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Abstract

The main purpose of this paper is a study of the efficiency of different nonlinearity detection methods
based on time-series data from a dynamic process as a part of system identification. A very useful concept
in measuring the nonlinearity is the definition of a suitable index to measure any deviation from linearity.
To analyze the properties of such an index, the observed time series is assumed to be the output of Volterra
series driven by a Gaussian input. After reviewing these methods, some modifications and new indices
are proposed, and a benchmark simulation study is made. Correlation analysis, harmonic analysis and
higher order spectrum analysis are selected methods to be investigated in our simulations. Each method
has been validated with its own advantages and disadvantages.
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1. Introduction

System identification involves obtaining the structure
and the unknown parameters of the model of a sys-
tem from the input-output information. If the struc-
ture of the equations is unknown, the problem is called
structure identification. For the identification, the in-
put/output information is required to be available from
suitable tests conducted on the system.

The input and output might have linear or nonlinear
dynamic relation. Linear identification is much simpler
than nonlinear identification, so it is the first choice in
system identification. However, in many applications,
the effect of nonlinearity cannot be ignored. In such
cases nonlinear system identification has to be carried
out Choudhury et al. (2008).

Before proceeding with any testing and identifica-
tion, it is useful to establish whether the system can be
considered linear across the desired operating range. It
is important to be able to measure the degree of non-

linearity of a process under various input excitation
signals or operating conditions.

In the literature, many tests have been proposed for
measuring the nonlinearity but they do not provide
a general answer to the problem, since they rely on
different assumptions. A simple method is injecting a
series of single sine waves of increasing amplitudes and
look for distortion of the output signal Billings and
Fadzil (1985).

Testing linearity of time series can be done using
parametric or nonparametric methods. In a parametric
approach, the nonlinear distortion depends on an un-
known vector parameter θ, and it will be zero when the
vector parameter (θ) is zero Saikkonen and Luukkonen
(1988).

The advantage of the parametric approach is that
relatively few observations are required. The disadvan-
tage is that the tests are generally sensitive to a mis-
specified nonlinear model. The nonparametric meth-
ods are based on analysis of input/output data avail-
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able, or just output measurements.

There are some papers for nonparametric methods
in the Time-domain Hjellvik and Tjøstheim (1995);
Barnett and Wolff (2005) but most of these methods
have been applied in the frequency domain. In fact,
the nonparametric approach has been based mainly on
higher order spectra. Initially, Rao and Gabr (1980)
implemented Brillinger (1965) method for measuring
the deviation of a process from linearity and Gaussian-
ity by estimation of the bispectrum of observed data.
Then Hinich (1982); Ashley et al. (1986), modified it
by introducing a chi-squared statistic index.

The advantage of the non-parametric test compared
to parametric methods, is the invariance with respect
to linear filtering of the original data. A disadvan-
tage is that more observations are necessary to obtain
a power comparable to that of the best parametric test
for a fully specified alternative Rusticelli et al. (2008).
Caillec and Garello (2004) have made a comprehen-
sive comparison between the above methods to validate
their efficiency.

All of these papers are based on bispectrum analy-
sis, while there are some other nonparametric methods
which have been presented in the literature of nonlin-
earity test: Linear spectral density method in Bendat
and Piersol (1980), linear correlation method in Szücs
et al. (1975), nonlinear cross correlation methods in
Billings and Voon (1986), and higher order auto corre-
lation method in Billings and Voon (1983).

In order to investigate these methods, Haber (1985)
has made a survey of the different methods and com-
pares them. There are also reported researches on test
for bilinearity in Varlaki et al. (1985) which are out of
the scope of this paper. The main novel contributions
of the present paper are as follows:

1) A comprehensive mathematical description of the
nonparametric approach with the emphasis on fre-
quency domain methods is done. In the different sec-
tions, we derive properties of these indices under vari-
ous conditions. The efficiency of the different methods
for detecting the nonlinearities is reported. An inves-
tigation has been performed with respect to additive
white measurement noise.

2) By the mathematical description of each method
and investigating their indices, some new indices are
presented.

3) With the focus on higher order spectra and har-
monic analysis methods, the higher order cross cor-
relation function has been reviewed. Also some new
indices based on the harmonic analysis method have
been proposed.

4) A benchmark simulation study is made for se-
lected methods. A comparison among them has been
done in order to investigate their efficiency and appli-

cation especially from a practical viewpoint.

Single input-single output (SISO) systems, time
invariance, and asymptotically stability of the pro-
cess are three basic assumptions which are made
throughout this paper. The outline of the paper is as
follows. In section 2, we review and compare several
nonparametric methods associated with nonlinearity
detection indices. We survey mathematically the
higher order auto- and cross-spectra based methods
with the emphasis on the type of the input signals
in more details in section 3. Some simulation results
in order to test these methods and to investigate
their efficiency regarding to measurement noise and
different types of inputs are presented in section 4.
Section 5 presents conclusions.

Nomenclature
Y (jω) Fourier transform of y(t)
|Y (jω)| Power spectrum of y(t)
‖.‖F Frobenius norm
FT Fourier transform

DDFT Double discrete FT
∗ Complex conjugate
E Expected value
σ Standard deviation

H(ω) Transfer function
Cn nth harmonic component
ωk kth frequency component

φyy (jω) Auto spectrum of y
φyu (jω) Cross spectrum of u, y
φyyy Third order auto spectrum
φyuu Third order cross spectrum
φyu (r) Discrete cross spectrum
φyu (τ) Continuous cross spectrum
γyu (ω) Coherence function

hn (τ1, τ2, . . . , τn) nth Volterra kernel
m(τ1, τ2, . . . , τn−1) nth order moment
cum(τ1, τ2, . . . , τn−1) nth order cumulant

Bisy (ω1, ω2) Bispectrum of y
bicy (ω1, ω2) Bicoherence of y

2. Nonlinearity measure methods

This section discusses various measures of the degree
of nonlinearity. We start our study by investigation
of some nonlinearity measures which are presented in
Haber (1985). All methods for measuring the nonlin-
earity, which are presented here, are based on the block
diagram in Figure 1, i.e. open loop nonlinear process
with additive measurement noise.

The basic principle behind these methods is using
some analytical properties of LTI (linear time invari-
ant) systems. Then the nonlinearity is measured based
on deviation from linearity. The inputs which are
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Figure 1: Open Loop nonlinear system with additive
noise

usually used in the nonlinearity tests or identification
problems are categorized as Gaussian or non-Gaussian
signals. There is a very important and useful theorem
of Gaussian signals which is the assumption of many
nonlinearity measure methods. It is called Isserlis’
theorem.
Theorem 1 (Isserlis (1918): If
η1η2 . . . η2N+1 (N = 1, 2, . . .) are normalized jointly
Gaussian random E [ηi] = 0,E

[
ηi

2
]

= 1 then:
E [η1η2 . . . η2N+1] = 0
E [η1η2 . . . η2N ] =

∑∏
E[ηiηj ]

where the notation ΣΠ means summing over all
distinct ways of partitioning η1η2 . . . η2N into pairs.
Signals such as sine wave, pseudo random binary
signal (PRBS) conform to this class of inputs Billings
and Voon (1986). However if a Gaussian input passes
through a nonlinear static block, this theorem can still
be used as a nonlinearity test, but for non-Gaussian
input there is no analogous theorem Nicholas et al.
(2009).

