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Abstract

In this paper, the mean-square filtering problem for polynomial system states confused with white Poisson
noises over polynomial observations is studied proceeding from the general expression for the stochastic
Ito differentials of the mean-square estimate and the error variance. In contrast to the previously obtained
results, the paper deals with the general case of nonlinear polynomial states and observations with white
Poisson noises. As a result, the Ito differentials for the mean-square estimate and error variance corre-
sponding to the stated filtering problem are first derived. The procedure for obtaining an approximate
closed-form finite-dimensional system of the filtering equations for any polynomial state over observations
with any polynomial drift is then established. In the example, the obtained closed-form filter is applied
to solve the third order sensor filtering problem for a quadratic state, assuming a conditionally Poisson
initial condition for the extended third order state vector. The simulation results show that the designed
filter yields a reliable and rapidly converging estimate.
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1 Introduction

Although the general solution of the mean-square filter-
ing problem for nonlinear state and observation equa-
tions confused with white Gaussian noises is given by
the Kushner equation for the conditional density of an
unobserved state with respect to observations Kushner
(1964), there are a very few known examples of non-
linear systems where the Kushner equation can be re-
duced to a finite-dimensional closed system of filtering
equations for a certain number of lower conditional mo-
ments (see Kalman and Bucy (1961), Wonham (1965)
and Benes (1981) for more details). The complete clas-
sification of the ”general situation” cases (this means

that there are no special assumptions on the struc-
ture of state and observation equations and the ini-
tial conditions), where the nonlinear finite-dimensional
filter exists, is given in Yau (1994). There also ex-
ists an extensive bibliography on robust, in particular,
H∞ filtering for linear (Xu and Chen (2003), Mah-
moud and Shi (2003) and Xu et al. (2005)) and non-
linear (Xie et al. (1996), Nguang and Fu (1996), Frid-
man and Shaked (1997), Shi (1998),Fleming and McE-
neaney (2001),Yaz and Yaz (2001),Xu and van Dooren
(2002),Wang et al. (2003),Gao and Wang (2004),Zhang
et al. (2005),Gao et al. (2005),Zhang et al. (2007),Gao
and Chen (2007),Wang et al. (2008),Wang et al.
(2009),Wei et al. (2009) and Shen et al. (2009)) stochas-
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tic systems. Apart form the ”general situation,” the
mean-square finite-dimensional filters have been de-
signed for certain classes of polynomial system states
with Gaussian noises over linear observations (Basin
(2008), Basin et al. (2008) and Basin et al. (2009)) and
a few results related to nonlinear Poisson systems can
be found in Lu et al. (2001), Kolmanovsky and Maizen-
berg (2002a),Hannequin and Mas (2002),Kolmanovsky
and Maizenberg (2002b),Zhang et al. (2008a),Dupé
et al. (2008),Zhang et al. (2008b), and Basin and Mal-
donado (2011). Recently, the mean-square filtering
problem for polynomial systems, where both, state and
observation, equations include polynomial functions of
the system state in the right-hand sides, was solved in
Basin et al. (2010); however, that paper did not con-
sider systems corrupted with non-Gaussian noises. On
the other hand, it is well-known that there are a num-
ber of practical situations where dynamic system states
are corrupted not with uniformly acting white Gaus-
sian noises (like a static noise in a phone line) but with
noises acting at random isolated time moments (like a
series of electromagnetic impulses), which are referred
to as white Poisson noises.

