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Abstract

The main focus of this paper is the experimental and numerical investigation of a 750[kW] wind turbine
gearbox. A detailed model of the gearbox with main shaft has been created using MSC.Adams. Special fo-
cus has been put on modeling the planet carrier (PLC) in the gearbox. For this purpose experimental data
from a drive train test set up has been analyzed using parameter identification to quantify misalignments.
Based on the measurements a combination of main shaft misalignment and planet carrier deflection has
been identified. A purely numerical model has been developed and it shows good accordance with the
experimental data.
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1 Introduction

A common topology of wind turbine drive trains in-
cludes a gearbox with the main purpose of increasing
the speed of the rotor to a value suited to the gener-
ator, power electronics and grid at hand. The steady
increase in power rating of wind turbines together with
the constraint on the blade tip speed has led to higher
demands for gear ratio and, subsequently, to a higher
complexity in the gearbox layout and in the load distri-
bution. This trend has further emphasized the gearbox
as a crucial element in any reliability assessment of a
wind turbine.

Since model based prediction of performance, in gen-
eral, and reliability, in particular, holds many advan-
tages the obvious conclusion from the above is to em-
ploy models that take into account more degrees of

freedom and more phenomena when doing time do-
main simulation of drive trains. This should, however,
be done carefully since certification in the wind tur-
bine industry is based on simulation of large time se-
quences. This work focuses on the investigation of the
importance of including gearbox component flexibility
with special emphasis on the planet carrier (PLC) of
the planetary stage normally found in a wind turbine
gearbox. In that respect the work can be viewed as a
continuation of Haastrup et al. (2011) that focused on
the distribution of the torsional flexibility of the drive
train. Also, the work can be viewed as an integral
part of the Gearbox Reliability Collaborative (GRC)
initiated and managed by the National Renewable En-
ergy Laboratory (NREL) where a 775[kW] gearbox has
been subjected to extensive testing. Part of the instru-
mentation involves proximity sensors used to measure
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Figure 1: Naming of the main components.

the axial and radial motion and deflection of specific
points of the PLC. The aim of this paper is to utilize
these measurements to set up and calibrate a model
that properly describes the behavior of the PLC with
a minimum of complexity and computational costs.

Many different approaches have been suggested on
how to model planetary gears. In the following papers
researchers are investigating vibration phenomena us-
ing analytical approaches: Al-shyyab and Kahraman
(2007), Kahraman (1994), Lin and Parker (1999).
Others reach the same objective using finite ele-
ment Parker et al. (2000a), Parker et al. (2000b) and
Rigaud et al. (2006). Common for all of these papers
is that they present methods for prediction of noise
and/or vibration of gearboxes. Before computers be-
came sufficiently fast to solve large finite element analy-
ses (FEA) and multi body simulations (MBS) the same
objectives were reached using analytical models. A sur-
vey is given in Özgüven and Houser (1988).

To model wind turbine gearboxes a gear model
is required and some gear models for use in MBS
has been suggested. Lundvall et al. (2004) proposes
a gear model that imposes flexibility to the rigid
body motion. The flexibility is obtained using FEM
and tribology theory. Another method proposed
by Blankenship and Singh (1995) implements full 3D
forces and moments relevant for a helical gear pair.
Blankenship uses a combined stiffness to account for
both gear wheel, tooth and contact stiffness. A
third gear model suggested by Ebrahimi and Eberhard
(2006) uses a lumped mass approach for model-
ing the flexibility of gears. In the present paper
commercial available modeling tools developed by
MSC.SoftwareTM, see Table 1, is used in conjunction
with measured data to set up guidelines for modeling
planetary gearboxes in wind turbine drive trains. The
gear model has a contact algorithm for detecting con-
tact between mating gears taking profile modifications

and contact stiffness into account.
In the present paper a gear model developed by

MSC.Software in Germany will be used. The model
has a contact algorithm for detecting contact between
mating gears taking profile modifications and contact
stiffness into account. Ultimately the goal is to predict
fatigue loads on gear, bearings and other components
and noise emission. However, none of these models are
experimentally verified.