2.1. Linear cross correlation (frequency
domain)

For LTI systems, the principle of superposition holds
and the system is appropriately described by one or
more independent modes that are invariant to the level
of excitation. So, the auto- and cross-spectral densities
associated with the system input/output data can be
shown to be sufficient to characterize (identify) the sys-
tem.

This analysis, however, only considers second-order
moments of the input/output data Ljung (1999). It
has been shown for any LTI systems without noise, the
squared coherence function between input and output
is one. (see Bendat and Piersol (1980)):

γ2
yu(jω) =

|φyu(jω)|2

φuu (jω) .φyy(jω)
= 1 (1)

Applying the coherence function based nonlinearity
indices with a random variable as input, may give us
correct decision, but it does not have this property with

periodic deterministic signals as the excitation. If u(t)
is any periodic function of time, measured over N pe-
riods, and there is no noise on u(t) and y(t), then the
values of φyu(jω), φuu(jω) and φyy(jω) are indepen-
dent of N. So the effect of nonlinearity will be ignored
when a periodic signal is used McCormack et al. (1994).
Therefore, if the LTI system is driven by a random ex-
citation input and there is no noise then the following
index is zero Haber (1985):

NLI1 = 1−max
ω

|φyu (jω)|2

φuu (jω) .φyy (jω)
(2)

However this index is affected by additive noise. Be-
cause of noise, unknown disturbances, and biases and
variances in estimation of the coherence function from
a finite data set, the maximum value of coherence func-
tion may give us incorrect decision. Since NLI1 selects
the minimum value, it causes high sensitivity results.
Hence the NLI2 index is proposed.

NLI2 = max
ω

(
1− |φyu(jω)|2

φuu (jω) .φyy(jω)

)
(3)

By the definition of nonlinearity (deviation from lin-
earity), this index captures the deviation at worst case
condition. Meanwhile, the average of squared coher-
ence function may obtain more robust performance.
This motivates the definition of the NLI3 index.

NLI3 = 1−mean
ω

(
|φyu(jω)|2

φuu (jω) .φyy(jω)

)
(4)

Lemma 1: If the system is LTI, then:
NLI1 = NLI2 = NLI3 = 0.
If the system is nonlinear or there is additive white
noise, then NLI1, NLI2, NLI3 > 0.
Proof: See Appendix.
In section 4, these indices are evaluated and compared
to each other.

2.2. Linear cross correlation
(Time-domain)

Based on correlation analysis methods in the frequency
domain, two discrete and continuous nonlinearity in-
dices can be defined in the Time-domain. With the
assumption of no output noise and stationary input
signal, it is proved in Haber (1985) that if the system
is linear, then:

NLI4 = 1−

[∑N−1
r=0 φyu(r)

]2
∑N−1
r=0 φuu(r)

∑N−1
r=0 φyy(r)

(5)

is zero. Analogously, this index is also affected by ad-
ditive white noise.
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2.3. Nonlinear cross correlation method

Assume a Gaussian white noise or pseudo random
input signal is applied to the system, and define a
normalized form of the squared input as: x (k) =
u2(k)−E[u2(k)]

σ[u2] . Then it is proved that the cross corre-

lation function φyx (τ) is zero for linear systems and
differs from zero for nonlinear systems Haber (1979):

φyx (τ) = E[

(
u2 (k)− E[u2 (k)]

σ[u2]

)
y(k + τ)] (6)

This leads to a nonlinearity index in the discrete
Time-domain:

NLI5 = max
τ
{|φyx (τ)|} (7)

The nonlinearity index NLI5 > 0 is robust to addi-
tive white noise as its effect will vanish asymptotically
Haber (1985).

2.4. Higher order auto correlation method

By using a white Gaussian random or pseudo random
input signal of zero mean for measuring the nonlinear-
ity, it is shown in Billings and Voon (1983) that the
higher order autocorrelation function φyy2 (τ) of the
normalized output signal is zero for linear systems. Let

φyy2 (τ) =
1

N

N∑
k=1

y2 (k − τ) y(k) (8)

In order to get the correlation values between -1and
1, we normalize the square of the output signal as well

v (k) =
y2 (k)− E[y2 (k)]

σ[y2 (k)]
(9)

y (k) =
y (k)− E[y (k)]

σ[y (k)]
(10)

This leads to the following index in the discrete
Time-domain:

NLI6 = max
τ
{|φyv (τ)|} (11)

Analogously, the nonlinearity index NLI6 > 0 is ro-
bust to additive white noise Haber (1985). If any sys-
tem just includes odd order (polynomial) nonlinearity,
the indices will be zero. So they can detect odd-order
nonlinearities only if the mean value of the input sig-
nal is not zero but the even-order nonlinearities can be
detected without such condition.

2.5. Harmonic analysis

Assume u (t) = Asinωt is applied to a system. Since
each periodic signal has a Fourier series, the output
signal can be represented as

y (t) = A0 +
∞∑
i=1

Aisin(iωt+ ϕi).

Since any LTI system generates no more harmonics
than found in the input signal, this leads to a nonlin-
earity index as below Haber (1985):

NLI7 = 1−
A0

2 + A1
2

2

yeff
(12)

where yeff = 1
T

T

∫
0
y2 (t) dt, T = 2π

ω .

If the system is LTI and there is no noise, then
NLI7 = 0.

2.5.1. Harmonic matrix

As mentioned earlier, when the system is nonlinear,
some extra harmonics will be generated in the output
signal. Based on this property, some new nonlinearity
indices are proposed. Assume there is a Fourier series
representation of u(t) and y(t). So:

u(t) =

+∞∑
n=−∞

cne
jnω0t → U(ω) = 2π

+∞∑
n=−∞

cnδ(ω − nω0)

(13)

y(t) =

+∞∑
m=−∞

dme
jmω0t → Y (ω) = 2π

+∞∑
m=−∞

dmδ(ω −mω0)

(14)

Consider the following integrals:

+∞
∫
−∞

U (ω) .Y (ω) dω = (2π)
2
N∑
i=1

cidi (15)

+∞
∫
−∞

U (ω) .U∗ (ω) dω = (2π)
2
N∑
i=1

|ci|2 (16)

+∞
∫
−∞

Y (ω) .Y ∗ (ω) dω = (2π)
2
M∑
i=1

|di|2 (17)

Here N, M is the number of harmonics of in-
put/output signals, respectively. So based on Cauchy-
Schwarz inequality:

0 ≤ Γ =

∣∣∣∑N
i=1 cidi

∣∣∣2∑N
i=1 |ci|

2
.
∑M
j=1 |dj |

2
≤ 1 (18)
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where ci and dj are Fourier coefficients (harmonics)
of input and output signals respectively. In this index,
it is true that M ≥ N . If the system is linear then
M = N → NLI = 1 − Γ = 0, when the system is
nonlinear M > N , so some extra terms appear in de-
nominator and NLI > 0. Based on above discussion,
it is possible to construct the relation between input
and output harmonics as a matrix:

 |d1|
...
|dM |


︸ ︷︷ ︸
DM×1

=

 h11 · · · h1N . . . 01N+1 . . . 01M

...
. . .