This paper presents an approximate finite-
dimensional filter for polynomial system states
confused with white Poisson noises over polynomial
observations, continuing the research in the area of
the mean-square filtering for polynomial systems with
Gaussian (Basin (2008), Basin et al. (2008) and Basin
et al. (2009)) and Poisson Basin and Maldonado (2011)
noises. In contrast to the previously obtained results,
the paper deals with the general case of nonlinear
polynomial states and observations with white Poisson
noises. Designing a closed-form finite-dimensional
filter for systems with white Poisson noises over poly-
nomial observations presents a significant advantage
in the filtering theory and practice, since it enables
one to address some filtering problems with state and
observation nonlinearities and non-Gaussian noises,
such as the cubic sensor problem Hazewinkel et al.
(1983), for various polynomial systems. Indeed, the
main paper result allows one to design a subop-
timal mean-square finite-dimensional filter for any
polynomial state confused with white Poisson noises
over polynomial observations. Furthermore, since
any nonlinear function can be approximated by a
polynomial of a certain degree up to any precision,
this would potentially lead to designing a suboptimal
mean-square finite-dimensional filter for any nonlinear
state with Poisson noises over observations with
a nonlinear drift. The stated filtering problem is
treated proceeding from the general expression for the
stochastic Ito differentials of the mean-square estimate
and the error variance Pugachev and Sinitsyn (2001).

As the first result, the Ito differentials for the mean-
square estimate and error variance corresponding to
the stated filtering problem are derived. Then, a
closed-form finite-dimensional system of the filtering
equations with respect to a finite number of filtering
variables can be obtained for a polynomial observa-
tion equation, additionally assuming a conditionally
Poisson initial condition for the higher degree states.
This assumption is quite admissible in the filtering
framework, since the real distribution of the entire
state vector is actually unknown. In this case, the
corresponding procedure for designing the closed-form
filtering equations is suggested.

As an illustrative example, the closed system of the
filtering equations with respect to two variables, the
mean-square estimate and the error variance, is de-
rived in the explicit form for the particular case of a
quadratic state and third order polynomial observa-
tions, assuming a conditionally Poisson initial condi-
tion for the extended third order state vector. This
filtering problem generalizes the cubic sensor problem
stated in Hazewinkel et al. (1983). The resulting fil-
ter yields a reliable and rapidly converging estimate,
in spite of a significant difference in the initial condi-
tions between the state and estimate, whereas the filter
designed for systems with white Gaussian noises, con-
structed according to Basin et al. (2009) and Basin and
Maldonado (2011), behaves unsatisfactorily.

The paper is organized as follows. Section 2 presents
the filtering problem statement for polynomial system
states confused with white Poisson noises over polyno-
mial observations. The Ito differentials for the mean-
square estimate and the error variance are derived in
Section 3, where the procedure for obtaining an ap-
proximate finite-dimensional filter is suggested for any
polynomial state with Poisson noises over observations
with any polynomial drift. In Section 4, the obtained
filter is applied to solution of the third order sensor fil-
tering problem for a quadratic state, assuming a condi-
tionally Poisson initial condition for the extended third
order state vector.

Notation. The following notation is accepted
throughout the paper: for vectors z ∈ Rm and x ∈ Rn,
[z, x] ∈ Rm+n denotes a column vector consecutively
composed of m components of the vector z and n com-
ponents of the vector x in the same order; [I, 0] de-
notes the m× (n+m) matrix consecutively composed
of the m×m-dimensional identity matrix and m× n-
dimensional zero matrix.

2 Problem Statement

Let (Ω, F, P ) be a complete probability space with an
increasing right-continuous family of σ-algebras Ft, t ≥
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t0, and let (N1(t), Ft, t ≥ t0) and (N2(t), Ft, t ≥ t0)
be independent Poisson processes. The Ft-measurable
random process (x(t), y(t)) is described by nonlinear
polynomial differential equations for the system state

dx(t) = ρ(x, t)dt+ σ(x, t)dN1(t), x(t0) = x0, (1)

and the observation process

dy(t) = h(x, t)dt+B(t)dN2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the
observation vector. The initial condition x0 ∈ Rn is a
Poisson vector such that x0, N1(t) ∈ Rp, and N2(t) ∈
Rq are independent. It is assumed that B(t)BT (t) is
a positive definite matrix, therefore, m ≤ q. All co-
efficients in (1)–(2) are deterministic functions of ap-
propriate dimensions. Solutions of the Ito stochastic
differential equations (1) and (2) are regarded as weak
solutions (see, for example, Oksendal (2006) for defini-
tion). The same definition holds for solutions of other
Ito stochastic differential equations throughout the pa-
per.

