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Abstract

This paper is concerned with the robust control problems for the synchronization of master-slave chaotic
systems with disturbance input. By constructing a series of Lyapunov functions, novel H∞ robust syn-
chronization controllers are designed, whose control regulation possess the characteristic of simpleness and
explicitness. Finally, numerical simulations are provided to demonstrate the e�ectiveness of the proposed
techniques.
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1 Introduction

Chaos synchronization is �rst introduced in Fujisaka

and Yamada (1983), and get much more attention from

researchers Pecora and Carroll (1990). The idea of syn-

chronization is to design a controller so that the output

of the slave system can follow the output of the mas-

ter system asymptotically with time passing by. In

general, there are four classes of synchronization for

dynamical systems: (i) identical or complete synchro-

nization, (ii) generalized synchronization, (iii) phase

synchronization, (iv) anticipated and lag synchroniza-

tion and amplitude envelope synchronization, see Luo

(2009). Due to its powerful applications in chemical

reactions, power converters, biological systems, infor-

mation processing, secure communications, chaos syn-

chronization has been developed extensively. During

the last decade, many techniques for handling chaos

synchronization have been studied. In Huang et al.

(2009), based on the sliding mode control technique, a

single controller is designed to achieve chaos synchro-

nization of four-dimensional energy resource systems.

In Sun (2009), via the time-domain approach, a track-

ing control is proposed to realize chaos synchronization

for the uncertain Genesio-Tesi chaotic systems with

deadzone nonlinearity. In Wu et al. (2009), through
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adopting active control method, backstepping design

and adaptive method, the synchronization problems

for a new 3D chaotic system are discussed. In Chen

(2009), a linear balanced feedback gain control method

is then employed to design a controller to achieve the

global synchronization of two identical four-scroll Liu

chaotic systems. In Kuntanapreeda (2009), based on

Lyapunov stability theory and linear matrix inequal-

ity formulation, a simple linear feedback control law

is obtained to make the state of two identical uni�ed

chaotic systems asymptotically synchronized. In E�a

et al. (2009), the problems on chaos synchronization

between chaotic Colpitts oscillators are investigated.

Recently, the problem of synchronization for di�er-

ent class of master-slave systems with time-delays and

uncertainties are studied in (Karimi and Gao (2010),

Karimi et al. (2012), Karimi (2012), Karimi (2011))

and the references therein. However, those synchro-

nization methods usually are specialized for one typical

chaotic system, which limit their application in prac-

tice. In this paper, we consider the following chaotic

system:

żi(t) = zi+1(t), i = 1, 2, · · · , n− 1
żn(t) = f(z(t))

(1)

where Z(t) = (z1(t), z2(t), · · · , zn(t))T is the system

state vector.

Such a model can represent many chaotic systems. Ac-

tually, through topological transformation, many exist-

ing chaotic systems, such as Chen systems, Lorenz sys-

tems, Lü systems, etc, can be transformed as the form

of system (1). Compared with the researches focus on

one chaotic system, the investigation towards chaotic

system (1) will have wider range of practical applica-

tion. In addition, disturbance is common in real control

system. Usually H∞ method is utilized to deal with

such problem and corresponding investigation can be

seen in (Basin et al. (2011), Song et al. (2009), Yang

et al. (2011a), Zhang et al. (2008), He et al. (2009),

Zhang and Shi (2009), Ahn and Song (2011), Shi et al.

(2012), Liu et al. (2011), Yang et al. (2011b)) and the

references therein. Therefore, in this paper, based on

Lyapunov function and linear matrix inequality, H∞

controller design for synchronization of the chaotic sys-

tem (1) with disturbance input will be studied. Corre-

sponding simulation results will be given to illustrate

the usefulness of theoretical results obtained.

Notation: The notations used throughout the paper

are fairly standard. Let Rn be the n-dimensional Eu-

clidean space, Rn×m the set of n × m real matrix, ∗
the symmetric part in a matrix, I the identity matrix

with appropriate dimensions, diag {· · · } the diagonal

matrix. By A > 0 we mean that A is a real symmetric

positive de�nitive matrix.