...
hM1 · · · hMN . . . 0MN+1 . . . 0MM


︸ ︷︷ ︸

HM×M

∗



|c1|
...
|cN |

...
0M


︸ ︷︷ ︸

CM×1

(19)

By solving the above equation and finding the H ma-
trix we can deduce that: If H is diagonal then the sys-
tem is linear. If H is non-diagonal then the system is
nonlinear. So by defining the following index we can
detect the nonlinearity of the system.

NLI8 = ‖H − diag(Hii)‖2F ≥ 0,∀i = 1, . . . ,M (20)

2.5.2. Harmonic distortion

Consider the static nonlinear system y =
3∑
p=1

up excited

with a multi-harmonic periodic signal. The output sig-
nal includes linear, quadratic and cubic nonlinearity.
The frequency spectrum of the output has the prop-
erty that a nonlinear system generates more harmonics
than the basic harmonics.

Quadratic nonlinearity creates additional harmonics
without main harmonics, while cubic nonlinearity gen-
erates both basic and new harmonics in the output
Pintelon and Schoukens (2001). Here a multi-harmonic
signal is defined as:

u (t) =

F∑
k=1

A(k) cos(i (k)ω0t+ φ(k)) (21)

with double sided spectrum:

U (ω) =

2F∑
k=1

A(k)ejφ(k)δ(ω − i (k)ω0t) (22)

where A, i, φ are vector of amplitudes, harmonic and
phase, respectively, and F is the number of harmonics.

It is noticed that if the phase of the input signals is
close to zero, the amplitude of new harmonics become
maximum but there may be a problem due to maxi-
mization of excited signal in Time-domain if it causes
deviation from the current operating point. So, if we
can manipulate the input signal, the phase should be
selected so that the CF (crest factor) of it gets mini-
mum Solomou and Rees (2003).

CF =
max (|u(t)min| , |u(t)max|)

u(t)rms
(23)

In general form, consider a family of static nonlinear

systems as y (t) =
∞∑
p=1

apu
p The output response for a

multi-harmonic signal is shown in Evans et al. (1994)
as:

Y (jω) = ap

2F∑
n1=1

2F∑
n2=1

. . .

2F∑
np=1

(
p∏
i=1

A (ni)

)

.e
j

[
p∑

i=1
φ(ni)

]
.δ(ω −

(
p∑
i=1

i (ni)

)
ω0). (24)

It is easily found that if there are 2F harmonics in
input signal, then at most (2F )p harmonics will be pro-
duced in the output signal, where p is the nonlinearity
order. Assume only a cubic nonlinearity, so the out-
put will consist of 8 terms with three terms at ω0, one
term at 3ω0, three terms at −ω0 and one term at −3ω0.
Analogously with just a quadratic term there would be
4 terms which two terms are at 0, one term at 2ω0, one
term at −2ω0. Usually the terms (contributions) gen-
erated by the odd nonlinearity are considered as two
types.

Type I Contributions: These contributions are
generated by combinations of a test frequency with a
pair of equal positive and negative frequencies, which
produces a contribution at the test frequency itself. For
example, the combinations δ (ω − (ω0 − ω0 + ω0)) and
δ (ω − (ω0 + 3ω0 − 3ω0)) will each produce a contribu-
tion at ω0.
Type II Contributions: They are gener-

ated by combinations of signal content fre-
quencies which are not included test frequency
but result in test frequency. For example,
the combinations δ (ω − (3ω0 − 9ω0 + 7ω0)) and
δ (ω − (9ω0 − 3ω0 − 5ω0)) will each produce a contri-
bution at ω0. It is possible to design signals which
do not suffer from any type II distortions by proper
selection of their component harmonics. This is
called NID (no inter-harmonic distortion) Evans et al.
(1994). Assume systems of the form eq.(24):
Lemma 2: For a F-harmonic excitation signal with
a same amplitude A and excited frequency ω0, the
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number of harmonics (Np
ω0

) and the number of new
harmonics (Np

new) are:

Np
ω0

=

 6F − 3 + 2
F∑
l=3

(2F − l) p = 3

2F − 2 p = 2

(25)

Np
new =

 4F 3 − 9F + 6− 3
F∑
l=3

(2F − l) p = 3

2F 2 − 3F + 2 p = 2

(26)

Proof: See Appendix. Lemma 3: For the NID input
excitation signal, the number of Type I harmonics are:

Np
ω0

=

{
6F − 3 p = 3
0 p = 2

(27)

Proof: See Appendix.
Referring to Lemmas 2-3, the number of total har-

monics of a cubic nonlinearity in test frequency (ω0)
are summation of Type I and Type II contributions

numbers as N3
ω0

= 6F − 3︸ ︷︷ ︸
TypeI

+ 2

F∑
l=3

(2F − l)︸ ︷︷ ︸
TypeII

.

Now a nonlinearity index is required to measure the
power of produced additional output components (har-
monics). The squared coherence function could be a
suitable indicator Evans et al. (1995a). Hence an in-
dex is defined as

NLI9 = max
ωe

|E [Y (jωe)]|2

E
[
|Y (jωe)|2

] ∀ωe 6= Ωk (28)

where Ωk is set of total frequencies in input signal
and ωe is an excluded frequency (new harmonics set).
For a stable LTI system, since no additional harmonic
is generated, we have Y (jωe) = 0→ NLI9 = 0 other-
wise NLI9 > 0. Another suitable index which can be
defined is

NLI10
∆
=

∑
ωe 6=Ωk

‖Y (jωe)‖22
‖Y (jωk)‖22

(29)

This index measures the ratio of power of new har-
monics to total harmonics. These indices are influenced
when considering additive white noise. Beside the char-
acteristics of additional (new) harmonics, the number
of new harmonics is also important and it seems well
if they contribute to the nonlinearity index. Hence a
new index which includes both the number and am-
plitude of harmonics for measuring the nonlinearity is

presented as below.

