model

∆ẋ = Ac∆x+Bc∆u, (37)
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where ∆x = x− xs and ∆u = u− us and

Ac =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
xs,us

=

[
−us

1

V − 2skxs1 0

2kx1 −us
1

V

]
=

[
−13.4164 0

1.7082 −10.0

]
,(38)

Bc =

[
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

]
xs,us

=

[
us
2

V
us
1

V

−xs
2

V 0

]
=

[
1.0 10.0

−0.0729 0

]
. (39)

A discrete time model is obtained by using a zero order
hold on the input and a sampling interval h = 0.01,
i.e.,

xk+1 = Axk +Buk + v, (40)

yk = Dxk, (41)

where

A = eAch =

[
0.8744 0
0.0152 0.9048

]
, (42)

B = A−1c (eAch − I)Bc =

[
0.0094 0.0936
−0.0006 0.0008

]
, (43)

D =

[
1 0
0 1

]
, v = xs −Axs −Bus. (44)

Choosing a LQ criterion

Ji =
1

2

N∑
k=i

((yk − r)TQ(yk − r) + ∆uTk P∆uk), (45)

with

P =

[
1 0
0 100

]
, Q =

[
50 0
0 100

]
, (46)

gives the LQ optimal control

uk = uk−1 +G1∆xk +G2(yk−1 − r), (47)

where

G1 =

[
−15.7253 55.7233
−1.9714 −6.5884

]
, (48)

G2 =

[
−4.7639 6.2149
−0.3639 −0.7540

]
. (49)

Simulation results after changes in the reference signal
r are illustrated in Figure 3.
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Figure 3: Simulation of the chemical reactor in Exam-
ple 6.2 with LQ-optimal control.

Example 6.3 (Van de Vusse chemical reactor)

A chemical isothermal reactor (Van de Vusse) is
studied in this example. The relationship from the feed
flow rate u into the reactor to the concentration of the
product y at the outlet of the reactor is modeled by the
following non-linear state space model.

ẋ1 = −k1x1 − k3x21 + (v − x1)u, (50)

ẋ2 = k1x1 − k2x2 − x2u, (51)

y = x2, (52)

where the reaction rate coefficients are given by k1 =
50, k2 = 100, k3 = 10. The concentration of the by-
product into the reactor, v, is treated as an unknown
constant or slowly varying disturbance with nominal
value vs = 10. Choosing a steady state control us = 25
gives the steady states xs1 = 2.5 and ys = xs2 = 1.

A linearized model around the steady state is given
by

∆ẋ = Ac∆x+Bc∆u+ Cc∆v, (53)

where ∆x = x − xs, ∆u = u − us and ∆v = v − vs,
and

Ac =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
xs,us

=

[
−k1 − 2k3xs

1 − us 0
k1 −k2 − u

]
=

[
−125 0

50 −125

]
,(54)

Bc =

[
∂f1
∂u
∂f2
∂u

]
xs,vs

=

[
vs − xs1
−xs2

]
=

[
7.5
−1

]
. (55)

Notice that Cc is computed similar as Bc but is not
needed. A discrete time model is obtained by using a
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zero order hold on the input and a sampling interval
h = 0.002, i.e.,

xk+1 = Axk +Buk + v, (56)

yk = Dxk, (57)

where

A = eAch =

[
0.7788 0
0.0779 0.7788

]
, (58)

B = A−1c (eAch − I)Bc =

[
0.0133
−0.0011

]
, (59)

D =
[

0 1
]
, v := xs −Axs −Bus + C(v − vs). (60)

Notice that C is computed similar as B but is not
needed because the LQ optimal controller is indepen-
dent of the constant disturbance v in the state Eq. (56)
(assuming a constant or slowly varying disturbance in
the reactor). Choosing a LQ criterion

Ji =
1

2

∞∑
k=i

(Q(yk − r)2 + P∆u2k), (61)

with

P = 1, Q = 500, (62)

gives the LQ optimal control

uk = uk−1 +G1∆xk +G2(yk−1 − r), (63)

where

G1 =
[
−23.4261 −84.5791

]
, G2 = −20.0581. (64)

Simulation results after changes in the reference signal
r are illustrated in Figure 4.
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Figure 4: Simulation of the chemical reactor in Exam-
ple 6.3 with LQ-optimal control.

Example 6.4 (Distillation column)
One advantage of the presented LQ optimal control is
that the control is designed in discrete time. Continu-
ous processes with slow dominant dynamics are often
controlled with a digital/discrete controller. If the sam-
pling time is large then a continuous time controller
design may give poor results when used as a discrete
controller. We will here illustrate the simple discrete
time LQ optimal control design for a distillation col-
umn.

