
Modeling, Identification and Control, Vol. 32, No. 1, 2011, pp. 17–32, ISSN 1890–1328

A Sensor Fusion Algorithm for Filtering Pyrometer
Measurement Noise in the Czochralski

Crystallization Process

M. Komperød 1 J. A. Bones 2 B. Lie 3

1Faculty of Engineering, Østfold University College, N-1757 Halden, Norway. E-mail: magnus.komperod@hiof.no

2SINTEF Materials and Chemistry, Department of Metallurgy, N-7465 Trondheim, Norway.
E-mail: johnatle.bones@sintef.no

3Faculty of Technology, Telemark University College, N-3901 Porsgrunn, Norway. E-mail: bernt.lie@hit.no

Abstract

The Czochralski (CZ) crystallization process is used to produce monocrystalline silicon for solar cell
wafers and electronics. Tight temperature control of the molten silicon is most important for achieving
high crystal quality. SINTEF Materials and Chemistry operates a CZ process. During one CZ batch, two
pyrometers were used for temperature measurement. The silicon pyrometer measures the temperature of
the molten silicon. This pyrometer is assumed to be accurate, but has much high-frequency measurement
noise. The graphite pyrometer measures the temperature of a graphite material. This pyrometer has little
measurement noise. There is quite a good correlation between the two pyrometer measurements. This
paper presents a sensor fusion algorithm that merges the two pyrometer signals for producing a temperature
estimate with little measurement noise, while having significantly less phase lag than traditional lowpass-
filtering of the silicon pyrometer. The algorithm consists of two sub-algorithms: (i) A dynamic model is
used to estimate the silicon temperature based on the graphite pyrometer, and (ii) a lowpass filter and a
highpass filter designed as complementary filters. The complementary filters are used to lowpass-filter the
silicon pyrometer, highpass-filter the dynamic model output, and merge these filtered signals. Hence, the
lowpass filter attenuates noise from the silicon pyrometer, while the graphite pyrometer and the dynamic
model estimate those frequency components of the silicon temperature that are lost when lowpass-filtering
the silicon pyrometer. The algorithm works well within a limited temperature range. To handle a larger
temperature range, more research must be done to understand the process’ nonlinear dynamics, and build
this into the dynamic model.

Keywords: Complementary filters; Czochralski crystallization process; Measurement noise filtering; Py-
rometer temperature measurement; Sensor fusion algorithm.

1 Introduction

The Czochralski (CZ) crystallization process is used to
convert multicrystalline materials into monocrystalline
materials, i.e. materials that have homogeneous crystal
structures. Among the most important applications is

production of monocrystalline silicon. Monocrystalline
silicon is used in solar cell wafers and in computers and
electronics.

The CZ process is a batch process. During the pro-
cess, multicrystalline silicon is melted in a crucible.
The crucible is heated using a heating element, which
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power is manipulated using a triode for alternating cur-
rent (TRIAC). Tight control of the silicon temperature
is most important for achieving high crystal quality. A
reliable temperature measurement without too much
measurement noise is decisive for achieving good tem-
perature control.

This paper considers the temperature measurement
of a real-life CZ process owned and operated by SIN-
TEF Materials and Chemistry in Trondheim, Norway
(hereafter referred to as SINTEF). During an experi-
ment two pyrometers were used for temperature mea-
surement. One pyrometer, referred to as the silicon
pyrometer, measures the temperature in the molten
silicon. The molten silicon temperature is the desired
temperature signal for monitoring and control. Unfor-
tunately, the signal from this pyrometer has consider-
able high-frequency measurement noise. Attenuating
the noise using a traditional lowpass filter is an intu-
itive and feasible solution. However, this solution will
cause significant phase lag over the filter, which is un-
fortunate for the temperature control.

The other pyrometer, referred to as the graphite py-
rometer, has little noise. However, this pyrometer has
the disadvantage of measuring the temperature of a
graphite material encircling the silicon crucible. Hence,
the signal of the pyrometer does not represent the ac-
tual silicon temperature. Fortunately, there is quite a
high correlation between the silicon temperature and
the graphite pyrometer signal.

The contribution of this paper is a sensor fusion al-
gorithm that fuses the two pyrometer measurements.
The purpose of the algorithm is to estimate the tem-
perature of the molten silicon. For a given cut-off fre-
quency, the algorithm estimate gives the same amount
of measurement noise as a traditional lowpass filter,
but has significantly less phase lag. The lower the cut-
off frequency is chosen, the larger improvement of using
the sensor fusion algorithm. On the other hand, if the
cut-off frequency is chosen high, there is little phase
lag over a traditional lowpass filter, and the algorithm
does not give any significant improvement.

The sensor fusion algorithm presented in this paper
is implemented as complementary filters. The filters
are chosen as a lowpass Butterworth filter and a high-
pass Butterworth filter. A statistically optimal tem-
perature estimate can in theory be computed using
a Kalman filter or a Wiener filter. However, using
Kalman filter or Wiener filter depends on noise de-
scriptions that are not known. Using complementary
Butterworth filters, the sensor fusion algorithm has one
tuning parameter; the Butterworth filters’ cut-off fre-
quency.

The authors have searched for scientific papers issu-
ing pyrometer measurement noise in the CZ processes.

Unfortunately, no relevant results were found. There
are several possible reasons for this negative search re-
sult: (i) Even though the silicon pyrometer at SINTEF
has much measurement noise, this may not be an issue
of other pyrometers at other CZ plants. (ii) The noise
is attenuated using traditional lowpass filters despite
the unfortunate phase lag. (iii) The noise problem
is reduced by using controller tunings that attenuate
high-frequency noise, for example avoiding derivative
action and high gain in PID controllers. (iv) The noise
problem is handled in the commercial CZ industry and
is not published in scientific papers.

An introduction to complementary filters is given in
Brown and Hwang (1997). Lyons (2011) gives a general
introduction to digital signal processing. The sensor
fusion algorithm also includes an empirical model de-
veloped using system identification. A comprehensive
introduction to system identification is given in Ljung
(1999).

Lan (2004) gives an introduction to crystal growth,
including the CZ process, and provides an extensive
number of references for further reading. There are
many scientific papers covering modeling and control of
the CZ process, for example Irizarry-Rivera and Seider
(1997a,b) and Lee et al. (2005). However, the authors’
literature search indicates that the important topic of
sensor technology in the CZ process has received very
limited attention.

2 Notation and Definitions

Table 1 presents the notation used in this paper. A
variable with subscript k refers to the variable’s value
at timestep k. For example Tk refers to the silicon
temperature at timestep k.