Table 1: Software used in this paper

Name Purpose

MSC.Adams Multibody dynamics
MSC.Patran FEM pre and post processor
MSC.Nastran FEM solver

Adams/Gear AT Gear sover for MSC.Adams
Adams Gear Generator Gear sover for MSC.Adams

MATLAB Parameter identification

2 Identification of PLC motion

The gearbox considered in this paper has three gear
stages: one planetary and two parallel. The naming of
the main components of the gearbox is shown in Fig-
ure 1. The PLC motion is measured by six proximity
sensors. Four of them are measuring axial displace-
ments (along the x-axis) and two are measuring radial
displacement (perpendicular to the x-axis). All the
displacements are measured relative to the housing of
the gearbox, i.e., any displacement is a combination of
rigid body motion of the PLC relative to the housing
as well as deflection of both the PLC and the housing.
In order to produce valid experimental data, two faces
on the PLC have been machined, as shown in Figure
2, and they are used as measuring reference.
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Figure 2: CAD drawing showing the location of the
proximity sensors.

All sensors are mounted on the inside of the main
flange of the gearbox. They are displaced a radius
Rs = 412[mm] from the x-axis, see Figure 2, and, fur-
ther, rotated different angles around the x-axis with
0◦ corresponding to the z-axis. The four sensors
that measure axial displacement are located at θx =
[47◦, 137◦, 227◦, 317◦] and the two sensors that measure
radial displacement are located at θx = [40◦, 310◦].

The signals from the sensors are named after the
location of the sensors, subsequently, the names are:
s47e , s137e , s227e and s317e for the axial sensors and s40e
and s310e for the radial.

Measurements were conducted in four different load
cases, which are tests where 100% or 50% of a nominal
torque of T ≈ 360[kNm] was applied. In two of the

load cases radial load was also applied by means of a
non-torque radial loading device, see Haastrup et al.
(2011). The load cases are listed in Table 2.

Table 2: Load cases.

Load case Torque Radial load

LC1 100% 0
LC2 50% 0
LC3 100% −200[kN]
LC4 100% 200[kN]

2.1 Rigid body motion
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Figure 3: Definition coordinate systems and angles.

Identification of the PLC motion requires a model
that is capable of showing the same behavior as can be
observed in the measurements. From the observations
two models are proposed: The first model concerns
only rigid body motion (M1) while the second model
also takes into account the deformation of the PLC
(M2).
Two coordinate systems have been employed to de-

scribe the assumed rigid body motion of the PLC.
Firstly, there is a fixed coordinate system (xH , yH ,
zH) that is shown in Figure 3 and which is aligned
with the global coordinate system (x, y, z) shown in
Figure 2. Secondly, a coordinate system fixed to the
PLC (xPLC , yPLC , zPLC) is defined. This coordinate
system is rotated around the xH -axis of the fixed co-
ordinate system with an angle θx(t), see Figure 3. The
rigid body model assumes that the motion of the PLC
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can be described by a constant displacement, dx, along
the xH -axis, along with a constant tilt φH around a
fixed tilt axis that is obtained by rotating the zH -axis
an angle θH around the xH -axis. Similarly, a constant
tilt φPLC around a rotating tilt axis that is obtained
by rotating the zPLC -axis an angle θPLC around the
xPLC = xH -axis. In all this gives five parameters to be
identified: dx, θH , φH , θPLC , and φPLC that describe
the rigid body motion of the PLC. In the following
equations θx(t) denotes the rotation of the PLC defined
as the rotation of the PLC-coordinate system relative
to the H-coordinate system. The simulated sensor sig-
nals: s47m , s137m , s227m and s317m are obtained from the
model. They are the motions in the xH -direction and
may be computed for small tilt angles as:

svm1 =dx +Rs φH sin (θvH) +Rs φPLC sin (θvPLC) (1)

Where Rs = 412[mm] is the radius from the x-axis to
the sensor locations, and

θvH =θH − v (2)

is the angle from the zH-axis to the sensor, v, location.
The angle from the zPLC-axis to sensor v is:

θvPLC =θx(t) + θPLC − v (3)

The relative angles defined in eq.(2) and eq.(3) are il-
lustrated for a single sensor in Figure 3.
Referring to eq.(1) the location on the PLC hav-

ing zero axial displacement due to misalignment of the
housing relative to the main shaft is [Rs, θH ] in po-
lar coordinates; the blue line in Figure 3 shows this
location. The largest displacement caused by housing
misalignment is given by Rs · φH . To obtain the dis-
placement at a given sensor this has to be multiplied
by sine to the angle from θH to the sensor v, calculated
in eq.(2). This displacement is constant in the housing
coordinate system and thereby at the sensors.
Similarly, the PLC is mounted with some misalign-

ment relative to the axis of rotation. Again, the point
where the misalignment yields zero displacement can
be expressed in polar coordinates: [RS , θPLC ], shown
by the orange line in Figure 3. θPLC is constant in
the coordinate system rotating along with the PLC,
therefore the rotation of the MS needs to be accounted
for when calculating the angle from θPLC to sensor v;
this angle is given by eq.(3). In Figure 4 the different
meanings of the two tilt angles are shown exaggerated.