The nonlinear functions ρ(x, t) ∈ Rn, σ(x, t) ∈ Rn,
and h(x, t) ∈ Rm are considered polynomials of n vari-
ables, components of the state vector x(t) ∈ Rn, with
time-dependent coefficients. Since x(t) ∈ Rn is a vec-
tor, this requires a special definition of the polynomial
for n > 1. In accordance with Basin (2008), a p-degree
polynomial of a vector x(t) ∈ Rn is regarded as a p-
linear form of n components of x(t)

ρ(x, t) = α0(t) + α1(t)x+ α2(t)xxT + . . .

+αp(t)x . . .p times . . . x, (3)

where α0(t) is a vector of dimension n, α1 is a matrix
of dimension n × n, α2 is a 3D tensor of dimension
n × n × n, αp is an (p + 1)D tensor of dimension n ×
. . .(p+1) times . . .× n, and x× . . .p times . . .× x is a pD
tensor of dimension n× . . .p times . . .×n obtained by p
times spatial multiplication of the vector x(t) by itself
(see Basin (2008) for more details). Such a polynomial
can also be expressed in the summation form

ρk(x, t) = α0 k(t) +
∑
i

α1 ki(t)xi(t)

+
∑
ij

α2 kij(t)xi(t)xj(t) + . . .

+
∑
i1...ip

αp ki1...ip(t)xi1(t) . . . xip(t),

k, i, j, i1, . . . , ip = 1, . . . , n.

The estimation problem is to find the mean-square
estimate x̂(t) of the system state x(t), based on the

observation process Y (t) = {y(s), 0 ≤ s ≤ t}, that
minimizes the conditional expectation of the Euclidean
norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[ξ(t) | FY
t ] means

the conditional expectation of a stochastic process
ξ(t) = (x(t) − x̂(t))T (x(t) − x̂(t)) with respect to the
σ - algebra FY

t generated by the observation process
Y (t) in the interval [t0, t]. As known Pugachev and
Sinitsyn (2001), the mean-square estimate is given by
the conditional expectation

x̂(t) = mx(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra
FY
t generated by the observation process Y (t) in the

interval [t0, t]. As usual, the matrix function

P (t) = E[(x(t)−mx(t))(x(t)−mx(t))T | FY
t ]

is the estimation error variance matrix. Hereinafter,
the formulated filtering problem is considered in a time
interval [t0, T1], where the solution of the state equa-
tion (1) still exists and is almost surely bounded. Ap-
parently, T1 < T ∗, where T ∗ is an escape time for the
system (1). Note that since the initial condition x0 is
Poisson, the superior moments of the process x(t) re-
main bounded for any t ≤ T1 (Pugachev and Sinitsyn
(2001)).

The proposed solution to the stated filtering problem
is based on the formulas for the Ito differentials of the
mean-square estimate and the estimation error vari-
ance (cited after Pugachev and Sinitsyn (2001)) and
given in the following section.

3 Filter Design

The filtering problem is solved by the following theo-
rem.

Theorem 1. The mean-square filter for the poly-
nomial state x(t) (1) over the polynomial observa-
tions y(t) (2) is given by the following equations for
the mean-square estimate m(t) = [mz(t),mx(t)] =
E([z(t), x(t)] | FY

t ) and the estimation error covari-
ance matrix P (t) = E[([z(t), x(t)]−m(t))([z(t), x(t)]−
m(t))T | FY

t ]:

dm(t) = E(f̄(x, t) | FY
t )dt (4)

+P (t)[I, 0]T (B(t)BT (t))−1(dy(t)−mz(t)dt),

dP (t) = (E(([z(t), x(t)]−m(t))(f̄(x, t))T | FY
t )

+E(f̄(x, t)([z(t), x(t)]−m(t))T ) | FY
t )+ (5)