Please note the difference between T̂ g and u: u is the
raw signal from the graphite pyrometer in Volt, while
T̂ g is an estimate of the silicon temperature based on
the signal u. These variables are related through the
equation T̂ g = G(z) u.

To simplify notation, the arguments s and z will be
used to specify whether a transfer function H is time
continuous or time discrete, respectively. That is, H(s)
and H(z) describe the same model or filter, where H(s)
is the continuous version and H(z) is the discrete ver-
sion. This notation is erroneous in a strict mathemati-
cal sense, as H(s) and H(z) are different mathematical
functions. However, it simplifies the notation without
any risk of confusion.
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3 The Czochralski Crystallization
Process

The Czochralski (CZ) crystallization process is used
to convert multicrystalline materials into monocrys-
talline materials. The plant considered in this paper
converts multicrystalline silicon into monocrystalline
silicon. Monocrystalline silicon is used in solar cell
wafers and in computers and electronics. Solar cells
based on monocrystalline silicon have higher efficiency
than solar cells based on multicrystalline silicon.

The CZ process is a batch process, which main steps
are illustrated in Figure 1. (i) Initially multicrystalline
silicon is melted in a crucible. (ii) When the silicon is
molten, the tip of a seed crystal is dipped into the melt.
The seed crystal is monocrystalline and has the crystal
structure that is to be produced. (iii) When the tip
of the seed crystal begins to melt, the crystal is slowly
elevated. As the crystal is lifted, the molten silicon so-
lidifies on the crystal. During solidification, the crys-

Table 1: Notation used in this paper.

G(z) The dynamic model from the
graphite pyrometer to the silicon
temperature.

H(z) A lowpass Butterworth filter.
k An index referring to sample num-

ber in the dataset.
T The true, but unknown, tempera-

ture of the molten silicon [◦C].
T̂ The temperature of the molten sili-

con [◦C] estimated by the sensor fu-
sion algorithm.

T̂ g The temperature of the molten sili-
con [◦C] estimated based on the sig-
nal from the graphite pyrometer, u.

T̂ s The temperature of the molten sili-
con [◦C] measured by the silicon py-
rometer.

ts The sample time [s].
u The raw signal from the graphite py-

rometer [V].
ū ū is u rescaled by a gain and a bias.

ū is only used for comparing u and
T̂ s in plots. ū is not used in the
sensor fusion algorithm.

z The time-shift operator defined by
xk+1 = zxk and xk−1 = z−1xk.

ω Frequency [rad/s].
ωc The cut-off frequency of Butter-

worth filters [rad/s].
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Figure 1: The main batch steps of the CZ process. Il-
lustration from Wikipedia (the illustration is
released to public domain by the copyright
holder).

tal structure of the seed crystal is extended onto the
solidifying silicon. (iv) The crystal grows radially and
axially. The produced crystal is referred to as an ingot.
The temperature of the molten silicon and the vertical
pulling speed are used to control the ingot diameter.
Stable growing conditions are essential to produce high
crystal quality. (v) As the final ingot length is reached,
the crystal growth is terminated by slowly decreasing
the crystal diameter to zero. During the entire batch
process, the crucible is rotated in one direction, and
the seed crystal is rotated in the opposite direction.

SINTEF Materials and Chemistry in Trondheim, Nor-
way, owns and operates a CZ process. Initially there
was one pyrometer at this plant. This pyrometer mea-
sures the temperature at a graphite material in the
CZ process. This pyrometer will be referred to as the
graphite pyrometer. The pyrometer has the advantage
of little measurement noise, but it does not measure
the temperature directly in the molten silicon. Hence,
using this pyrometer for temperature control, the tem-
perature of the graphite material is actually controlled,
not the temperature of the silicon. This choice of sen-
sor location is then based on the assumption that sta-
ble graphite temperature implies stable silicon temper-
ature.

A second pyrometer was installed at the plant. This
pyrometer is able to measure the temperature directly
in the molten silicon, which is the desired temperature
to control. This pyrometer will be referred to as the sil-
icon pyrometer. The authors have logged process data
from only one experiment where this pyrometer was
tested. The temperature measured by this pyrometer
seems reasonable based on the melt temperature of sil-
icon. Also the measured temperature response seems
reasonable based on step changes in the heating ele-
ment power. Unfortunately, the temperature signal of
this pyrometer is very noisy. An intuitive and feasible
solution is to use a traditional lowpass filter to attenu-
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ate the noise. However, lowpass-filtering will give phase
lag over the filter which is unfortunate for temperature
control. The more the signal is smoothed in the filter,
the more phase lag.

4 Sensor Fusion and
Complementary Filters

Online measurements of process variables are decisive
for most control systems to operate properly. There
are often several sensor technologies available for mea-
suring a specific variable. If no conventional sensor
is available, it may be possible to develop a soft sen-
sor. A soft sensor does not measure the desired process
variable directly, but relies on other measurements and
an algorithm to estimate the desired process variable.
In the following text, the terms “sensor” and “sensor
technology” will be used for both conventional sensors
and soft sensors.

For measuring a specific process variable, different
sensor technologies may have different qualities, such as
accuracy and amount of measurement noise. A sensor
fusion algorithm is an algorithm that combines several
sensors for estimating a process variable. The algo-
rithm’s purpose is to achieve an estimate with better
qualities than any of the individual sensors provides.
The term “sensor fusion” is a general term for using
multiple sensors to estimate a variable. A number of
algorithms can be used to fuse the sensor signals, in-
cluding Kalman filter and Bayesian networks.

A special case of the sensor fusion approach is when
different sensors have desirable qualities in different fre-
quency ranges. The typical case is when some sensors
are accurate at low frequencies, while other sensors are
accurate at high frequencies. A commonly used exam-
ple is estimation of position based on a position sen-
sor and a velocity sensor. The position sensor may
not be sufficiently accurate to keep up with smaller
position variations. On the contrary, time-integrating
the velocity sensor may keep up with smaller posi-
tion changes, but this estimate is likely to drift over
time due to accumulation of small measurement errors.
The intuitive solution is to consider the velocity sensor
over short time spans, and consider the position sensor
over longer time spans. In the frequency domain this
translates into lowpass-filtering the position sensor and
highpass-filtering the time-integrated velocity (Brown
and Hwang, 1997).