NLI11 = α

(
Nnewharmonics+

NTotal

)
+

(1− α)

 ∑
ωe 6=Ωk

Y (jωe)
2
2

Y (jωk)
2
2

∀0 < α < 1 (30)

where α is a parameter which can be selected by
practitioner. It should be noticed that additional har-
monics may appear at frequencies higher than the sys-
tem bandwidth. However, if the system under test has
much smaller bandwidth than the wide band excita-
tion signal, then these high frequency harmonics may
be attenuated.

3. Higher order nonlinearity
measures

This section focuses on nonlinearity indices based on
the higher order moments. The third order moment
can be viewed as a powerful tool for measuring the
nonlinearity, particularly in time series analysis. This
method has been used in several references Marzocca
et al. (2008); Nicholas et al. (2009). As it could be seen
here, the bispectrum analysis has some advantages.

First, its value for LTI systems is independent of
bifrequencies. Second, many statistical tests such as
Hinich (1982) can be defined for it. Third, it is
able to capture quadratic nonlinearity with high ef-
ficiency. Fourth, its estimator converges asymptoti-
cally, although, it needs a large amount of data. In
the following, we review and study the properties of
the Volterra series as a mathematical representation
for nonlinear systems study.

The Volterra series is a mathematical tool widely
employed for representing the input/output relation-
ship of nonlinear dynamic systems. Volterra series are
based on the expansion of the nonlinear operator rep-
resenting the system into a series of integral operators.
These integral relationships are completely defined by
the Volterra kernels.

An alternative representation, which generates the
frequency domain counterparts of the Volterra kernels,
can be viewed as a generalization of the usual frequency
response function for nonlinear systems. A fairly large
class of dynamic systems can be modeled according
to these concepts and are accordingly represented in
terms of Volterra series Nijmeijer and Schaft (1990).
The system output response can be obtained as a sum
of individual components:

y (t) = y1 (t) + y2 (t) + . . . yn (t) + . . . . (31)
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where

y1 (t) =
+∞
∫
−∞

h1 (τ1)u (t− τ1) dτ1 (32)

y2 (t) =

∫ +∞∫
−∞

h2 (τ1, τ2)u (t− τ1)u (t− τ2) dτ1dτ2

(33)

yn (t) =
+∞
∫
−∞

. . .
+∞
∫
−∞

+∞
∫
−∞

hn (τ1, τ2, . . . , τn)u (t− τ1)

.u (t− τ2) . . . u (t− τn) dτ1dτ2 . . . dτn (34)

Such expressions state that the output y(t) is related
to the input u(t) through multi-dimensional convolu-
tion integrals of the input with the functions hi. It is
worth remarking that hn (τ1, τ2, . . . , τn) = 0 ∀τi <
0, in order for the system to be causal. Existence and
uniqueness of the kernels, as well as convergence anal-
ysis of the series can be found with relevant details in
Schetzen (1980); Evans et al. (1995b). Volterra series
in the frequency domain can be written as

H1 (ω1) =
+∞
∫
−∞

h1 (τ1) e−iω1τ1dτ1 (35)

H2 (ω1, ω2) =
+∞
∫
−∞

+∞
∫
−∞

h2 (τ1, τ2) e−iω1τ1e−iω2τ2dτ1dτ2

(36)

Hn (ω1, ω2, . . . ωn) =
+∞
∫
−∞

. . .
+∞
∫
−∞

+∞
∫
−∞

hn (τ1, τ2, . . . , τn)

.e−iω1τ1e−iω2τ2 . . . e−iωnτndτ1dτ2 . . . dτn (37)

As in the LTI case, these complex functions carry
the same information about the system as their Time-
domain counterparts, but they are often easier to work
with, both experimentally and analytically. The out-
put property of a system represented by Volterra series
in the presence of different types of inputs is presented
in Bedrosian and Rice (1971).

3.1. Time-domain nonlinearity test

Consider Figure 1 and assume that all the odd-order
moments of the input signal u(t) are zero and the noise
e(t) is an independent, zero mean stationary random
signal. It has been shown that if a system is LTI, then

φzz2 (τ) = E
[
z (t + τ)

(
z(t)

2
)]

= 0 ∀τ ≥ 0 Nicholas

et al. (2009). Hence, whenever φzz2 (τ) 6= 0, this in-
dicates that the system under test may be nonlinear.

Note that the test distinguishes between linear addi-
tive noise corruption of the measurements and distor-
tion due to nonlinear effects. Based on this function a
nonlinearity index can be defined as

NLI12 = max
τ

φzz2(τ) (38)

The advantages of this index are its use of higher
order correlations and its robustness to additive white
noise. However, the disadvantages could be named as
being limited to Gaussian inputs and lack of normal-
ization.

There is another form of higher correlation Time-
domain method which can be used for measuring the
nonlinearity. It is based on cross correlation of the in-
put and output signals. Keeping the previous assump-
tions, the process under test is LTI if φzuu (σ1, σ2) =
0 ∀σ1, σ2 (Billings and Chen (1980); Billings and
Voon (1986)). This is also true if the input belongs to
the separable class of random processes Nuttal (1958);
Collis et al. (1998). Based on this function another
index can be defined as

NLI13 = max
σ1,σ2

φzuu(σ1, σ2) (39)

It has the same advantages and disadvantages as
NLI12.

3.2. Frequency domain nonlinearity tests

The analytical expressions for the higher order spectra
are investigated here using a Volterra series approach
on the assumption of a zero-mean, stationary Gaus-
sian input. The bispectrum is the lowest order of the
higher order statistics (HOS) and has been shown to
be a promising tool for both detecting and identifying
system nonlinearities.

The statistical properties associated with bispectrum
estimation and theoretical investigations involving bis-
pectrum estimates were reported in several references
(for instance Caillec and Garello (2004)).

Based on the formula for the first and second or-
der Volterra kernels, an analytical expression for the
output bispectrum φyyy can be derived. However, a
closed-form solution for the auto-bispectrum for a gen-
eral class of nonlinear systems has not yet been pre-
sented.