2.2 Deformation model

For the purpose of determining the deformation pat-
tern of the PLC a FE model is created and a unit

φPLC = 4◦, θPLC = 90◦

φH = 8◦, θH = 90◦

Figure 4: Illustration of the PLC and housing misalign-
ment.
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Figure 5: Calculation of forces.

drive torque of T = 1[kNm] is applied. The Planets
are mounted in the PLC using planet pins which are
also modeled. See Figure 6 for the planet pins. The
tangential force caused by the drive torque is applied
at each planet pin in the FE model. Since helical gears
are used in the gearbox, a tilt moment is applied on
each planet. The definition of helix angle and pressure
angle is explained in Figure 5b. The force normal to
the tooth and the axial force is respectively:

F ′

n =
Ft

cos(α)
(4)

Fa = F ′

n tan(β) (5)

and the tilting moment is

Mt = d · Fa = 30.3[Nm] (6)
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where d = 400.4[mm] is the pitch diameter of the
planet gears. The basic gear data for the planetary
gear is given in Table 3.

Table 3: Basic gear data. Length in [mm] and angle in
[deg].

Ring PL sun

z 99 39 21
m 10 10 10
α 20 20 20
x -0.97 0.39 0.19
β 7.50 7.50 -7.50

The upwind end of the PLC, where it is connected
to the main shaft, is constrained to zero displacement
and the force FPLC is applied at each planet pin, see
Figure 6. Also, the tilt moment Mt is applied. The
forces and moments are applied through massless rigid
body elements.
The planet pins are mounted in the PLC using a

clearance fit, which preferably should be modeled using
contact elements. However, detailed knowledge of the
actual tolerances are not available and, instead, it is
chosen to model two extremes: a stiff model where
the pins are structurally connected to the PLC and
a flexible model where the pins are absent from the
structure and simply transmit forces to the PLC as if
it was simply supported. It is believed that a mix of
the corresponding deflection patterns would be capable
of representing the actual deflections. The deformation
patterns are presented in Figure 7 and 8 where the axial
deflection of the rim is plotted.
To investigate the influence of the tangential load

relative to the tilt moment, analyses have been con-
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Figure 7: Axial deformation as function of yPLC-zPLC

coordinates. The deflection pattern of the
stiff model is δs and the deflection pattern of
the flexible model is δf .
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Figure 8: Axial deformation as function of angular po-
sition. The deflection pattern of the stiff
model is δs and the deflection pattern of the
flexible model is δf .

ducted with the loads applied separately and together;
the conclusion is that the tilt moment is insignificant.
The deflection of the PLC is modeled by scaling the

curves of Figure 8. A model of the deformation is pro-
posed:

svm2 = svm1 + ρsδs(θ
v
ρ) + ρfδf (θ

v
ρ) (7)

where

θvρ = θx(t) + θρ − v. (8)

The parameters ρs and ρf define the scaling of the
mode shapes shown in Figure 8.
A model of the PLC deflection has been created

where the data labeled δs(θ) in Figure 8 scaled by ρs
and the data denoted δf (θ) scaled by ρf eq.(7) is used.
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In the following two different models are investigated.
Model (M1) simply employs the rigid body motion as
described in eq.(1) and therefore has the following five
parameters to determine: dx, θPLC , φPLC , θH , and
φH . Model 2 (M2) includes the flexibility of the PLC
using eq.(5) and therefore has two additional parame-
ters to be determined: ρs and ρf .

2.3 Parameter identification

There is no exact solution for finding the five param-
eters used in eq.(1) therefore they are determined by
optimization. The result of the parameter identifica-
tion is shown in Figure 9 for the test, LC2, where 50%
torque is applied to the gearbox. For each load case
the RMS values of the difference between the measured
and simulated displacements has been calculated and
is shown for both M1 and M2 in Table 4.

Table 4: RMS values.