Complementary filters is a simple and intuitive ap-
proach for fusing sensors which qualities can be dis-
criminated by frequency. Assume that a process vari-
able y is measured by two sensors. The sensor outputs
are ŷ1 = y+ v1 and ŷ2 = y+ v2, respectively, where v1

Sensor 1 1-H(z)
y

1 
= y + v

1
^

Sensor 2 H(z)
y

2 
= y + v

2
^

+

+

ŷ

Figure 2: Complementary filters with two inputs. The
figure is inspired by Brown and Hwang (1997,
Figure 4.9).

and v2 are measurement noise / measurement errors.
Assume that v1 is low-frequency noise and v2 is high-
frequency noise. Hence, highpass-filtering ŷ1 removes
v1, but also removes the low-frequency components of
the signal y. Similarly, lowpass-filtering ŷ2 removes
v2, but also removes the high-frequency components of
y. Summing the highpass-filtered ŷ1 and the lowpass-
filtered ŷ2 will include both the high-frequency and the
low-frequency components of y. Assuming the applied
lowpass filter is H(z), the highpass filter is chosen as
the complementary filter 1−H(z) (Brown and Hwang,
1997). Complementary filters are illustrated in Fig-
ure 2.

The filter output ŷ can be written as

ŷ = [1−H(z)]ŷ1 +H(z)ŷ2 (1)
= [1−H(z)](y + v1) +H(z)(y + v2)
= y + [1−H(z)]v1 +H(z)v2.

Ideally, the lowpass filter H(z) removes v2 and the
highpass filter 1 − H(z) removes v1. Then the esti-
mated output will be identical to the actual process
variable, i.e. ŷ = y (Brown and Hwang, 1997).

The choice of the lowpass filter H(z) is important to
achieve a good estimate ŷ. If the noise characteristics
of v1 and v2 are known, the statistically optimal H(z)
can be computed using a Wiener filter or a Kalman
filter (Brown and Hwang, 1997). However, in many
real-life applications the noise characteristics are not
known.

Although the term complementary filters is not used,
Ljung (1999, Section 3.3) uses complementary filters
when discussing observers and predictors. Actually,
this reference was the most inspiring for the authors
when developing the sensor fusion algorithm.

5 Basic Principle

This paper presents a sensor fusion algorithm that aims
at attenuating measurement noise of the silicon pyrom-
eter, while giving less phase lag than a traditional low-
pass filter. Hence, the output of the algorithm, T̂ , is
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Lowpass filter
H(z)

Model
G(z)
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1-H(z)

T
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filters

^

T s^

T g^u

Figure 3: Basic principle of the sensor fusion algorithm.

an estimate of the true, but unknown, silicon temper-
ature, T . This section gives a brief presentation of the
algorithm, while the following sections provide a thor-
ough explanation.

The silicon pyrometer measures the temperature of
the molten silicon in the CZ process. The pyrometer
output signal, T̂ s, seems reasonable based on process
knowledge and step-response tests. Unfortunately, the
signal is very noisy. The graphite pyrometer measures
the temperature of a graphite material. The signal
from this pyrometer, u, has little noise. There is quite
a good correlation between the signals of the two py-
rometers.

The sensor fusion algorithm consists of two sub-al-
gorithms: (i) A dynamic model, G(z), and (ii) comple-
mentary filters, H(z) and 1−H(z).

The dynamic model, G(z), estimates the silicon tem-
perature, T , as a function of the graphite pyrometer,
u. This estimate is noted T̂ g. Please note that the
estimate does not depend on the silicon pyrometer.

The model estimate, T̂ g, is less accurate than the
silicon pyrometer, but has the significant advantage of
little noise. Due to the measurement noise of the silicon
pyrometer, the model estimate is more reliable than the
silicon pyrometer, T̂ s, at high frequencies. However,
the silicon pyrometer is assumed to be more reliable
at low frequencies than the model estimate. The com-
plementary filters take advantage of these qualities by
lowpass-filtering the silicon pyrometer through H(z),
highpass-filtering the model output through 1−H(z),
and sum these two filtered signals. The sensor fusion
algorithm is illustrated in Figure 3.

6 Presentation of the Raw Data

The authors have access to data from only one CZ
batch where both the silicon pyrometer and the graphite
pyrometer were used. Analyses of the data and initial
tests of the sensor fusion algorithm conclude that the
dynamics from the graphite pyrometer, u, to the sili-
con temperature, T , (measured by the silicon pyrome-
ter, T̂ s) is nonlinear. The nonlinearity will be demon-
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Figure 4: The silicon pyrometer, T̂ s, and the rescaled
raw signal of the graphite pyrometer, ū, plot-
ted over the data section used to develop the
sensor fusion algorithm.

strated in Section 10. The present section covers the
data used for developing the sensor fusion algorithm.

When deciding which part of the dataset to use for
developing the sensor fusion algorithm, the authors
were looking for a continuous section where there are
significant excitations in the temperature, while the
temperature range is not wide enough for nonlineari-
ties to be significant. There is only one section in the
dataset that meets these demands. This section covers
5 hours and 50 minutes of the CZ batch, having sam-
pling interval of 2 seconds. That is 10501 samples. The
grey curve of Figure 4 shows the temperature measured
by the silicon pyrometer, T̂ s, over the chosen data sec-
tion. The temperature is in the range of approximately
1445◦C to 1470◦C. For comparison, during the entire
CZ batch (melting of the silicon not included) the tem-
perature varies in the range of approximately 1425◦C
to 1480◦C. Hence, the range used to develop the sensor
fusion algorithm is approximately 45% of the total tem-
perature range during the CZ batch. Figure 4 shows
that the silicon pyrometer gives a very noisy measure-
ment signal. The noise peak-to-peak amplitude is 5 to
10◦C.

The green curve of Figure 4 illustrates the raw signal,
u, of the graphite pyrometer over the chosen data sec-
tion. For the purpose of comparing this signal with the
silicon pyrometer, T̂ s, the signal has been rescaled to
the same range as the silicon pyrometer. The rescaled
signal, ū, shown in the figure is on the form ū = p1u+
p0, where p1 and p0 are polynomial coefficients. The
coefficients are computed as the least squares fit of ū
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Figure 5: Location of the silicon pyrometer and the
graphite pyrometer in the SINTEF CZ pro-
cess (seen from above). Please refer to the
main text for explanation.

to T̂ s. Please note that ū is the static best fit of u
to T̂ s. The dynamic relationship between u and T̂ s

will be developed in Section 8 using system identifica-
tion. Figure 4 clearly shows that the graphite pyrome-
ter has very little measurement noise compared to the
silicon pyrometer. The figure also shows that there is
a good correlation between the silicon pyrometer and
the graphite pyrometer.