It has been shown that φyyy can be expressed as a
function of the first and second order Volterra kernels
H1 and H2 and the input spectrum φuu Marzocca et al.
(2008). Higher order auto and cross spectra can be
defined based on the third order moments or cumulant.
The moments and cumulants of a stochastic signal y(t)
are defined as Fackrell (1997):

m3
y(τ1, τ2) = E[y (t) y (t+ τ1) y (t+ τ2)] (40)
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c3
y (τ1, τ2) = cum [y (t) , y (t+ τ1) , y (t+ τ2)] =

E [y (t) y (t+ τ1) y (t+ τ2)]−
E [y (t)]E [y (t+ τ1) y (t+ τ2)]−
E [y (t+ τ1)]E [y (t) y (t+ τ2)]−
E [y (t+ τ2)]E [y (t) y (t+ τ1)]

+ 2E [y (t)]E [y (t+ τ1)]E[y (t+ τ2)] (41)

Bispectrum is the frequency domain counterpart of
the third order cumulant and is defined for a stationary
signal y(t)

Bisy (ω1, ω2) = FT (c3
y(τ1, τ2)) (42)

Since for a zero mean stationary signal c3
y = m3

y,
the bispectrum can be written as Priestley (1988)

Bisy (ω1, ω2) = E[Y (ω1)Y (ω2)Y ∗ (ω1 + ω2)] (43)

Thus, an analytical expression for the bispectrum is
obtained by substituting the Volterra model into the
above equation. In a simple form of nonlinear system
which is modeled by two Volterra kernels (H1, H2) and
using eq.(36) and eq.(43), a closed formula for bispec-
trum has been presented in Marzocca et al. (2008).
The bispectrum contains the H2 term, only making
this quantity suitable to capture quadratic nonlinear-
ities. When cubic or higher order nonlinearities are
to be detected, HOS, e.g. the trispectrum should be
utilized.

As nonlinear terms appear in the classical linear
spectral analysis as a distortion, in an analogous
way, nonlinear components of higher order than the
quadratic ones may appear also in the bispectrum.
Analogously, the higher order cross correlation between
u(t) and y(t) are defined as:

φyuu (τ1, τ2) = E [y (t)u (t+ τ1)u (t+ τ2)] (44)

φyuu (ω1, ω2) = FT [E [y (t)u (t+ τ1)u (t+ τ2)]] =

E[U (ω1)U (ω2)Y ∗ (ω1 + ω2)] (45)

By the generalization of all Volterra kernels and sub-
stituting in eq.(45), the odd-order kernels are elimi-
nated and even-order kernels may be expressed as in-
tegral functions of H4, H6, and the power spectrum
of input. It has been shown for Gaussian white noise
input with constant auto spectrum (P) and for n even-
order kernels Worden and Tomlinson (2001)

φyuu (ω1, ω2)

φuu (ω1)φuu (ω2)
= (n (n− 1) (n− 3) . . . 1)

(
P

2π

)(n
2−1)

×
+∞
∫
−∞

Hn

(
ω1, ω2, ω

(1),−ω(1), . . . , ω(n
2−1),−ω(n

2−1)
)
.

dω(1) . . . dω(n
2−1) (46)

The most important consequence of eq.(46) is

φyuu (ω1, ω2)

φuu (ω1)φuu (ω2)
= 2H2 (ω1, ω2) +O(P ) (47)

So as P → 0, the higher order cross correlation function
tends to H2.

3.2.1. Higher order spectra as nonlinear index

Regarding to theorem (1) and eq.(43), the bispectrum
will produce nonzero values, when the input to a linear
system is non-Gaussian. So the appearance of nonzero
values is not only due to the nonlinearity, but may
also be due to the non-Gaussian nature of the input.
So for a LTI system defined by its transfer function
(H1) which is subjected to a zero-mean Gaussian in-
put, an expression for the output bispectrum is readily
obtained as

Bisy (ω1, ω2) = Bisu (ω1, ω2)H1(ω1)H1(ω2)

.H1(−ω1 − ω2) (48)

Since Bisu (ω1, ω2) = 0, then Bisy (ω1, ω2) = 0. This
leads to

the nonlinearity index:

NLI14 = max
ω1,ω2

Bisy (ω1, ω2) (49)

Its advantages are using higher order spectra and ro-
bust to additive white noise while weaknesses are lim-
ited to Gaussian input signals and not normalization.
Based on eq.(45), it is easily shown that for a Gaussian
input signal and LTI system φyuu (ω1, ω2) = 0∀ω1, ω2

which can be used as a nonlinearity index. This func-
tion has the same advantages and disadvantages as the
bispectrum. A convenient normalization of the bispec-
trum is called bicoherence and is obtained by dividing
the magnitude of Bisy by the appropriate product of
output spectra Priestley (1988).

bicy (ω1, ω2) =
|Bisy (ω1, ω2)|√

Py (ω1)Py (ω2)Py (ω1 + ω2)
(50)

where Py (ω1) is power spectrum of signal. Using the
Cauchy-Schwarz inequality, the normalized version of
bispectrum is as below:

0 ≤ bic2y (ω1, ω2) =

|E[Y (ω1)Y (ω2)Y ∗ (ω1 + ω2)]|2

E
[
|Y (ω1)|2|Y (ω2)|2

]
.E[|Y (ω1 + ω2)|2]

≤ 1 (51)

For a linear system, the bicoherence function is con-
stant as

bic2y (ω1, ω2) =
µ2

3

σ3
= ρ (52)
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where σ2 = E[|U(ω)|2], µ3 = E[U(ω1)U(ω2)U∗(ω1 +
ω2)]. If the input is Gaussian then µ3 = 0 and bicy =
0. The property of bicoherence constancy of an LTI
system to any bifrequencies, allows some indices to be
defined for white Gaussian input. Flatness test is an
index which has presented in Choudhury et al. (2008):

NLI15 = max
ω1,ω2

bic2y (ω1, ω2)− (E
[
bic2y (ω1, ω2)

]
+ 2σ[bic2y (ω1, ω2)]) (53)

The advantages of this index are its use of higher
order correlations, and normalization while its disad-
vantage is limitation to Gaussian inputs.
The NLI15 has another disabililty when the bico-
herence function generates similar and large non zero
quantities. In this condition, using NLI15 gives low
value so it is concluded the system is linear while it is
nonlinear. So we define another nonlinearity index as:

NLI16 = max
ω1,ω2

bic2y (ω1, ω2) (54)

With the assumption of non-Gaussian signal, the fol-
lowing indices can also be defined to detect the nonlin-
earity.

NLI17 =

∣∣∣∣ρ− max
ω1,ω2

bic2y (ω1, ω2)

∣∣∣∣ (55)

NLI18 = max
ω1,ω2

(
ρ− bic2y (ω1, ω2)

)
(56)

Similar to linear cross correlation method, these in-
dices have their own advantages and disadvantages.
Analogously, a convenient normalization of φyuu is ob-
tained as

φNyuu (ω1, ω2) =
|φyuu (ω1, ω2)|√

Pu (ω1)Pu (ω2)Py (ω1 + ω2)

(57)

Using the Cauchy-Schwarz inequality, the normal-
ized version of φNyuu satisfies:

0 ≤ φ2
Nyuu (ω1, ω2) =

|E[U (ω1)U (ω2)Y ∗ (ω1 + ω2)]|

E
[
|U (ω1)|2|U (ω2)|2

]
.E[|Y (ω1 + ω2)|2]

≤ 1 (58)

Based on the normalized higher order cross correla-
tion function, the following indices can be defined

NLI19 = max
ω1,ω2

φ2
Nyuu (ω1, ω2)− (E

[
φ2
Nyuu (ω1, ω2)

]
+ 2σ[φ2

Nyuu (ω1, ω2)]) (59)

NLI20 = max
ω1,ω2

φ2
Nyuu (ω1, ω2) (60)

NLI21 =

∣∣∣∣ρ− max
ω1,ω2

φ2
Nyuu (ω1, ω2)

∣∣∣∣ (61)

NLI22 = max
ω1,ω2

(
ρ− φ2

Nyuu (ω1, ω2)
)

(62)

These indices have the same properties of the pre-
vious ones. For all above indices, nonlinearity can be
tested by NLI > T where T is a given threshold that
should be determined by the practitioner.