Consider a distillation column with eight trays and
a relative volatility α = 2.993. Let the control variable
u1 = R be the reflux to the column and u2 = V be
the flow rate of vapor in the column. The composition
of the top product x8 = xD and the composition of the
bottom product x1 = xB are treated as measured output
variables. The feed flow rate F and the composition xF
of the light product in F are both treated as unknown
constant or slowly varying disturbances.

The continuous non-linear model with n = 8 states is
first linearized around the steady state operating point
Rs = 2, V s = 2.5, F s = 1 and xsF = 0.5. This gives a
continuous time linear model of the form

∆̇x = Ac∆x+Bc∆u+ Cc∆v, (65)

∆y = D∆x. (66)

This model is then discretized with a sample interval of
h = 5 [min]. This gives a discrete time model of the
form

xk+1 = Axk +Buk + v, (67)

yk = Dxk + w. (68)

Choosing a LQ criterion

Ji =
1

2

N∑
k=i

((yk − r)TQ(yk − r) + ∆uTk P∆uk), (69)

with

P =

[
1 0
0 1

]
, Q = 2500

[
1 0
0 1

]
, (70)

gives the LQ optimal control

uk = uk−1 +G1∆xk +G2(yk−1 − r), (71)

where

G1 =

[
12.8099 0.9303 0.3961 −0.3187
30.3424 2.2003 1.4407 0.5590

−1.5158 −3.2992 −6.3394 −50.2082
−0.6629 −2.0994 −4.1887 −30.6734

]
, (72)
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G2 =

[
10.0833 −29.5242
24.6664 −17.1829

]
. (73)

The linear controller (71)-(73) on the deviation form
is used in this example to control the non-linear dis-
tillation column model with eight states. If the state
vector is not available, then we may use a state ob-
server or compute an expression for ∆xk from some
past inputs and outputs, e.g. as in the Extended Model
Predictive Control (EMPC) algorithm, Di Ruscio and
Foss (1998). Simulation results after changes in the
reference signal r are illustrated in Figure 5.
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Figure 5: Simulation of the distillation column in Ex-
ample 6.4 with LQ optimal control.

7. Experimental results on a
quadruple tank process

The results from practical experiments on a quadru-
ple tank laboratory process will be presented in this
section.

The sampling rate in all experiments is one sec-
ond. We started with empty tanks in all experiments.
Hence, this may be viewed as a test for robustness for
unknown non-linearities when using the proposed LQ
controller. The quadruple tank process setup results
in a non-minimum phase behavior.

The experiments are described in the following
items.

1. An open loop input experiment is designed as illus-
trated in Fig (6) and the corresponding outputs,
i.e. the levels in the two lower tanks, also illus-
trated in Fig (7).

2. The input and output data are collected into
data matrices U ∈ RN×2, and Y ∈ RN×2 where
the number of samples is N = 5459. The first

NID = 4000 first samples were used for identifi-
cation. Hence, the last 1459 samples may be used
for validation of the identified state space mod-
els. The data were also centered before use in the
identification methods.

3. A First Principles (FP) model, very similar to the
one presented in Example 6.1, were fitted to the
process as well as believed possible. Using the
input experiment as illustrated in Fig. (6) gave
the simulated outputs as illustrated in Fig. (7).
The Prediction Error (PE) criterion evaluated for
the validation data was Vfp = 7.57.

4. The MATLAB IDENT Toolbox system identifi-
cation function pem.m where used to identify
a n = 4 order state space model. The simu-
lated outputs are illustrated in Fig. (7). The
PE criterion evaluated for the validation data was
VPEM = 3.38.

5. The subspace system identification method, Di
Ruscio (2009) was used. The best DSR model
with n = 4 states were found with parameters
L = 2 and J = 29. The simulated outputs are
illustrated in Fig. (7). The PE criterion evaluated
for the validation data was VDSR = 3.07.

6. Two SISO PI controllers were tuned by using the
model based tuning method in Di Ruscio (2010).
The model used was the DSR model. The ex-
perimental results using this decentralized control
strategy are illustrated in Figs. (8) and (9).

7. The LQ optimal control strategy eq. (19) was im-
plemented. The Kalman filter identified by the
DSR method was used to identify the present state
deviation ∆xk = xk − xk−1 needed in the con-
troller. The experimental results using this LQ
optimal controller with integral action strategy are
illustrated in Figs. (8) and (9).

The conclusions drawn from this experimental re-
sults are discussed in the following.

Interestingly the identified state space models, both
from PEM and DSR, fit the real data better than the
FP model. Here the simulated output, i.e. the behav-
ior from the input u, to the output y, is used in order
to calculate the PE criterion. The results using the
FP model, the PEM model and the DSR model are
Vfp = 7.57, VPEM = 3.38 and VDSR = 3.07 , respec-

tively. Interestingly the DSR model fit the validation
data slightly better than the PEM model.