Figure 5 illustrates the location of the silicon py-
rometer and the graphite pyrometer in the CZ process
(seen from above). The black arrow indicates the mea-
surement location of the graphite pyrometer, and the
grey arrow indicates the measurement location of the
silicon pyrometer. The grey area in center represents
the molten silicon, and the blue circle represents the
crucible. The crucible is located in a rotating device
(green color) shaped as a cylinder with bottom, and
without top. The red color represents the heating el-
ement, which power is controlled by a triode for al-
ternating current (TRIAC). The black color represents
the graphite ring at which the graphite pyrometer mea-
sures temperature. The yellow color represents insula-
tion and the outer wall. The colors in Figure 5 are
chosen to simplify the explanation of the figure. The
colors do not represent the colors in the process.

7 Deciding the Complementary
Filters H(z) and 1−H(z)

Figure 3 illustrates the complementary filters to be
used in the sensor fusion algorithm. For two comple-
mentary filters, there is only one filter characteristic to
choose. For the sensor fusion algorithm, the transfer
function of the lowpass filter H(z) is to be chosen. The
highpass filter is then given by 1−H(z).

The sensor fusion algorithm provides an estimate, T̂ ,
of the silicon temperature. The accuracy of this esti-
mate depends on H(z). H(z) can be computed using
a Wiener filter or a Kalman filter (Brown and Hwang,
1997). These approaches give a temperature estimate,
T̂ , that is optimal in the sense of minimizing the esti-
mation error variance, i.e. E (T − T̂ )2. However, the
Kalman filter depends on covariance matrices that rep-
resent the measurement noise of the silicon pyrometer,
i.e. T − T̂ s, and the estimation error of the model out-
put, i.e. T−T̂ g. The Wiener filter depends on the same
information presented in other terms. Unfortunately,
this information is not known.

A simpler approach is used in this paper. The fil-
ter H(z) is chosen as a Butterworth filter. There are
now two parameters to be specified: (i) The cut-off
frequency, ωc, and (ii) the filter order. The cut-off fre-
quency will depend on the tolerance for measurement
noise. This tolerance depends on the usage of the tem-
perature estimate, T̂ . For example, if the estimate is
to be used for temperature control, the tolerance for
high-frequency noise will depend on the controller tun-
ing. A controller with significant derivative action will
have less tolerance than a controller using mainly inte-
gral action.

As this paper considers only the sensor fusion al-
gorithm, not its usage, the cut-off frequency, ωc, will
be chosen based on the frequency content of the sil-
icon pyrometer, T̂ s. The cut-off frequency is chosen
as the lowest frequency component that in the time
domain can not be distinguished from high-frequency
measurement noise. That is, the logged data of the sil-
icon pyrometer, T̂ s, are transformed to the frequency
domain using the discrete Fourier transform. Then the
lowest frequency component is removed, and the re-
maining components are transformed back to the time
domain. If there is any visible signal pattern beyond
measurement noise in the time domain, the second low-
est frequency component is removed. Then the remain-
ing frequency components are transformed to the time
domain. This is repeated until there is no visual pat-
tern in the time domain beyond measurement noise.
For the data sequence T̂ s, approximately the 15 lowest
frequency components can be distinguished from the
high-frequency noise in the time domain.
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Figure 6: The silicon pyrometer, T̂ s, shown in the time
domain, after removing the 15 lowest fre-
quency components.

Figure 6 shows the silicon pyrometer, T̂ s, in the time
domain, after removing the 15 lowest frequency compo-
nents. Hence, the cut-off frequency, ωc, will be chosen
equal to the lowest frequency component presented in
Figure 6. In other words: The cut-off frequency will
be chosen to attenuate the data shown in Figure 6.
The lowest frequency component that is represented in
the figure is the 16th component, which corresponds to
4.8×10−3 rad/s. Hence, the cut-off frequency is chosen
as ωc = 4.8× 10−3 rad/s.

It is emphasized that this approach is only a sug-
gestion for how to choose the cut-off frequency. When
using the sensor fusion algorithm in a real-life appli-
cation, such as temperature control, the application’s
tolerance to measurement noise will decide the cut-off
frequency. Also, the number of frequency components,
in this case 15, has been chosen based on human in-
spection of data plots, and is therefore not precise.

The next issue is to choose the Butterworth filter or-
der. The higher filter order, the sharper cut-off. Con-
sidering the sensor fusion algorithm of this paper, the
silicon pyrometer, T̂ s, has desirable qualities at low
frequencies, and the model estimate, T̂ g, has desirable
qualities at high frequencies. However, it seems un-
likely that there are sharp frequency limits between
the desirable and the undesirable qualities. Gradual
changes between the qualities seem more likely. Hence,
it seems reasonable to choose a low filter order to get
a gradual transition from T̂ s to T̂ g for increasing fre-
quencies. The filter order is therefore chosen to be one.

A continuous time lowpass Butterworth filter with
ωc = 4.8× 10−3 rad/s has the transfer function (Hau-

gen, 2004)

H(s) =
1

1 + s
ωc

. (2)

The dynamic model, G(z), to be developed in Sec-
tion 8 will be a discrete time model. It is therefore de-
sirable to also have the lowpass filter in discrete time.
There are several ways to convert a continuous time
transfer function to discrete time. A method referred
to as the bilinear transform method will be used here.
This method is described in Lyons (2011). The method
is to replace s in a continuous transfer function, H(s),
with

s =
2
ts

(
1− z−1

1 + z−1

)
(3)

to obtain the time discrete transfer functionH(z). Here,
ts is the sampling time, which is 2 seconds. Using this
method, the discrete time lowpass filter becomes

H(z) =
ωcts + ωctsz

−1

ωcts + 2 + (ωcts − 2)z−1
. (4)

The complementary continuous highpass filter is

1−H(s) =
s

ωc

1 + s
ωc

. (5)

This is a highpass Butterworth filter (Haugen, 2004).
In discrete time this becomes

1−H(z) =
2− 2z−1

ωcts + 2 + (ωcts − 2)z−1
. (6)

Figure 7 shows the Bode diagram of the complemen-
tary filters H(z) and 1−H(z).

8 Identifying the Dynamic Model
G(z)

The sensor fusion algorithm presented in this paper
aims at attenuating the measurement noise of the sil-
icon pyrometer, while giving significant less phase lag
over the filter than a traditional lowpass filter. Figure 3
illustrates the sensor fusion algorithm. The upper in-
put of the summation point represents a traditional
lowpass-filtering of the silicon pyrometer, T̂ s. This sig-
nal is believed to give an accurate representation of the
silicon temperature, T , but the high-frequency compo-
nents are removed and the signal is phase lagged in
the filter. Hence, the purpose of the lower input of the
summation point in Figure 3 is to estimate the high-
frequency components of the silicon temperature, T ,
and give this estimate a positive phase by highpass-
filtering it. Therefore, the success of the sensor fusion
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Figure 7: Bode diagram of the complementary filters;
the lowpass filter, H(z), and the highpass fil-
ter, 1−H(z).

algorithm depends on how accurate the model output,
T̂ g, describes the silicon temperature, with emphasis
to the higher frequency components. This section dis-
cusses how the model, G(z), is developed to meet this
demand.