2 System description and

preliminaries

In real world, the order of chaotic system (1) usually

will not go beyond fourth order. Therefore, we �rst

consider the following fourth order master-slave chaotic

system.

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)
ẋ3(t) = x4(t)
ẋ4(t) = f(x(t)) + w(t) + u(t)

(2)

where x(t) = (x1(t), x2(t), x3(t), x4(t))T is the state

vector of the slave system,f(x(t)) is the nonlinear func-

tion variable of the slave system, w(t) ∈ L2[t0,∞] is

the disturbance input, u(t) is the control input, has an

e�ect on slave system through ẋ(t).

ẏ1(t) = y2(t)
ẏ2(t) = y3(t)
ẏ3(t) = y4(t)
ẏ4(t) = g(y(t))

(3)

where y(t) = (y1(t), y2(t), y3(t), y4(t))T is the state vec-

tor of the master system, g(y(t)) is nonlinear function

variable of the master system.

De�ne the tracking error vector as follow

E(t) = x(t)− y(t)
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The error dynamical system model can be described by

ė1(t) = e2(t)
ė2(t) = e3(t)
ė3(t) = e4(t)
ė4(t) = F (x(t), y(t)) + w(t) + u(t)
F (x(t), y(t)) = f(x(t))− g(y(t))
h(t) = CTE(t) + dw(t)

(4)

where C = (c1, c2, c3, c4)T is a vector, d is a positive

scalar, E(t) = (e1(t), e2(t), e3(t), e4(t))T is the tracking

error vector, and h(t) is the error output.

In the paper, the following de�nition is needed:

De�nition 1: Under the assumption of zero initial

condition, the systems (2) can be synchronized to sys-

tem (3) with H∞ norm bound γ, if there exists any

nonzero w(t) ∈ L2[t0,∞] such that

‖h(t)‖2 ≤ γ ‖w(t)‖2

3 Main Results

In this section, based on Lyapunov method and linear

matrix inequality, the following theorem can be con-

cluded.

Theorem 1. System (2) with any initial conditions

can be synchronized to system (3) by the following H∞

controller

u(t) =
−(((k1k2 + 1)k3 + k1)k4 + k1k2 + 1)e1(t)
−((k1k2 + (k1 + k2)k3 + 2)k4
+(k1k2 + 1)k3 + 2k1 + k2)e2(t)
−((k1 + k2 + k3)k4
+(k1k2 + (k1 + k2)k3 + 3))e3(t)
−(k1 + k2 + k3 + k4)e4(t)− F (x(t), y(t))

(5)

[
CCT −K dC +B
∗ d2 − γ2

]
< 0 (6)

where B = (0, 0, 0, 1)T , K = diag{k1, k2, k3, k4} and

the control gains k1, k2, k3, k4 are positive scalars to be

determined.

Proof. Choose the �rst Lyapunov functional candi-

date as

V1(t) =
1

2
z21(t)

where

z1(t) = e1(t)

The time derivative of V1(t) along trajectories of error

model (4) is

V̇1(t) = z1(t)e2(t)
= −k1z21(t) + z1(t)(k1e1(t) + e2(t))

Choose the second Lyapunov functional candidate as

V2 =
1

2
z21(t) +

1

2
z22(t)

where

z2(t) = k1e1(t) + e2(t)

The time derivative of V2(t) along trajectories of error

model (4) is

V̇2(t) = V̇1(t) + z2(t)(k1e2(t) + e3(t))
= −k1z21(t)− k2z22(t) + z2(t)((k1k2
+1)e1(t) + (k1 + k2)e2(t) + e3(t))

Choose the third Lyapunov functional candidate as

V (t) =
1

2
z21(t) +

1

2
z22(t) +

1

2
z23(t)

where

z3(t) = (k1k2 + 1)e1(t) + (k1 + k2)e2(t) + e3(t)