3.2.2. Higher order spectra with additive noise

In this section we review and investigate the effect on
higher order spectra caused by additive white Gaussian
noise on the output ( z = y+n). Due to an assumption
of Gaussian white additive noise, it could be shown
that the higher order auto and cross spectrum func-
tions are robust to white noise. However the normal-
ized versions of these functions, because of appearance
of some additional terms in denominator, are affected
with white Gaussian additive output noise. Using the
following lemma causes the increase of the accuracy of
nonlinearity detection with noise.
Lemma 4: For a system with Gaussian input and addi-
tive white noise, the normalized higher order auto and
cross correlation functions satisfy eq.(84) and eq.(90).
Proof: See Appendix
So, the following indices can be defined:

NLI23 = max
ω1,ω2

φ2
Nyyy (ω1, ω2) (63)

NLI24 = max
ω1,ω2

φ2
Nyuu (ω1, ω2) (64)

By considering this lemma we can decide more ac-
curately about the nonlinearity of the system provided
that we know the signal to noise ratio.

4. Simulation results

In this section, we compare the advantages and dis-
advantages of the most promising nonlinearity indices
using a benchmark simulation example (Duffing sys-
tem).

The Duffing system is a well-known nonlinear
second-order differential equation used to describe
many physical and engineering problems. The equa-

tion is given by m d2

dt2 y (t) + c ddty (t) + k1y (t) +
k2y

2 (t) + k3y
3 (t) = u(t) where m, c, k1, k2, k3 and u
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are mass, damping coefficient, linear stiffness, nonlin-
ear (quadratic) stiffness, nonlinear (cubic) stiffness and
excitation input, respectively.

In the conventional Duffing equation, the quadratic
term is set to zero and it is called symmetric Duff-
ing oscillator. However, many successful applications
in engineering have been reported by expanding it to
asymmetric one (k2 6= 0). This system is time-invariant
and can be unstable at high levels of excitation in the
cases when k3 ≤ 0.

4.1. Nonlinearity measure based on
coherence function

In this section, we evaluate the performance of coher-
ence method based nonlinearity indices. Assume a pe-
riodic function as u (t) = Asin(ω0t) is the excitation
signal of the Duffing system without any noise. The
results in Figure 2 are obtained by recalling the co-
herence function formula in eq.(1) and three indices
NLI1, NLI2, NLI3 together with the estimation of
γ2
yu.

In this case the coherence function is estimated for
four parameter settings of the Duffing system as lin-
ear (k2 = k3 = 0), low order, medium and high order
nonlinear (according to different values of k2, k3). For
each of the four parameter settings, the nonlinearity
degree based on three indices NLI1, NLI2, NLI3 is
zero. It is confirmed that the coherence-based nonlin-
earity indices are zero when a periodic excitation signal
is used, and the indices fail. By simulating the previ-
ous scenarios, but using non-periodic excitation signal
(PRBS) we have the results in Figure 3.

Figure 4 shows the same experiments but with ad-
ditive output noise. The index NLI1 is not sensitive
to nonlinearity and always gives a very close value to
zero. Although NLI2 gives the maximum defection
of nonlinearity, it is overly sensitive. The NLI3 de-
tects more correctly the level of the various nonlinear-
ities and noise with different variance. In conclusion,
the following notes are made concerning the coherence
function method:
1- The coherence function is unable to detect the non-
linearity with periodic input signals.
2- It is affected by additive white noise (setting a
threshold depends on noise variance).
3- The NLI3 is better than NLI1, NLI2. It has a
tradeoff between capturing the nonlinearity and sensi-
tivity to noise, since NLI3 6= 0 for the linear system
due to noise.
4- Because of the finite data in spectrum estimation,
the NLI1 and NLI2 fail even in noise free cases.
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Figure 2: Coherence function of Duffing system in lin-
ear and nonlinear modes with a periodic ex-
citation signal
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Figure 3: Top. Coherence function of Duffing sys-
tem in linear and nonlinear modes with non-
periodic excitation signal. Bottom. Non-
linearity measures NLI1, NLI2, NLI3 for
Duffing system with non-periodic excitation
signal
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Figure 4: Top. Coherence function of Duffing system
in linear and nonlinear modes with a non-
periodic excitation signal include measure-
ment noise. Bottom. Nonlinearity mea-
sures NLI1, NLI2, NLI3 for Duffing system
with non-periodic excitation signal and mea-
surement noise

4.2. Nonlinearity measure based on
harmonic analysis

In this case, the efficiency of the harmonic analysis ap-
proaches has been evaluated. Using multi-harmonic
input u(t) as an excitation signal, we get the results
shown in Figure 5 in the case of no output noise. By
using the multi harmonic signal, more extra harmonics
are generated, so it is more able to distinguish between
linearity and nonlinearity by both indices.

It should be noticed that because of the numerical
simulation of nonlinear system, some noise behaviors
in the vicinity of each given frequency will be present
in the harmonic plot.

Figure 5 illustrates that the measurement noise af-
fects some of the new harmonics in the nonlinear sys-
tem, but it is still possible to catch the nonlinearity
by other new harmonics. However this figure shows
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Figure 5: New harmonics generation of Duffing system
in linear and nonlinear modes with a multi
harmonic excitation signal and Top. with-
out measurement noise. Bottom. with mea-
surement noise

that the two nonlinearity indices in NLI9, NLI10 suf-
fer from additive Gaussian noise, and may end to wrong
decision. In summary, the following conclusions are
made:

1- The harmonic analysis method is affected by noise
output.

2- Not all harmonics in the excitation signal are ef-
fective in this method.

In fact those harmonics which are designed based on
the bandwidth of the system are functional. Although
noise deteriorates the ability of this method, because of
its high frequency feature, the method is more robust if
the applied harmonics are inside the system bandwidth
and have values in low frequencies.

4.3. Higher order spectrum analysis

In this section, the efficiency and functionality of the
higher order spectrum methods have been investigated.
Assume the Duffing system is driven by a PRBS sig-
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nal. The amplitude of the excitation signal should be
selected correctly. If it is too low the nonlinearity is
not detectable and if it is too high it can sometimes
lead to wrong decisions.