The model, G(z), will be developed using system
identification. The model input is the output signal of
the graphite pyrometer, u. The desired model output
is the silicon temperature, T . As the exact tempera-
ture is not known, the best estimate available is the
temperature measured by the silicon pyrometer, T̂ s.
Unfortunately, the noise at T̂ s is likely to reduce the
quality of the model. However, no better options are
available.

In the sensor fusion algorithm, the model’s output,
T̂ g, will be highpass-filtered through the filter 1−H(z)
as shown in Figure 3. Hence, when developing the
model, G(z), the low-frequency components should be
deemphasized in favor of the high-frequency ones. This
is achieved by detrending (subtracting sample mean)
and highpass-filtering the raw data using the same high-
pass filter that is used in the complementary filters, i.e.
1−H(z). Figure 8 shows the silicon pyrometer, T̂ s, and
the rescaled version of the graphite pyrometer signal,
ū, after being detrended and filtered through the high-
pass filter 1 −H(z). In other words: The data shown
in Figure 8 are the data shown in Figure 4 after be-
ing detrended and highpass-filtered. When identifying
the model, G(z), the input data used is u and the out-
put data used is T̂ s, both after being detrended and
highpass-filtered. That is, the data used for identify-
ing the model are the data shown in Figure 8, except
that u is used instead of its rescaled version ū.
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Figure 8: The silicon pyrometer, T̂ s, and the rescaled
graphite pyrometer, ū, after being detrended
and highpass-filtered through 1−H(z).

The next issue is to decide a model structure for the
model G(z). The dynamics from the graphite pyrom-
eter, u, to the silicon temperature, T , (measured by
the silicon pyrometer, T̂ s) seems to be nonlinear. This
nonlinearity is demonstrated in Section 10. Flexible,
nonlinear black-box model structures usually contain
significantly more parameters than linear model struc-
tures. As the authors do not have independent data
for validating the model, the number of parameters
should be limited to avoid overfitting of the model.
Therefore, a simple, linear model structure was chosen
for the sensor fusion algorithm presented in this pa-
per. Section 11 discusses further work, including this
nonlinearity issue.

As pointed out in Ljung (1999), including a noise
model in the model structure is equivalent to prefilter
the measured data. Hence, a noise model may coun-
teract the data prefiltering done above. Therefore, an
output error (OE) model structure will be used. OE
models have no noise model, i.e. the noise model is
simply 1. The MATLAB System Identification Tool-
box includes two linear OE model structures: (i) The
process model structure and (ii) the polynomial OE
model structure.

The process model is a time continuous transfer func-
tion. The human model builder can specify the number
of poles (one to three), whether the transfer function
should have a zero, and whether the transfer function
should have a time delay. Using the maximum num-
ber of poles, and a zero and a time delay, the model
structure is on the form
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G(s) = K
1 + tzs

(1 + t1s)(1 + t2s)(1 + t3s)
e−tds, (7)

where the parameters to be identified are K, t1, t2, t3,
tz, and td. As pointed out in Ljung (2009), the main
advantage of this model structure is that the time delay
is estimated. For most other model structures the time
delay must be specified by the human model builder.
On the other hand, a disadvantage of the process model
structure is that the human model builder must specify
whether or not the system is underdamped (has com-
plex conjugate poles). If the system is underdamped,
the model structure is on the form

G(s) = K
1 + tzs

(1 + 2ζtωs+ (tωs)2)(1 + t3s)
e−tds. (8)

Please refer to Ljung (2009) for further explanation of
the process model structure.

The polynomial OE model structure is a model struc-
ture in the same family as the more well-known ARX
and ARMAX model structures. For single input, sin-
gle output (SISO) systems, the only difference between
these three model structures is the noise models. The
OE model has no noise model, i.e. the noise model is
simply 1. The SISO polynomial OE model structure is
on the form

G(z) =
B(z)
F (z)

z−nd , (9)

where

B(z) =
nb∑
i=0

biz
−i, (10)

F (z) = 1 +
nf∑
i=1

fiz
−i. (11)

Here, bi and fi are polynomial coefficients, and nd is
the time delay in number of samples.

The parameters of the model structures (7) (or (8))
and (9) are identified using the prediction error method
(PEM). For an introduction to PEM, please refer to
Ljung (1999). Using PEM identification, the model
parameters are identified as the solution of a multi-
variable optimization problem. In most cases the op-
timization problem is nonlinear, and the optimization
algorithm is in danger of being trapped in a local min-
imum. Quoting Ljung (1999): “For output error struc-
tures, on the other hand, convergence to false local
minima is not uncommon.”
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Figure 9: The eight successful process models. ’P1’,
’P2’, and ’P3’ refer to the number of poles
(one, two, or three). ’D’ means that time
delay is estimated. ’Z’ means that a zero is
estimated. ’U’ means that two poles are un-
derdamped (complex conjugate).

The identification work was started by identifying
process models ((7) and (8)) using the MATLAB Sys-
tem Identification Toolbox. Ten models with different
number of poles, real or complex poles, and with or
without zero were identified. The models were then
plotted against the system output, i.e. the highpass-
filtered T̂ s. Eight of the ten models give good fit to
the system output. It is assumed that the failure of
the other two models is because the PEM algorithm
was trapped in a local minimum. The argument for
this conclusion is that simpler model structures, which
are subsets of the faulty model structures, did succeed.
The eight successful models are shown in Figure 9.
There are some differences in the initial values, i.e. the
first 20-30 minutes. There are also some smaller dif-
ferences in the range 325 to 345 minutes (this may be
difficult to see in the figure). However, Figure 9 shows
that the models are very similar in explaining the sys-
tem output, and it is very difficult to conclude which
model is the better one.

The main reason for beginning the identification work
by identifying process models is the process model struc-
ture’s ability to estimate time delay, i.e. td in (7) and
(8). Among the eight successful models, td ranges from
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Figure 10: Six polynomial OE models with nb = 1 and
nf = 2. The time delay, nd, ranges from 0
to 125 samples in increments of 25 samples.