E(ḡ(x, t)ḡT (x, t) | FY
t )
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−P (t)[I, 0]T (B(t)BT (t))−1[I, 0]P (t)),

with the initial conditions m(t0) = [mz(t0),mx(t0)] =
E([z0, x0] | FY

t0 ) and P (t0) = E[([z0, x0] −
m(t0)([z0, x0] − m(t0)T | FY

t0 ]. Here, f̄(x, t) =
[f(x, t), ρ(x, t)], ḡ(x, t) = [g(x, t), σ(x, t)]T ,

f(x, t) =
∂h(x, t)

∂x
ρ(x, t)dt+

∂h(x, t)

∂t
dt+

1

2

∂2h(x, t)

∂x2
σ(x, t)σT (x, t)dt, g(x, t) =

∂h(x, t)

∂x
σ(x, t),

and the additional polynomial state z(t) = h(x, t) sat-
isfies the equation

dz(t) =
∂h(x, t)

∂x
ρ(x, t)dt+

∂h(x, t)

∂t
dt+ (6)

1

2

∂2h(x, t)

∂x2
σ(x, t)σT (x, t)dt+

∂h(x, t)

∂x
σ(x, t)dN1(t), z(0) = z0.

If the initial condition [z0, x0] for the extended state
vector is conditionally Poisson with respect to the ob-
servations, the system of filtering equations (4),(5) be-
comes a closed-form finite-dimensional system after ex-
pressing the superior conditional moments of the sys-
tem state x(t) with respect to the observations y(t) as
functions of only two lower conditional moments, m(t)
and P (t).
Proof. Let us reformulate the problem, introduc-

ing the stochastic process z(t) = h(x, t). Using the
Ito formula (see Pugachev and Sinitsyn (2001)) for the
stochastic differential of the nonlinear function h(x, t),
where x(t) satisfies the equation (1), the equation (6)
is obtained for z(t)

dz(t) =
∂h(x, t)

∂x
ρ(x, t)dt+

∂h(x, t)

∂t
dt+

1

2

∂2h(x, t)

∂x2
σ(x, t)σT (x, t)dt+

∂h(x, t)

∂x
σ(x, t)dN1(t), z(0) = z0.

Note that the addition 1
2
∂2h(x,t)

∂x2 σ(x, t)σT (x, t) appears
in view of the second derivative in x in the Ito formula.

Let us assume at this point that the initial condition
[z0, x0] for the extended state vector is a condition-
ally Poisson random vector with respect to observa-
tions. This assumption is quite admissible in the filter-
ing framework, since the real distributions of x(t) and
z(t) are actually unknown. Indeed, as follows from Pu-
gachev (1984), if only two lower conditional moments,
expectation m0 and variance P0, of a random vector
[z0, x0] are available, the Poisson distribution with the

same parameters, m0 and P0, is the best approxima-
tion for the unknown conditional distribution of [z0, x0]
with respect to observations. This fact is also a corol-
lary of the central limit theorem Tucker (1967) in the
probability theory.

A key point for further derivations is that the right-
hand side of the equation (6) is a polynomial in x.
Indeed, since h(x, t) is a polynomial in x, the functions
∂h(x,t)

∂x , ∂h(x,t)
∂x x(t), ∂h(x,t)

∂t , and ∂2h(x,t)
∂x2 are also poly-

nomial in x. Thus, the equation (6) is a polynomial
state equation with a polynomial multiplicative noise.
It can be written in the compact form

dz(t) = f(x, t)dt+ g(x, t)dN1(t), z(t0) = z0, (7)

where

f(x, t) =
∂h(x, t)

∂x
ρ(x, t)dt+

∂h(x, t)

∂t
dt+

1

2

∂2h(x, t)

∂x2
σ(x, t)σT (x, t)dt, g(x, t) =

∂h(x, t)

∂x
σ(x, t).