In this simulation the performance of four nonlinear-
ity indices NLI15, NLI16, NLI19, NLI20 considering
additive white noise meantime are compared. Figure
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Figure 6: Nonlinearity measure based on indices
NLI15, NLI16, NLI19, NLI20 for Duffing
system in Top. linear mode. Bottom. non-
linear mode

6 shows that for a LTI system with Gaussian input,
the two normalized higher order auto- and cross- cor-
relation functions are zero and for nonlinear mode are
non-zero. The effect of additive Gaussian noise has
been shown in Figure 7. By comparing Figures 6-7, the
indices NLI16, NLI20 which find the maximum value of
higher order spectrum functions work better because of
the unknown behavior of the noise spectrum that may
cause the bifrequencies functions tend to more flatness.

It can be seen in the figures that this index is better
when noise exists. Here, by reconstructing the higher
order auto and cross correlation functions through
eq.(84) and eq.(90), in appendix, the following results
in Figure 8 are obtained.
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Figure 7: Nonlinearity measure based on indices
NLI15, NLI16, NLI19, NLI20 for Duffing
system in nonlinear mode with measurement
noise
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It is illustrated, in Figure 8, that the nonlin-
earity indices NLI23, NLI24 are modified from the
NLI16, NLI20 indices while the measurement noise
exists. In conclusion, the following notes are made:

1- Both the auto (bicoherence) and higher order cross
spectrum functions could be effectively used for non-
linear detection.

2- Bicoherence is used for time series analysis where
just output measurement is available.

So for problems such as modeling and identification,
the cross correlation method seems better to use. The
indices NLI16, NLI20 are better than NLI15, NLI19
indices.

5. Conclusion

In this paper, we have reviewed and compared the ef-
ficiency and performance of several time series based
nonlinearity measures for nonlinearity detection. This
study is based on the comparison of their functionality,
sensitivity to noise, complexity, dependency on type of
input and efficiency in capturing the nonlinearities.

Four methods are investigated and for each one some
new nonlinearity indices have been introduced. Since
the higher order statistics analyzes are stronger, the
higher order spectra (auto and cross) are studied in
more details. Relevant to each method some useful
characteristics and modifications are presented.

A nonlinear benchmark system which is used in
many researches (Duffing system) has been used in se-
lected methods to study their efficiency. Particular at-
tention is given to the effect of output noise.

In conclusion, a summary of several nonlinearity in-
dices properties has been presented as table 1. In this
table the symbol (*) remark new nonlinearity indices
and symbols (-, +, ++) show mediocre, good and bet-
ter efficiency respectively.
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Table 1: Summary of different nonlinearity indices

Method 
Nonlinearity 

Index 
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input 
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Corrupted by noise\Inactive by 

Periodic input 
NLI2* - 

NLI3* + 
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NLI7 

Output Data/multi 
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NLI9 - 
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A. Appendix

Proof of Lemma 1:
Based on Cauchy-Schwarz inequality |E[UY ]|2

E[|U |2].E[|Y|2]
≤ 1,

it holds if and only if Y = L(U) where L is any linear
operator Kreyzsig (1978). So for each LTI system,
|φuy(jω)|2

φuu(jω).φyy(jω) = 1→ NLI1 = NLI2 = NLI3 = 0.

Hence if L is any nonlinear operator, then
|φuy(jω)|2

φuu(jω).φyy(jω) < 1.

Also for any LTI system with additive white noise
[(Z (ω) = Y (ω) +N(ω))]

φzu (jω) = E[U∗(ω)Z(ω)] = E[U∗(ω)Y (ω)] (65)
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φzz (jω) = E [Z∗ (ω)Z (ω)] = E
[
|Z (ω)|2

]
= E

[
|Y (ω) +N (ω)|2

]
> E

[
|Y (ω)|2

]
→ |E [U∗ (ω)Y (ω)]|2

E
[
|U (ω)|2

]
(E[|Y (ω) +N (ω)|2])

< 1 (66)

therefore:

NLI1 = 1−max
ω

 |E [U∗ (ω)Y (ω)]|2

E
[
|U (ω)|2

]
(E[|Y (ω) +N (ω)|2])


(67)

NLI2 = max
ω

1− |E [U∗ (ω)Y (ω)]|2

E
[
|U (ω)|2

]
(E[|Y (ω) +N (ω)|2])


(68)

NLI3 = 1−mean
ω

 |E [U∗ (ω)Y (ω)]|2

E
[
|U (ω)|2

]
(E[|Y (ω) +N (ω)|2])


(69)

So NLI1, NLI2, NLI3 > 0.
Proof of Lemma 2:
Assume a static cubic nonlinear system responding to
multi-harmonic excitation signal with fundamental fre-
quency ω0. Based on eq.(24) for p = 3 and a3 = 1:

y (jω) =

2F∑
n1=1

2F∑
n2=1

2F∑
n3=1

(
3∏
i=1

A (ni)

)

.e
j

[
3∑

i=1
φ(ni)

]
.δ(ω −

(
3∑
i=1

i (ni)

)
ω0) (70)

For simplicity and with no loss of generality, we can
assume that the amplitude of multi-harmonic signal is
fixed to A and phase is zero. So:

y (jω) = A3
2F∑
n1=1

2F∑
n2=1

2F∑
n3=1

δ(ω − [i (n1) + i (n2) + i (n3)]ω0) (71)

It is true that the number of harmonics relevant to
ω0 in the output signal is proportional to:

N =

2F∑
n1=1

2F∑
n2=1

2F∑
n3=1

[i (n1) + i (n2) + i (n3)] (72)

Regarding to eq.(72), the total number of permuta-
tions of different values of i (n1) , i (n2) , i (n3) so that

im = i (n1) + i (n2) + i (n3) = 1,∀m = 1 . . . 2F, and for
F = 1, 2, 3, 4 are shown in table 2. In fact this rule is
done in 2F steps by fixing i (n1) to its values and find
the permutations of i (n2) , i (n3) so that im = 1.

The result of table 2 can be summarized as:

N3
ω0

= 2F +

F∑
l=2

(2F − l) +

F+1∑
l=3

(2F − l) + F =

6F − 3 + 2

F∑
l=3

(2F − l) (73)

Now the output response for quadratic nonlinearity
is given by

y (jω) =

2F∑
n1=1

2F∑
n1=1

[A (n1)A (n1)] ej(φ(n1)+φ(n1))

.δ(ω − [i (n1) + i (n1)]ω0) (74)

Following the same procedure for im = i (n1) +
i (n2) = 1,∀m = 1 . . . 2F, F = 1, 2, 3, 4 the result is
shown in table 3.