Based on this conclusion we are using the identi-
fied DSR model for both tuning the PI controllers and
for use in the LQ optimal controller with integral ac-
tion strategy eq. (19). The deterministic part of the

42



Di Ruscio, “Discrete LQ optimal control with integral action”

model, i.e. xk+1 = Axk + Buk and yk = Dxk, was
used to tune the PI controller strategy (by first using
the RGA pairing strategy, Bristol (1966), Skogestad
and Postlethwaite (1996)), as well as for the calcula-
tion of the feedback matrices G1 and G2. Furthermore
the DSR identified Kalman filter gain matrix K was
used in the Kalman filter on deviation form eq. (20),
for estimating the deviation states ∆xk needed in eq.
(19).

As we see from Figs. (8) and (9) the LQ strategy
works very well compared to the PI controller strategy.
This is justified by comparing the Integrated Absolute
(IAE) indices. The DSR model with the LQ optimal
controller in Eq. (19) gave IAE indices 1.6849 and
1.3290 for level one and two, respectively, and for the
PI controllers 2.2723 and 2.5141 for level one and two,
respectively. It is also worth mentioning that it is very
difficult to tune PI controllers for this process due to
the non-minimum phase behavior of the process.
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Figure 6: Open loop system identification input exper-
iment, i.e. the volt input to the pumps.

8. Concluding remarks

A simple LQ optimal controller with integral action on
velocity (incremental) form for MIMO systems is pro-
posed. The proposed LQ controller is demonstrated to
work well on four simulation examples. Furthermore,
practical experiments show that the proposed LQ con-
troller works well on a quadruple tank laboratory pro-
cess.
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Figure 7: This figure illustrates the real measurements
of the level in the two lower tanks as well as
the corresponding simulated outputs of the
system identification models, from DSR and
PEM, as well as the simulated outputs from
the first principles model.

A. MATLAB script for computation

function [G1,G2,At,Bt,Dt,Rr]= ...

dlqdu_pi(A,B,D,Q,Rw);

% DLQDU_PI syntax

% [G1,G2,At,Bt,Dt]=dlqdu_pi(A,B,D,Q,R);

% Purpose

% Compute LQ-optimal feedback matrices

% G1 and G2 in the controller

% u=u+G1*(x-x_old)+G2*(y_old-r);

% On input

% A,B,D- discrete state space model matrices.

% Q - Weighting matrix for the output y_k.

% R - Weighting matrix for the control

% increment, Delta u_k=u_k-u_(k-1).

% On output

% G1 and G2 - Matrices in LQ controller

% At, Bt, Dt - Matrices in augmented model

% Make augmented state space model

% matrices.

nx=size(A,1); nu=size(B,2); ny=size(D,1);

At=[A,zeros(nx,ny);D,eye(ny,ny)];

Bt=[B;zeros(ny,nu)];

Dt=[D,eye(ny,ny)];

Qt=Dt’*Q*Dt;

% Solve Riccati-equation

% and compute feedback matrix.

[K,Rr]=dlqr(At,Bt,Qt,Rw);

G=-K;

G1=G(:,1:nx); G2=G(:,nx+1:nx+ny);

% END dlqdu_pi
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Figure 8: Quadruple tank process. Level in tank one.
Illustrating the reference and the outputs
from the process controlled by two single loop
PI controllers, and the proposed LQ opti-
mal controller with integral action. The LQ
controller was constructed by using the DSR
method for system identification. The DSR
model was used to identify a Kalman filter
for the system. The states were estimated
with this Kalman filter and the determinis-
tic part of the model was used to design the
controller.
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Figure 9: Quadruple tank process. Level in tank two.
Illustrating the reference and the outputs
from the process controlled by two single loop
PI controllers, and the proposed LQ optimal
controller with integral action. The LQ con-
troller where constructed by using the DSR
method for system identification. The DSR
model was used to identify a Kalman filter
for the system. The states were estimated
with this Kalman filter and the determinis-
tic part of the model was used to design the
controller.
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Söderström, T. Discrete-time Stochastic Systems: Es-
timation and Control. Prentice Hall, 1994.

44

http://dx.doi.org/10.1109/TAC.1966.1098266
http://dx.doi.org/10.4173/mic.2009.2.3
http://dx.doi.org/10.4173/mic.2010.4.3
http://dx.doi.org/10.1109/TAC.1978.1101812
http://dx.doi.org/10.1016/S0098-1354(00)00555-X
http://dx.doi.org/10.1016/S0098-1354(00)00555-X
http://dx.doi.org/10.1016/S0005-1098(01)00285-0
http://creativecommons.org/licenses/by/3.0

	Introduction
	Problem formulation
	Problem solution
	State observer for the state deviation
	Connection with the PI controller
	Numerical examples
	Experimental results on a quadruple tank process
	Concluding remarks
	MATLAB script for computation