In terms of the process z(t), the observation equation
(2) takes the form

dy(t) = [I, 0][z(t), x(t)]dt+B(t)dN2(t). (8)

The reformulated estimation problem is now to find
the mean-square estimate [mz(t),mx(t)] of the sys-
tem state [z(t), x(t)], based on the observation process
Y (t) = {y(s), 0 ≤ s ≤ t}. This mean-square estimate
is given by the conditional expectation

m(t) = [mz(t),mx(t)] = [E(z(t) | FY
t ), E(x(t) | FY

t )]

of the system state [z(t), x(t)] with respect to the σ -
algebra FY

t generated by the observation process Y (t)
in the interval [t0, t]. The matrix function

P (t) = E[([z(t), x(t)]− [mz(t),mx(t)])×

([z(t), x(t)]− [mz(t),mx(t)])T | FY
t ]

is the estimation error variance matrix for this refor-
mulated problem.

The obtained filtering system includes the two equa-
tions, (6) (or (7)) and (1), for the partially measured
state [z(t), x(t)] and the equation (8) for the observa-
tions y(t), where z(t) is a completely measured poly-
nomial state with a polynomial multiplicative noise,
x(t) is an unmeasured polynomial state, and y(t) is a
linear observation process directly measuring the state
z(t). Applying the mean-square filter for incompletely
measured polynomial states with a polynomial multi-
plicative noise over linear observations (see Basin and
Maldonado (2011)) to the system (7),(1),(8) yields the
desired filtering equations (4),(5). Finally, after repre-
senting the superior conditional moments of the system
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state as functions of the conditional expectation m(t)
and error variance P (t) using the property of a Pois-
son random variable x(t) − m(t) of representing the
superior conditional moments of the system state as
functions of the variance P (t), (see Basin and Maldon-
ado (2011) for details), a finite-dimensional system of
the filtering equations, closed with respect to m(t) and
P (t), can be obtained, if the initial condition [z0, x0]
for the extended state vector is conditionally Poisson.
�
Remark. Note that some particular cases of The-

orem 1, like linear or bilinear systems with state-
dependent noises, were previously considered in Basin
and Maldonado (2011), where the explicit mean-square
finite-dimensional filtering equations were obtained.
On the other hand, the general result of Theorem 1
allows one to design a suboptimal mean-square finite-
dimensional filter for any polynomial state confused
with white Poisson noise disturbances over polynomial
observations. Furthermore, since any nonlinear func-
tion can be approximated by a polynomial of a certain
degree up to any precision, the result obtained in Theo-
rem 1 would potentially lead to designing a suboptimal
mean-square finite-dimensional filter for any nonlinear
state with white Poisson noises over observations with
a nonlinear drift.

In the following example, a closed form of the fil-
tering equations will be obtained for a particular case
of scalar second and third order polynomial functions
ρ(x, t), σ(x, t), and h(x, t) in the equations (1) and (2).
Nonetheless, application of the same procedure would
result in designing a closed system of the filtering equa-
tions for any polynomial functions ρ(x, t), σ(x, t), and
h(x, t) in (1),(2).

4 Example: Third Degree Sensor
Filtering Problem for Quadratic
System

This section presents an example of designing the
closed-form finite-dimensional filter for a quadratic
state over third degree polynomial observations, where
the initial condition for the extended state vector is
assumed conditionally Poisson with respect to obser-
vations.

Let the unmeasured scalar state x(t) satisfy the
quadratic equation

dx(t) = x2(t)dt+ dn1(t), x(0) = x0, (9)

and the observation process be given by the scalar third
degree sensor equation

dy(t) = x3(t)dt+ dn2(t), (10)

where n1(t) and n2(t) are Poisson processes indepen-
dent of each other and of a Poisson random variable
x0 serving as the initial condition in (9). The filter-
ing problem is to find the mean-square estimate for
the quadratic state (9), using the third degree sensor
observations (10).

Let us reformulate the problem, introducing the
stochastic process z(t) = h(x, t) = x3(t). Using the
Ito formula (see Pugachev and Sinitsyn (2001)) for the
stochastic differential of the cubic function h(x, t) =
x3(t), where x(t) satisfies the equation (9), the follow-
ing equation is obtained for z(t)

dz(t) = (3x(t) + 3x4(t))dt+ 3x2(t)dn1(t), z(0) = z0.