Following the above rule in table 3, It is deduced
that N2

ω0
= 2F − 2. Moreover the number of zero

harmonics in the output signal is needed. So using
previous procedure generates table 4. By figuring out
the result of table 4, the number of zero harmonic can

give as N0 = 2
F+1∑
l=2

(2F − l)

Clearly, for F harmonic in excitation signal, there
are (2F )3 total harmonics. So the number of new non
zero harmonics

Nnew = (2F )3 − 2N3
ω0
− 2

F+1∑
l=2

(2F − l) (75)

Nnew = 8F 3 − 18F + 12− 6

F∑
l=3

(2F − l) (76)

In quadratic nonlinearity, it is readily finding that
N0 = 2F . Therefore, the number of new non zero
harmonics are

Nnewharmonics = (2F )2 − 2 (2F − 2)− 2F =

4F 2 − 6F + 4 (77)

and the number of positive new harmonics is
Nnewharmonics+ = Nnewharmonics

2 .

Proof of Lemma 3:
Since the NID signal does not include any Type II
contributions, on the other hand, Type I contribu-
tions are generated by combinations of a test fre-
quency with other pair of equal positive and negative
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Table 2: Number of permutations of harmonic ω0(N3
ω0

)

F = 1 i1 i2
2 1

F = 2 i1 i2 i3 i4
4 2 1 2

F = 3 i1 i2 i3 i4 i5 i6
6 4 3 3 2 3

F = 4 i1 i2 i3 i4 i5 i6 i7 i8
8 6 5 4 5 4 3 4

Table 3: Number of permutations of harmonic ω0(N2
ω0

)

F = 1 i1 i2
0 0

F = 2 i1 i2 i3 i4
0 1 1 0

F = 3 i1 i2 i3 i4 i5 i6
0 1 1 1 1 0

F = 4 i1 i2 i3 i4 i5 i6 i7 i8
0 1 1 1 1 1 1 0

Table 4: Number of permutations of zero harmonic (N0)

F = 1 i1 i2
0 0

F = 2 i1 i2 i3 i4
2 1 2 1

F = 3 i1 i2 i3 i4 i5 i6
4 3 2 4 3 2

F = 4 i1 i2 i3 i4 i5 i6 i7 i8
6 5 4 3 6 5 4 3

Table 5: Number of Type I harmonics (N3
ω0

)

F = 1 i1 i2
2 1

F = 2 i1 i2 i3 i4
4 2 1 2

F = 3 i1 i2 i3 i4 i5 i6
6 2 2 1 2 2

F = 4 i1 i2 i3 i4 i5 i6 i7 i8
8 2 2 2 1 2 2 2
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frequencies, So respecting to eq.(24), the number of
Type I contributions are based on the permutations
of different values of i (n1) , i (n2) , i (n3) that cause to
im = i (n1) + i (n2) + i (n3) = 1,∀m = 1 . . . 2F and

each value of {i (nj)}3j=1 equal to one. The results for
F = 1, 2, 3, 4 are presented in table 5.

By generalization of the result rule

N3
ω0

= 2F + 1 + 2 ((F − 1) 2) = 6F − 3 (78)

It is readily founded that there is no Type I harmonics
for quadratic nonlinearity N2

ω0 = 0.
Proof of Lemma 4:

a-Auto correlation(bicoherence)
By the additively property of cumulant c3

z (τ1, τ2) =
c3
y (τ1, τ2) + c3

n (τ1, τ2). Since the noise is Gaus-
sian and statistically independent from input signal,
c3
n (τ1, τ2) = 0

φzzz (ω1, ω2) = DDFT (c3
z (τ1, τ2)) =

DDFT (c3
y (τ1, τ2)) = φyyy (ω1, ω2) (79)

Recall that φNyyy (ω1, ω2) =
|φyyy(ω1,ω2)|

(Py(ω1)Py(ω2)Py(ω1+ω2))
1/2

, So for a system with

Gaussian additive white noise, the normalized higher
order auto correlation function is

φNzzz (ω1, ω2) =
|φyyy (ω1, ω2)|

(Pz(ω1)Pz(ω2)Pz (ω1 + ω2))
1/2

→ φNyyy (ω1, ω2)

φNzzz (ω1, ω2)
=

√
Pz(ω1)Pz(ω2)Pz (ω1 + ω2)

Py(ω1)Py(ω2)Py (ω1 + ω2)

(80)

Pz (ω) =

+∞∑
τ=∞

E[z (t) z(t+ τ)]e−iωτ (81)

since y(t) and n(t) are independent

E [z (t) z (t+ τ)] =

E [(y (t) + n (t)) (y (t+ τ) + n (t+ τ))] =

E [y (t) y (t+ τ)] + E [n (t)n (t+ τ)]

→ Pz (ω) = Py (ω) + Pn (ω) (82)

Substitute eq.(82) into eq.(80)

φNyyy (ω1, ω2)

φNzzz (ω1, ω2)
=

√√√√ 3∏
i=1

(1− αi)−1
(83)

→ φNyyy (ω1, ω2) = φNzzz (ω1, ω2)

(
3∏
i=1

(1− αi)−1

)−1/2

(84)

where αi = Pn(ωi)
Pz(ωi)

is defined as noise to signal ratio.

The eq.(84) is valid while the power of noise is smaller
than the power of signal. It should be noticed that

max
ω1,ω2

φ2
Nyyy (ω1, ω2) ≤ max

ω1,ω2

φ2
Nzzz (ω1, ω2)

. max
ω1,ω2

(
3∏
i=1

(1− αi)−1

)
(85)

So, although it is possible to recover the bicoherence
function from noise but it could not be modified com-
pletely.

b- Cross correlation
Similar to previous stage, it can be deduce

c3
zuu (τ1, τ2) = c3

yuu (τ1, τ2) + c3
nuu (τ1, τ2) (86)

Since the noise is Gaussian and statistically indepen-
dent from input signal, c3

nuu (τ1, τ2) = 0

φzuu (ω1, ω2) = DDFT (c3
zuu (τ1, τ2)) =

DDFT (c3
yuu (τ1, τ2)) = φyuu (ω1, ω2) (87)

Recall that φNyuu (ω1, ω2) =
|φyuu(ω1,ω2)|

(Pu(ω1)Pu(ω2)Py(ω1+ω2))
1/2

, So for a system with

Gaussian additive white noise, the normalized higher
order cross correlation function is

φNzuu (ω1, ω2) =
|φyuu (ω1, ω2)|

(Pu(ω1)Pu(ω2)Pz (ω1 + ω2))
1/2

→ φNyuu (ω1, ω2)

φNzuu (ω1, ω2)
=

√
Pu(ω1)Pu(ω2)Pz (ω1 + ω2)

Pu(ω1)Pu(ω2)Py (ω1 + ω2)

(88)

Substitute eq.(82) into eq.(88)

φNyuu (ω1, ω2)

φNzuu (ω1, ω2)
=

√
(1− α)

−1
(89)

→ φNyuu (ω1, ω2) = φNzuu (ω1, ω2) (1− α)
−1/2 (90)

where α = Pn(ω1+ω2)
Pz(ω1+ω2) is noise to signal ratio.
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