M1 M2

LC1 0.115 0.111
LC2 0.095 0.094
LC3 0.191 0.189
LC4 0.036 0.020

In Figure 10 and 11 the parameters are plotted.
There is a sub plot for each of the parameters in the
rigid body model. For M2 the deflection parameters
are shown, see Figure 11.
When the PLC is moderately loaded, less than 50%

of nominal torque, the contact between the PLC and
pins does only transfer force and no bending moment,
but under larger loads the pins are stiffening the PLC
and the deformation pattern changes to have six peaks
instead of three. This behavior can be verified by look-
ing at the value of ρ2 which is almost zero in the load
case with 50% torque (LC2). In the load cases with
higher loads ρ2 has a value different from zero which
means that more peaks are present. In general, it is
concluded that the proposed models describe the mo-
tion of the PLC quite well. It is also obvious, that
the overall motion is a combination of rigid body mo-
tion and a superimposed deflection. Clearly, the shape
of the M2 model shows a better resemblance with
the measured data than that of the M1 model, how-
ever, this is only partly reflected by the actual RMS-
deviations as shown in Table 4.

3 Numerical simulation model

In this section a time domain simulation model of the
gearbox is introduced. The main purpose of this model
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is to compare the measurements with the results of the
parameter identification and, at the same time, evalu-
ate the influence from the modeling on the estimated
life of the planet gears. Since emphasis is on gear box
modeling the misalignment between the main shaft and
PLC identified in the previous section is imposed on
this model. The modeling is done in the commercial
software Adams/View and the description of the model
is divided into four sub sections: the bodies, the gear
meshes, the bearings and the boundary conditions.

3.1 Bodies

All of the shafts in the gearbox can be considered as
flexible bodies. However, to reduce the computational
time the LS, IMS and HS, see Figure 1, are consid-
ered to be rigid. Previous studies have shown that in-
troduction of flexible shafts only have local impact on
motion and load distribution. Therefore, the exclusion
of the flexibility of these shafts will not affect the mo-
tion of the PLC (Haastrup et al., 2010). Similarly, the
housing can also be considered flexible and since the
sensors are mounted on the housing its deflection will
influence the measurements. However, initial studies
have shown that the deformation of the housing is one
order of magnitude smaller than that of the PLC and
therefore the housing deflections are neglected.
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Flexible bodies are modeled using an assumed modes
method that is available in MSC.Adams. This method
relies on the assumption that the deformation of a body
under load can be described by a finite number of mode
shapes. The mode shapes are calculated using finite el-
ement software, in this case MSC.Nastran. The mode
shapes are composed of a selected number of free body
modes and fixed boundary modes (one static mode
for each DOF). All of these modes are combined us-
ing Component Mode Synthesis, the Craig-Bampton
method (MSC.Software, 2010). Each fixed boundary
mode is associated with one boundary DOF. When a
flexible body is imported into Adams/View the bound-
ary DOF’s become interface nodes, which can be used
for applying forces and constraints. Before the MS and
PLC were meshed using MSC.Patran, all small details
such as fillets, chamfers and grooves were removed to
allow the mesher to create a coarser mesh. It is as-
sumed that the stiffness is not significantly changed by
removing these details.

The MS and PLC are modeled as separate flexible
bodies that are joined together using a kinematic con-
straint to allow for the modeling of the misalignment
described in section 2.1. The planet pins are clearance
fitted to the PLC and this can be modeled in several
ways. In this study the interface between the planet
pins and the PLC has been modeled using massless
rigid elements where one node (pilot node) defines the
DOFs for the other nodes, see Figure 13. The effect of
using the pilot node approach is shown in Figure 12, it
can be seen that the pins are allowed to pivot relative
to the PLC at the interfaces.

In Figure 13 the pilot nodes on the PLC are shown.
There are three planet pins, one for each planet. Each
planet pin is connected to the PLC in both ends, which
gives six interfaces. An interface consists of two pi-
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Figure 12: Seventh mode shape of the combined MS
and PLC. The planet pins are able to pivot.

Pilot node

RBE3 element

Figure 13: Pilot nodes on PLC.

lot nodes, one connected to the planet pin and the
other to the PLC. The pilot nodes are connected to
the structure (PLC or pin) using so-called RBE3 ele-
ments, which form a rigid connection to the structure.
The RBE3 elements use the surfaces of the interface
where the clearance fit is. The two pilot nodes of an
interface are kinematically connected locking all trans-
lational DOF’s. Some bending stiffness has been added
to the interface using torsional springs with a stiffness
of 106[Nm/rad] to model the six-peak behavior of the
stiff model, see Figure 7 and 8. The torsional stiffness
of the interfaces is selected to be equal to the bending
stiffness.