The time derivative of V (t) along trajectories of error

model (4) is

V̇3(t) = V̇2(t) + z3(t)((k1k2 + 1)e2(t)
+(k1 + k2)e3(t) + F (x(t), y(t)) + u(t)
+w(t))
= −k1z21(t)− k2z22(t)− k3z23(t)
+z3(t)(((k1k2 + 1)k3 + k1)e1(t)
+(k1k2 + (k1 + k2)k3 + 2)e2(t)
+(k1 + k2 + k3)e3(t) + F (x(t), y(t))
+u(t) + w(t))

Choose the fourth Lyapunov functional candidate as

V (t) =
1

2
z21(t) +

1

2
z22(t) +

1

2
z23(t) +

1

2
z24(t)

where

z4(t) = ((k1k2 + 1)k3 + k1)e1(t)
+(k1k2 + (k1 + k2)k3 + 2)e2(t)
+(k1 + k2 + k3)e3(t) + e4(t)
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The time derivative of V (t) along trajectories of error

model (4) is

V̇ (t) = V̇3(t)
+z4(t)(((k1k2 + 1)k3 + k1)e2(t)
+(k1k2 + (k1 + k2)k3 + 2)e3(t)
+(k1 + k2 + k3)e4(t) + F (x(t), y(t)) + u(t))
= −k1z21(t)− k2z22(t)− k3z23(t)− k4z24(t)
+z4(((k1k2 + 1)k3 + k1)k4 + k1k2 + 1)e1(t)
+((k1k2 + (k1 + k2)k3 + 2)k4
+(k1k2 + 1)k3 + 2k1 + k2)e2(t)
+((k1 + k2 + k3)k4
+(k1k2 + (k1 + k2)k3 + 3))e3(t)
+(k1 + k2 + k3 + k4)e4(t) + F (x(t), y(t))
+u(t) + w(t))

(7)

Substituting the control law (5) into (7) results in

V̇ = −ZT (t)KZ(t) + z4(t)w(t)

Consider the following performance index

J =
∫ tT
t0

[hT (t)h(t)− γ2wT (t)w(t)]dt

=
∫ tT
t0

[hT (t)h(t)− γ2wT (t)w(t) + V̇ (t)]dt

+V (t0)− V (tT )

For V (t0) = 0 and V (tT ) ≥ 0, we have

J ≤
∫ tT
t0

[hT (t)h(t)− γ2wT (t)w(t) + V̇ (t)]dt

=
∫ tT
t0
ηT (t)Ωη(t)dt

where

η(t) = [ET (t), wT (t)]T

Ω =

[
CCT −K dC +B
∗ d2 − γ2

]
Therefore, if LMI (6) is satis�ed, then J ≤ 0 for any

nonzero w(t) ∈ L2[t0,∞]. This completes the proof.

4 Further results

In this section, we �rst consider the following second

order master-slave chaotic systems

ẋ1(t) = x2(t)
ẋ2(t) = f(x(t)) + w(t) + u(t)

(8)

where x(t) = (x1(t), x2(t))T and

ẏ1(t) = y2(t)
ẏ2(t) = g(y(t))

(9)

with y(t) = (y1(t), y2(t))T .

Based on Theorem 1, the following corollary can be

deduced.

Corollary 1. System (8) with any initial conditions

can be synchronized to system (9) by the following H∞

controller

u(t) = −(k1k2 + 1)e1(t)− (k1 + k2)e2(t)
−F (x(t), y(t))

(10)

[
CCT −K dC +B
∗ d2 − γ2

]
< 0 (11)

where B = (0, 1)T , K = diag{k1, k2} and the control

gains k1, k2 are positive scalars to be determined.