0 to 210 seconds. Hence, it must be concluded that us-
ing process models for estimating time delay was not
very successful for this dataset. However, this is not an
unfortunate conclusion: Models with a wide range of
time delays give good fit to the system output. Hence,
the models seem robust to the choice of time delay. In
other words: The poles and the zero seem to be able
to compensate a somewhat erroneous time delay. The
robustness to the choice of time delay was confirmed
by polynomial OE models: Six models with nb = 1 and
nf = 2 were identified. The models have different time
delays, nd, ranging from 0 to 125 samples in increments
of 25 samples (i.e. from 0 to 250 seconds in increments
of 50 seconds). Otherwise these six models were iden-
tified under the same conditions. Figure 10 shows the
model fit of these six models. Figure 10 confirms the
observation of Figure 9: A wide range of time delays
give good model fit. Hence, it is concluded that the
models are robust to the choice of time delay.

The polynomial OE model with nd = 100 gives an
unusual step-response and frequency response (not shown).
The model will therefore be ignored in the following
discussion.

Zooming in on Figure 10 shows that some models
give smooth outputs, while other models give outputs
with some high-frequency noise. It turns out that longer
time delay gives more noisy output. The reason is to be
found in the Bode magnitude diagram of the models.
This diagram is shown in Figure 11. The longer time
delay, nd, the higher amplitude at high frequencies.
Hence, longer time delay means less lowpass-filtering
of the model input signal, u. This explains why longer
time delay gives more noisy output.
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Figure 11: Bode magnitude diagram of the five success-
ful polynomial OE models. The models’
time delay, nd, range from 0 to 125 sam-
ples in increments of 25 samples. The model
having nd = 100 is excluded.

It remains to be explained why longer time delays
give less attenuation for increasing frequencies. Visual
inspection of Figure 8 strongly indicates that there is
some phase lag from u to T̂ s, because the peaks in ū
seem to occur before the corresponding peaks in T̂ s.
Long time delay gives large phase lag in the frequency
domain. Long time constants also give large phase lag.
Hence, it seems reasonable to conclude that models
with long time delay use the time delay to give phase
lag, while models with short time delay use long time
constants to give phase lag. Long time delays do not
change the magnitude of the Bode diagram, while long
time constants attenuate high frequencies.

Quoting Ljung (1999): “Our acceptance of models
should be guided by ’usefulness’ rather than ’truth’.”
For the purpose of the sensor fusion algorithm, it is
not of main interest to know the exact time delay. The
implications of short or long time delay are more im-
portant. Hence, it seems reasonable to decide whether
or not a lowpass-filtering effect in the model G(z) is
desirable, and choose the time delay based on this de-
cision. There is some noise present in the signal from
the graphite pyrometer, u. Hence, it is reasonable to
require at least some lowpass-filtering. From a physical
consideration of the process, it is reasonable to assume
that the melted silicon in the crucible heats and cools
off slower than the graphite ring. This further favors
lowpass-filtering. The time delay is therefore chosen as
nd = 0. It is emphasized that this is not an exact sci-
entific conclusion, but a choice that is reasonable based
on the need for lowpass-filtering due to some measure-
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ment noise in the graphite pyrometer output, u, as well
as physical consideration of the process.

The next issue is to choose the polynomial orders nb

and nf . The models shown in Figure 10 have nb = 1
and nf = 2, i.e. there are two parameters to be iden-
tified in each of the nominator and denominator. As
the models give good fit, it is reasonable to assume that
these polynomial orders are quite good. However, vari-
ous polynomial orders will be tested to find the optimal
ones. Polynomial OE models were identified with all
combinations of nb ∈ {0, 1, 2} and nf ∈ {1, 2, 3}, i.e.
in total nine models. For all models the time delay is
nd = 0. The fit of these nine models are shown in Fig-
ure 12. It may be difficult to separate the nine models
in the figure. However, this is not essential. The main
point of the figure is that the models form three groups.
The first group is all models with nf = 1 (regardless
of nb). The second group is nb = 0 and nf ∈ {2, 3}.
The third group is the remaining four models, i.e. nb ∈
{1, 2} and nf ∈ {2, 3}. Hence, it seems reasonable to
conclude that for models with nb = 0 and/or nf = 1,
there is some dynamics that is not properly modeled
due to too few polynomial parameters. However, the
modeled dynamics does not change significantly as nb

increases from 1 to 2 (provided nf ≥ 2). Similarly, the
dynamics does not change significantly as nf increases
from 2 to 3. It is therefore concluded that nb = 1 and
nf = 2 are sufficiently high polynomial orders.

Summing up the identification work: The final model
G(z) is chosen as a polynomial OE model, (9), with
nb = 1, nf = 2, and nd = 0. Hence, the model is on
the form

G(z) =
b0 + b1z

−1

1 + f1z−1 + f2z−2
. (12)

The model has four parameters to be identified. The
final model is shown in Figure 13. The final model
turns out to be identical to the model labeled “0” in
Figure 11. This figure shows the model’s Bode magni-
tude diagram.

9 Merging the Sub-Algorithms

As shown in Figure 3, the sensor fusion algorithm con-
sists of two sub-algorithms: (i) The complementary
filters, H(z) and 1 − H(z), which filter characteris-
tics were developed in Section 7, and (ii) the dynamic
model, G(z), which was developed in Section 8. These
sub-algorithms are now to be merged into the final
sensor fusion algorithm. The output of the sensor fu-
sion algorithm is the silicon temperature estimate, T̂ ,
which is a function of the silicon pyrometer, T̂ s, and
the graphite pyrometer, u. The estimate is given by

0 50 100 150 200 250 300 350
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [minutes]

T
em

pe
ra

tu
re

 [°
C

]

 

 

System output

nf = 1,nb = 0

nf = 1,nb = 1

nf = 1,nb = 2

nf = 2,nb = 0

nf = 2,nb = 1

nf = 2,nb = 2

nf = 3,nb = 0

nf = 3,nb = 1

nf = 3,nb = 2

Figure 12: Polynomial OE models with all combina-
tions of nb ∈ {0, 1, 2} and nf ∈ {1, 2, 3}.
The time delay is nd = 0 for all models.
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Figure 13: The final model G(z).
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Figure 14: Bode diagram of G̃(z).

T̂ = H(z) T̂ s + (1−H(z)) T̂ g (13)
= H(z) T̂ s + (1−H(z))G(z) u.

It is convenient to define

G̃(z) def= (1−H(z))G(z). (14)

The estimated silicon temperature can then be written

T̂ = H(z) T̂ s + G̃(z) u. (15)

The transfer function H(z) is a lowpass filter. The
Bode diagram of H(z) is shown in Figure 7. The trans-
fer function G̃(z) is a series connection of the model
G(z), which has lowpass characteristics, and the high-
pass filter 1−H(z). Hence, G̃(z) has bandpass charac-
teristics. The Bode diagram of G̃(z) is shown in Fig-
ure 14.