Taking into account that z(t) = x3(t), the last equation
takes the form

dz(t) = (3x(t)(1 + z(t)))dt+ 3x2(t)dn1(t), z(0) = z0.
(11)

Here, ∂h(x,t)
∂x = 3x2(t), 1

2
∂h2(x,t)

∂x2 = 3x(t), and
∂h(x,t)

∂t = 0, given that h(x, t) does not explicitly
depend on t; therefore, f(x, t) = 3x(t) + 3x4(t) =
3x(t)(1 + z(t)) and g(x, t) = 3x2(t). The initial con-
dition [z0, x0] is considered conditionally Poisson with
respect to observations (see the paragraph preceding
(7) for details). In terms of the process z(t), the obser-
vation equation (10) takes the form

dy(t) = z(t)dt+ dn2(t). (12)

The obtained filtering system includes two equa-
tions, (11) and (9), for the partially measured state
[z(t), x(t)] and the equation (12) for the observations
y(t), where z(t) is a completely measured second de-
gree state with a multiplicative quadratic noise, x(t)
is an unmeasured quadratic state, and y(t) is a lin-
ear observation process directly measuring the state
z(t). Hence, the designed mean-square filter can be
applied for solving this problem. The filtering equa-
tions (4),(5) take the following particular form for the
system (11),(9),(12)

dm1(t) = (3m2(t) + 3m1(t)m2(t) + 3P12(t))dt+ (13)

P11(t)[dy(t)−m1(t)dt],

dm2(t) = (m2
2(t) + P22(t))dt+ P12(t)[dy(t)−m1(t)dt],

(14)
with the initial conditions m1(0) = E(z0 | y(0)) = m10

and m2(0) = E(x0 | y(0)) = m20,

Ṗ11(t) = 12P12(t) + 9m4
2(t) + 9P22(t)+ (15)

36P22(t)m2(t) + 54P22(t)m2
2(t)+

27P 2
22(t) + 12P11(t)m2(t)− P 2

11(t),
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Ṗ12(t) = 3P12(t) + 7P22(t) + 8P12(t)m2(t)+ (16)

3m2
2(t)− P11(t)P12(t),

Ṗ22(t) = 1 + 2P22(t) + 4P22(t)m2(t)− P 2
12(t), (17)

with the initial condition P (0) = E(([z0, x0]T −
m(0))([z0, x0]T − m(0))T | y(0)) = P0. Here, m1(t)
is the estimate for the state z(t) = x3(t) and m2(t) is
the estimate for the state x(t).

The estimates obtained upon solving the equations
(13)–(17) are compared to the estimates satisfying the
filtering equations designed for systems with white
Gaussian noises for the quadratic state (11) over the
third order polynomial observations (10), which are ob-
tained in Basin et al. (2010):

dmG1(t) = (3mG2(t) + 3mG1(t)mG2(t)+ (18)

3PG12(t))dt+ PG11(t)[dy(t)−mG1(t)dt],

dmG2(t) = (m2
G2(t) + PG22(t))dt+ (19)

PG12(t)[dy(t)−mG1(t)dt],

with the initial conditions mG1(0) = E(z0 | y(0)) =
mG10 and mG2(0) = E(x0 | y(0)) = mG20,

ṖG11(t) = 6PG12(t) + 9m4
G2(t) + 9PG22(t)+ (20)

36PG22(t)mG2(t) + 54PG22(t)m2
G2(t)+

27P 2
G22(t) + 12PG11(t)mG2(t)− P 2

G11(t),

ṖG12(t) = 6PG22(t) + 8PG12(t)mG2(t) + 3m2
G2(t) (21)

−PG11(t)PG12(t),

ṖG22(t) = 1 + 4PG22(t)mG2(t)− P 2
G12(t), (22)

with the initial condition PG(0) = E(([z0, x0]T −
mG(0))([z0, x0]T −mG(0))T | y(0)) = PG0.