Next, we consider the following third order master-

slave chaotic systems

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)
ẋ3(t) = f(x(t)) + w(t) + u(t)

(12)

where x(t) = (x1(t), x2(t), x3(t))T and

ẏ1(t) = y2(t)
ẏ2(t) = y3(t)
ẏ3(t) = g(y(t))

(13)

with y(t) = (y1(t), y2(t), y3(t))T .

Based on Theorem 1, the following corollary can be

concluded.

Corollary 2. System (12) with any initial conditions

can be synchronized to system (13) by the following

H∞ controller

u(t) = −((k1k2 + 1)k3 + k1)e1(t)
−(k1k2 + (k1 + k2)k3 + 2)e2(t)
−(k1 + k2 + k3)e3(t)− F (x(t), y(t))

(14)

[
CCT −K dC +B
∗ d2 − γ2

]
< 0 (15)

where B = (0, 0, 1)T , K = diag{k1, k2, k3} and the

control gains k1, k2, k3 are positive scalars to be deter-

mined.
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5 Simulation results

For numerical simulation, we �rst consider the follow-

ing third order master-slave chaotic systems

ẏ1(t) = y2(t)
ẏ2(t) = y3(t)
ẏ3(t) = g(y(t))
g(y(t)) = 5.5y1(t)− 3.5y2(t)− y3(t) + y31(t)

and

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)
ẋ3(t) = f(x(t)) + w(t) + u(t)
f(x(t)) = −1.2x1(t)− 1x2(t)− 0.6x3(t) + x21(t)

where

γ = 0.4, d = 0.1, C = [1.1, 0.6, 0.7]
x0 = [−1, 0,−3]T ,
y0 = [0.1922,−3.4031, 4.3610]T

w(t) =

{
15 sin(2t) cos(et), t ≥ 10s
0, else

According to the given control regulation, we get K =

diag{5.3383, 2.9184, 15.7688}. The numerical simula-

tion results can be seen in Figures 1-3.

Next, we consider the following second order master-

slave chaotic systems

ẋ1(t) = x2(t)
ẋ2(t) = f(x(t)) + w(t) + u(t)
f(x(t)) = −0.5x2(t) + x1(t)− 0.8x31(t)− 2 cos(1.5t)

and

ẏ1(t) = y2(t)
ẏ2(t) = g(y(t))
g(y(t)) = −0.4y2(t) + 1.1y1(t)− y31(t)− 2.1 cos(1.8t)

where
γ = 0.3, d = 0.1, C = [0.8, 0.5]
x0 = [2, 3]T , y0 = [−2, 7]T

w(t) =

{
15 cos(2t) sin( et

t+1 ), t ≥ 10s

0, else

According to the given control regulation, we get K =

diag{2.0589, 15.6052}. The numerical simulation re-

sults can be seen in Figures 4-6.

Remark. Figures 1 and 4 depict the time response of

system disturbance input, Figures 2 and 5 depict the
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Figure 1: Time response of disturbance input of third
order chaotic system
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Figure 3: Time response of error variable of third order
master-slave systems
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order chaotic system
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Figure 6: Time response of error variable of second
order master-slave systems

time response of state variable of master-slave systems.

The time responses of error variable of master-slave

systems are plotted in Figures 3 and 6. It can see that

both of the second order and the third order chaotic

systems display complex dynamics. Based on H∞ con-

troller designed, we can see that in the early period,

the slave system spends less than 1 second realizing

the tracking with the master system; later the distur-

bance input is added at the 10th second, we can see the

error variable of master-slave systems jitter in a small

range, which satis�es theH∞ performance index given.

The simulation results demonstrate the e�ectiveness of

the proposed techniques.

6 Conclusion

In this paper, the problems on robust control for the

synchronization of master - slave chaotic systems with

disturbance input have been studied. Based on Lya-

punov method and LMI techniques, novel H∞ robust

synchronization controllers have been presented, whose

control regulation possess the characteristic of simple-

ness and explicitness. Finally, some numerical simula-

tions have been carried out to demonstrate the e�ec-

tiveness of results obtained.
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