10 Validating the Sensor Fusion
Algorithm

The purpose of the sensor fusion algorithm is to filter
the measurement noise of the silicon pyrometer, T̂ s,
with significant less phase lag than a traditional low-
pass filter. It is then natural to compare the output
of the sensor fusion algorithm, T̂ , with the output of
the lowpass filter H(z). That is, the sensor fusion al-
gorithm, T̂ = H(z) T̂ s + G̃(z) u, is to be compared
with H(z) T̂ s. Figure 15 shows T̂ and H(z) T̂ s plot-
ted against the unfiltered silicon pyrometer signal, T̂ s.
Figure 16 shows the same data as Figure 15, zoomed
in at three different areas. The figures show that the
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Figure 15: The output of the sensor fusion algorithm,
T̂ , and the lowpass-filtered silicon pyrome-
ter, H(z) T̂ s, plotted against the unfiltered
silicon pyrometer, T̂ s.

sensor fusion algorithm, T̂ , follows the unfiltered sig-
nal, T̂ s, much closer than the lowpass-filtered value
H(z)T̂ s does.

The output of the sensor fusion algorithm, T̂ , con-
sists of two contributions: H(z) T̂ s and G̃(z) u. Visual
comparison of the two contributions shows that the
high-frequency noise at G̃(z)u is neglectable compared
to H(z) T̂ s (this plot is not shown). Hence, T̂ has the
same amount of high-frequency noise as H(z) T̂ s.

Figures 15 and 16 compare T̂ and H(z) T̂ s in the
time domain. It is also of interest to compare these
two signals in the frequency domain. However, it is
not straight forward how to do this. The following
approach has been chosen here: Two models, R(z)
and S(z), are identified. R(z) models the dynamics
from T̂ s to T̂ , and S(z) models the dynamics from T̂ s

to H(z) T̂ s. Both models are on the form (9) with
nb = 1, nf = 2, and nd = 0. The intention of the
models is to get an estimate of which frequency com-
ponents of the silicon temperature, T , (measured by
the silicon pyrometer, T̂ s) that are preserved in T̂ and
H(z) T̂ s, respectively. Figure 17 shows the Bode di-
agram of the models R(z) and S(z). As expected,
the model S(z) is identical to the lowpass filter H(z).
The Bode diagram shows that S(z) attenuates at much
lower frequencies than R(z). This means that the sen-
sor fusion algorithm preserves higher frequencies of the
silicon temperature, T , than the lowpass filter H(z)
does, without letting through more noise. The phase
diagram shows that the sensor fusion algorithm can
handle much higher frequencies before it gives signifi-
cant phase lag. The magnitude diagram indicates that
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the sensor fusion algorithm slightly amplifies some fre-
quency components around ω = 10−2 rad/s. This is
an undesirable behavior.

Figures 15 through 17 show that the sensor fusion al-
gorithm is successful when validated on the same mea-
surement data that were used to identify the model
G(z). However, the dynamics from the graphite py-
rometer output, u, to the silicon temperature, T , (mea-
sured by the silicon pyrometer, T̂ s) is nonlinear. The
authors still chose to use a simple, linear model with
few parameters to avoid overfitting the model. It is
now of interest to validate how well the sensor fusion
algorithm performs when tested on measurement data
in a different temperature range. First the raw data
will be presented. Figure 4 shows the 350 minutes of
raw data used to identify the model G(z). In this fig-
ure, the graphite pyrometer output, u, is replaced by a
rescaled version ū. The relationship between u and ū
is a first order polynomial, i.e. ū = p1u+p0. The poly-
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Figure 16: The same data shown in Figure 15, zoomed
in at three different areas.
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Figure 17: Bode diagram of the models R(z) and S(z).

nomial coefficients p0 and p1 were identified as the best
(in a least squares sense) static fit between u and the
silicon pyrometer, T̂ s, over the data shown in Figure 4.
Figure 18 shows the 350 minutes of logged data shown
in Figure 4 and the following 150 minutes. While ū
and T̂ s follow closely over the first 350 minutes, i.e.
the data range used to identify the polynomial coeffi-
cients p0 and p1, ū and T̂ s deviate significantly over the
last 150 minutes. The authors can not see any other
explanation of this deviation than that the tempera-
ture is significantly lower over the last 150 minutes. If
this assumption is correct, the relationship between ū
and T̂ s must be significantly nonlinear.

Based on Figure 18, one can not expect the linear
model, G(z), which is developed based on the first 350
minutes, to perform well over the last 150 minutes.
Figure 19 compares the output of the sensor fusion
algorithm, T̂ , and the lowpass-filtered silicon pyrom-
eter, H(z) T̂ s, over the last 150 minutes of Figure 18.
The sensor fusion algorithm performs poorly until ap-
proximately 390 minutes. This is because there is a
large temperature drop from 310 minutes to 380 min-
utes that the linear model, G(z), is not able to handle
properly. However, it seems that the sensor fusion al-
gorithm performs quite well after approximately 390
minutes, when the temperature settles at a new, lower
level. This is because the highpass filter 1 − H(z) of
G̃(z) removes any static or low-frequency error of the
temperature estimate T̂ g. As the model, G(z), is not
identified for the low temperature range between 390
and 500 minutes, the performance of the sensor fusion
algorithm may be poorer than in the temperature range
used for identification.

Figures 15 and 16 give a visual impression of how
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Figure 18: The rescaled graphite pyrometer, ū, and
the silicon pyrometer, T̂ s, over an extended
time period.
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Figure 19: The output of the sensor fusion algorithm,
T̂ , the lowpass-filtered silicon pyrometer,
H(z) T̂ s, and the unfiltered silicon pyrome-
ter, T̂ s, over an extended time period.
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Figure 20: The output of the sensor fusion algorithm,
T̂ , and the lowpass-filtered silicon pyrom-
eter, H(z) T̂ s, for cut-off frequency ωc =
2.4× 10−2 rad/s.

much the sensor fusion algorithm improves the tem-
perature estimate compared to a traditional lowpass
filter. However, how much the sensor fusion algorithm
improves the temperature estimate highly depends on
the cut-off frequency of the complementary filters H(z)
and 1 − H(z). Figure 20 compares the output of the
algorithm, T̂ , and the output of the lowpass filter,
H(z) T̂ s, when the cut-off frequency is increased by
a factor of five, i.e. from ωc = 4.8 × 10−3 rad/s to
ωc = 2.4 × 10−2 rad/s. Increasing the cut-off fre-
quency is equivalent to increasing the tolerance for
high-frequency noise. Figure 20 shows that the curves
for T̂ and H(z) T̂ s are almost identical. Hence, there
is no significant improvement of using the sensor fu-
sion algorithm over the traditional lowpass filter for
this choice of ωc. Comparing Figures 15 and 20 shows
that there is much more high-frequency noise at T̂ and
H(z) T̂ s in the latter figure.