Numerical simulation results are obtained solving
the systems of filtering equations (13)–(17) and (18)–
(22). The obtained values of the state estimates m2(t),
satisfying the equation (14), and mG2(t), satisfying the
equation (19), are compared to the real values of the
state variable x(t) in (9).

For the filters (13)–(17), (18)–(22) and the reference
system (11),(9),(12) involved in simulation, the follow-
ing initial values are assigned: x0 = 0, z0 = 18, m10 =
mG10 = 1000, m20 = mG20 = 10, P11(0) = PG11(0) =
15, P12(0) = PG12(0) = 3, P22(0) = PG22(0) = 1. Pois-
son disturbances dn1(t) and dn2(t) are generated us-
ing the Simulink chart suggested in Basin et al. (2007).
Note that the noise power can be changed varying the
terms σ(x, t) and B(t) in (1),(2), which would lead
to changing the corresponding terms in the filtering
equations (4),(5). The simulation interval is set to
[0, 4.0575], since the estimation error given by the fil-
ter designed for systems with white Gaussian noises
diverges to infinity at this time.

Figure 1 shows the graphs of the errors between the
reference state x(t) (9) and its estimate m2(t) (14),
and the reference state z(t) = x3(t) (11) and its es-
timate m1(t) (13), in the entire simulation interval
from t0 = 0 to T = 4.0575. It can be observed
that the estimation errors converge to the real states
very rapidly and then maintain zero mean value, in
spite of a considerable error in the initial conditions,
m20 − x0 = 10, m10 − z0 = 982. The estimation
error for the state x(t) at T = 4.0575 is equal to
m2(4.0575) − x(4.0575) = 0.1646. Figure 2 shows the
graph of the errors between the reference state x(t) (9)
and the estimate mG2(t) (19), and the reference state
z(t) = x3(t) (11) and its estimate mG1(t) (18), in the
entire simulation interval from t0 = 0 to T = 4.0575.
Note that although the estimate equations (13)–(14)
coincide with the estimate equations (18)–(19), the
designed filter for systems with white Poisson noises
shows very good overall performance at every time mo-
ment t of the simulation interval (Fig. 1), whereas the
estimation error of the estimatemG2(t) provided by the
filter available for systems with white Gaussian noises
diverges to infinity at T = 4.0575 (Fig. 2).

Thus, it can be concluded that the obtained filter
(13)–(17) solves the third order sensor filtering prob-
lem for the system (9),(10), where the state and obser-
vations are polynomials corrupted with white Poisson
noises, and yields a reliable estimate of the unmeasured
state.

5 Conclusions

This paper presents an approximate finite-dimensional
filter for polynomial system states confused with white
Poisson noises over polynomial observations. It is
shown that the proposed finite-dimensional filter can
be obtained in a closed form for any polynomial func-
tions in state and observation equations. In the exam-
ple, the closed-form solution is obtained to the filtering
problem for a quadratic state over third degree poly-
nomial observations, assuming a conditionally Poisson
initial condition for the extended third order state vec-
tor. The resulting filter yields a reliable and rapidly
converging estimate, in spite of a significant differ-
ence in the initial conditions between the state and
estimate, whereas the filter designed for systems with
white Gaussian noises behaves unsatisfactorily. Al-
though this conclusion follows from the developed the-
ory, the numerical simulation serves as a convincing
illustration.
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Figure 1: Top. Graph of the estimation error between the reference state x(t) (9) and its estimate m2(t) (14)
in the interval [0, 4.0575]. Bottom. Graph of the estimation error between the reference state z(t)
(11) and its estimate m1(t) (13) in the interval [0, 4.0575].
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Figure 2: Top. Graph of the estimation error between the reference state x(t) (9) and the estimate mG2(t) (19)
in the interval [0, 4.0575]. Bottom. Graph of the estimation error between the reference state z(t)
(11) and the estimate mG2(t) (18) in the interval [0, 4.0575].
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