3.2 Gear model

The main requirement to the gear model is that it is
able to model the tangential and radial forces acting
between the gear pairs. For this purpose Adams Gear
Generator is selected, which calculates a contact force
based on involute curves. Adams Gear Generator en-

ables modeling of spur gears, hence the effects of the
helix angle, β = 7.5◦, must be neglected. The axial
forces caused by the helix angle are opposite for the
planet–sun and planet–ring meshes, thereby creating a
moment on the planet. An FE model has shown that
this moment has negligible influence on the axial de-
formation of the PLC.

Other possibilities exist to model gears, for example
Adams/Gear AT which can model helical gears. It uses
a 3D contact algorithm to calculate contact forces but
it is several order of magnitude more time consuming
than the Adams Gear Generator model. Since it does
not provide any significant extra information regarding
the PLC behavior it is discarded.

3.3 Bearing model

Bearings can be modeled to various levels of details.
The simplest way is to use kinematic joints; however
this method does not take the bearing flexibility into
account. Models exist that take into account the con-
tact stiffness of each rolling element in the bearing.
These models suffer from being less computationally
efficient as kinematic joints and they require detailed
information about the geometry of the bearing which
is often difficult to obtain. The level in between is to
use a three or six component linear stiffness element.
It is only possible to use this model if the bearing stiff-
ness can be obtained from some other analysis tool or
by the bearing manufacturer. Since the fatigue life of
the planet bearings is to be evaluated a detailed bear-
ing model (Kabus et al., 2011) is used at the planets
while the rest of the bearings are modeled using linear
springs and dampers.

In Adams/View the linear stiffness model has three
linear stiffness components: kx, ky and kz and three
rotational linear stiffness components: kyz, kxz and
kxy. Since the axis of rotation is the z-axis the stiff-
ness kxy has to be zero, all other components can have
a value. For each bearing in the gearbox linear stiff-
ness values have been provided by GRC, which have
been linearized for loadings corresponding to nominal
working load.

To simplify the Adams/View model some of the
bearings have been merged into one bushing. For ex-
ample, each of the shafts supporting the HS and IMS
are supported by a pair of tapered roller bearings which
are modeled by one linear stiffness element per set.

3.4 Boundary conditions

The bedplate, which the gearbox is mounted to, acts
as the ground in this model and is therefore modeled as
rigid. In order to model the rigid body motion of the
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Figure 14: Comparison between measured and simu-
lated deflection of the PLC (LC2).

MS relative to the housing as investigated in the pa-
rameter identification it would be necessary to include
the flexibilities of both the bedplate and the main bear-
ing. That is, however, outside the scope of this paper
and the main bearing is constrained to ground using a
spherical joint which removes all translational DOF’s.
Two rubber bushings are used to mount the gearbox
to the bedplate; these are modeled using a three com-
ponent linear spring and damper model. The stiffness
and damping values are calculated by Haastrup et al.
(2011).

In the tests a drive torque was applied to the main
shaft by a dynamometer. This drive torque was mea-

sured and used as input to the model. In the model this
torque is applied at the flange of the hub, which is also
the case for the dynamometer testing. The dynamome-
ter is also capable of applying radial and axial loads,
see Table 2 for overview of load cases. In the exper-
iment and in wind turbines in general, the rotational
speed of the shafts is determined by the generator con-
troller and/or the torque on the main shaft. The main
shaft torque is controlled by the dynamometer or pitch
system. In the model the rotational speed of the shaft
is controlled on the output shaft. The torque applied
on the high speed shaft is

Tg = K (ωs(t)− ω) (9)

where ωs(t) is the desired rotational speed which has
been measured in the experiments, ω is the actual sim-
ulated rotational speed and K = 103[Nms].

Eight simulations have been conducted which are
summarized in Table 5. In this table the RMS values
showing the simulations deviation from the measure-
ments are also listed.

Table 5: Conducted simulations.

φPLC 6= 0 φPLC = 0 rigid PLC

LC1 RMS = 0.241 RMS = 0.295

LC2 RMS = 0.085 RMS = 0.182 RMS = 0.083

LC3 RMS = 0.255

LC4 RMS = 0.220 RMS = 0.290

The misalignment between the main shaft and the
PLC has been implemented by introducing the θ and
φ angles obtained in the parameter identification.