On the other hand, decreasing the cut-off frequency,
i.e. having less tolerance for measurement noise, the im-
provement of using the sensor fusion algorithm, com-
pared to a traditional lowpass filter, is much larger.
Figure 21 compares T̂ and H(z) T̂ s when the cut-off
frequency is decreased by a factor of five, i.e. from
ωc = 4.8×10−3 rad/s to ωc = 9.6×10−4 rad/s. For this
cut-off frequency the improvement of using the sensor
fusion algorithm is very large. There is hardly any visi-
ble high-frequency noise at neither T̂ nor H(z) T̂ s. For
the simulations shown in Figures 20 and 21, the raw
data were prefiltered with the chosen cut-off frequen-
cies, and the model G(z) was re-identified.
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Figure 21: The output of the sensor fusion algorithm,
T̂ , and the lowpass-filtered silicon pyrom-
eter, H(z) T̂ s, for cut-off frequency ωc =
9.6× 10−4 rad/s.

11 Algorithm Weaknesses and
Further Work

The sensor fusion algorithm presented in this paper is
developed based on logged measurement data from a
single CZ batch. Therefore, the algorithm has been
validated based on the same data used for developing
the algorithm. A simple, linear model with few pa-
rameters was chosen to model the dynamics from the
graphite pyrometer to the silicon temperature. The
model structure was chosen to avoid overfitting, be-
cause flexible, nonlinear black-box model structures
typically have significantly more parameters. However,
the dynamics is known to be nonlinear (see Figure 18).
An important part of further work will therefore be to
understand this nonlinear dynamics, either physically
or empirically, and build this into the model. As the
CZ process is a batch process, the dynamics may also
be time-varying. In particular, it seems reasonable to
assume that the dynamics may vary with the level of
molten silicon in the crucible. Preferably, the model
should be developed based on data from several CZ
batches to make sure the data are representative and
sufficiently informative. Also, the algorithm should be
validated based on data from several independent CZ
batches.

According to Brown and Hwang (1997), the comple-
mentary filters H(z) and 1−H(z) can be computed to
give a statistically optimal temperature estimate, i.e.
to minimize the variance of the estimation error. A
Kalman filter or a Wiener filter can be used for this

computation. Even though the complementary filters
can be chosen optimally in theory, modeling errors and
estimation errors in the noise / disturbance covariance
matrices are likely to give a sub-optimal temperature
estimate. Also, even though the temperature estimate
is in fact optimal, it may be too noisy for its desired
application. However, even if there are practical issues
related to using Kalman filter or Wiener filter, this is
an interesting issue to consider for further work.

The lowpass filter removes high-frequency noise from
the silicon pyrometer. The graphite pyrometer, in com-
bination with the dynamic model, is used to estimate
those frequency components of the silicon temperature
that are removed by the lowpass filter. A disadvantage
of this approach is that it requires two pyrometers. The
heating element heats the entire CZ process, including
the crucible and the silicon. It may be possible to re-
place the graphite pyrometer with the measured heat-
ing element power. That is, to develop a model from
the heating element power to the silicon temperature,
and use this model to estimate the high-frequency com-
ponents of the silicon temperature that are removed
when lowpass-filtering the silicon pyrometer.

12 Conclusions

SINTEF Material and Chemistry operates a Czochral-
ski (CZ) crystallization process. During one CZ batch,
two pyrometers were used: The silicon pyrometer mea-
sures the temperature of the molten silicon. This py-
rometer is assumed to be accurate, but its output signal
has much high-frequency noise. The noise can be at-
tenuated using a traditional lowpass filter. However,
this approach will give a phase lag that is unfortunate
for the temperature control. The graphite pyrome-
ter measures the temperature of a graphite material.
Hence, the graphite pyrometer does not give an exact
representation of the silicon temperature. However,
the graphite pyrometer has little measurement noise.
There is quite a good correlation between the silicon
pyrometer and the graphite pyrometer.

This paper presents a sensor fusion algorithm that
attenuates the measurement noise of the silicon pyrom-
eter, while giving significant less phase lag than a tra-
ditional lowpass filter. The algorithm consists of two
sub-algorithms: (i) A dynamic model and (ii) comple-
mentary filters.

The dynamic model estimates the silicon tempera-
ture as a function of the graphite pyrometer. The
model is a linear output error (OE) model with four
parameters. The parameters were identified using the
prediction error method (PEM), where the graphite
pyrometer is the system input and the silicon tem-
perature (measured by the silicon pyrometer) is the
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system output. A linear model structure was chosen
despite the fact that the dynamics is known to be non-
linear. Flexible, nonlinear black-box model structures
typically have significantly more parameters than lin-
ear model structures. As no independent data were
available for model validation, it was desirable to use
a model structure with few parameters to avoid model
overfitting.

A lowpass filter and a highpass filter are designed as
complementary filters. The silicon pyrometer is lowpass-
filtered, and the output of the OE model is highpass-
filtered. These two filtered signals are then summed.
This sum is the output of the sensor fusion algorithm,
i.e. the estimated silicon temperature. In other words:
The lowpass filter attenuates noise from the silicon
pyrometer, while the OE model estimates the high-
frequency components of the silicon temperature that
are lost in the lowpass-filtering.

Validation of the sensor fusion algorithm shows that
it works well on the data that were used to identify the
OE model. The algorithm gives significantly less phase
lag than traditional lowpass-filtering of the silicon py-
rometer. The algorithm performs poorly when there
are large, quick temperature changes outside the tem-
perature range used for model identification. This is to
be expected, because the linear model can not handle
the nonlinear dynamics between the graphite pyrome-
ter and the silicon temperature. The algorithm seems
to perform quite well when the temperature is within a
limited temperature range, even if this range is outside
the temperature range used for model identification.
The usefulness of the model depends on the choice of
cut-off frequency of the filters. For high cut-off fre-
quencies, the algorithm gives little or no improvement.
For low cut-off frequencies, the algorithm gives a large
improvement.

Further work on the algorithm should include anal-
ysis of the nonlinear dynamics from the graphite py-
rometer to the silicon temperature, and build this into
the dynamic model. This is likely to improve the al-
gorithm’s ability to handle large, quick temperature
variations. The suggested analysis and modeling work,
as well as more thorough validation of the algorithm,
require logged data from more CZ batches.
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