From Figure 14 it is seen that the same tendencies as
observed in the parameter identification are repeated,
namely that the rigid body motion of the main shaft
relative to the gear housing is dominant and that the
deflection of the PLC can be seen superimposed on
this. The RMS deviations clearly show that the in-
clusion of the main shaft misalignment is most impor-
tant. The inclusion of the flexibility of the PLC has
the same effect as seen earlier in the paper, namely
an improved resemblance between modeled and mea-
sured deflections but with limited impact on the RMS
deviations. In general, the proposed gearbox model is
capable of reflecting the actual behavior of the PLC;
however, the MS–PLC misalignment must be forced
upon the model from the measurements. In order to
get this misalignment from a model it would be neces-
sary to include more components from the drive train,
such as the main shaft, the bed plate and the main
bearing.
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4 Gear life reduction due to

misalignment

By introducing a more advanced gear model
(Adams/Gear AT) into the Adams/View model de-
scribed in section 3 the contact stress can be ob-
tained for the gear mesh. The contact algorithm
within Adams/Gear AT uses a fine surface mesh
(MSC.Germany, 2011). Adams/Gear AT is able to
change the contact pattern when the gears are mis-
aligned. In the simulations conducted here crowning
and tip relief were modeled. Simulations have been
conducted both with and without MS–PLC misalign-
ment in order to evaluate the influence. For the planet–
sun an increase in contact pressure of 1.5% is found.
The contact pressure is considerably higher for the
planet–sun mesh than for the planet–ring mesh due
to different geometry.
An increase in contact pressure will reduce the sur-

face lifetime. The magnitude of lifetime reduction may,
for example be estimated based on the AGMA Surface-
Fatigue strength life factor CL (AGMA, 1989). Based
on the relation between CL and number of load cycles
N, the following relation can be derived

N2

N1

=

(

Sfc,1

Sfc,2

)
1

0.056

(10)

where Sfc,1 and Sfc,2 are the fatigue strengths equiva-
lent to N1 andN2 load cycles respectively. By inserting
the change in contact pressure the reduction in lifetime
can be expressed as

N2

N1

=

(

Sfc,1

Sfc,1 · 1.015

)
1

0.056

= 0.77 (11)

It is noted that an increase in contact stress by 1.5%
decreases the expected life time by 23%. This result
indicates that misalignment of gears has a significant
influence on expected life time and thus needs to be
taken into account.

5 Conclusions

In the presented work best practice for modeling of
gearboxes in wind turbine drive trains has been inves-
tigated. Emphasis has been on the planetary stage
and the axial displacement of the planet carrier rel-
ative to the gear housing. Experimental work com-
bined with numerical studies have shown that the mis-
alignment between the main shaft and the planet car-
rier is the dominant source for these displacements
and, subsequently, on the expected life of the planet
gears. Adding flexibility of the planet carrier clearly

improves the resemblance between the measured and
modeled deflections, however, this is not reflected in
the RMS values of the deviations between measured
and modeled. The experimental and numerical results
presented in the paper clearly indicate that although
the flexibility of the planet carrier influences the load
distribution within the gear box, it is more important
to have a model that reflects the planet carrier mis-
alignment.
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Özgüven, H. N. and Houser, D. Mathematical mod-
els used in gear dynamicsa review. Journal of
Sound and Vibration, 1988. 121(3):383 – 411.
doi:10.1016/S0022-460X(88)80365-1.

Parker, R. G., Agashe, V., and Vijayakar, S. M. Dy-
namic response of a planetary gear system using a
finite element/contact mechanics model. Transac-
tions of the ASME, 2000a. 122:304–310.

Parker, R. G., Vijayakar, S. M., and Imajo, T. Non-
linear dynamic response of a spur gear pair: mod-
elling and experimental comparisons. Journal of
Sound and Vibration, 2000b. 237(3):435–455.

Rigaud, E., Sabot, J., and Perret-Liaudet, J. Effects of
gearbox design parameters on the vibratory response
of its housing. Hyper Articles en Ligne, 2006.

11

http://dx.doi.org/10.1115/1.2919441
http://dx.doi.org/10.1016/j.jsv.2003.10.057
http://dx.doi.org/10.1016/S0022-460X(88)80365-1

	Introduction
	Identification of PLC motion
	Rigid body motion
	Deformation model
	Parameter identification

	Numerical simulation model
	Bodies
	Gear model
	Bearing model
	Boundary conditions

	Gear life reduction due to misalignment
	Conclusions

