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Abstract

This paper reports on experiences from case studies in using Modelica/Dymola models interfaced to
control and optimization software, as process models in real time process control applications. Possible
applications of the integrated models are in state- and parameter estimation and nonlinear model predictive
control. It was found that this approach is clearly possible, providing many advantages over modeling
in low-level programming languages. However, some effort is required in making the Modelica models
accessible to NMPC software.

Particular consideration is given to implementation of gradient computation for real-time dynamic
optimization, where the dynamic models can be Modelica models. Analytical methods for gradient com-
putation based on sensitivity integration are compared to finite difference-based methods. A case study
reveals that analytical methods outperform finite difference-methods as the number of inputs and/or input
blocks increases.

Keywords: Non-linear model predictive control, state estimation, Modelica, offshore oil- and gas produc-
tion, gradient computation

1 Introduction

Nonlinear model predictive control (NMPC) is an ad-
vanced control technology that enables the use of mech-
anistic multi-disciplinary process models in achieving
process control objectives (economical, safety, environ-
mental). NMPC algorithms formulate an ’open-loop’
constrained dynamic optimization problem, which is
re-solved and re-implemented at regular intervals to
combine the advantage of the optimal control solution
with the feedback achieved through updated informa-
tion (measurements and estimated states and parame-
ters).

Although linear MPC (based on linear, typically em-
pirical, process models) is prevalent, it is seen that in
many cases, MPC based on nonlinear process models
(NMPC), with models derived from first principles and

process knowledge, is advantageous or even necessary
to achieve better control performance over varying op-
erating conditions (due, for example, to varying prod-
uct specifications or large process disturbances). In
addition to the use of nonlinear process models, an-
other important aspect with NMPC based on models
from first principles, is that nonlinear state estimation
is an essential part of the control system.

NMPC has received considerable attention in
academia, especially in terms of optimization meth-
ods (Biegler, 2000) and requirements for stability of
the resulting closed loop (Findeisen et al., 2003). How-
ever, when it comes to industrial application, use of
NMPC clearly has an unfulfilled potential, although an
increasing number of applications are being reported,
especially in polymerization processes (Foss and Schei,
2007; Qin and Badgwell, 2003).
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One important reason for the limited practical use
of NMPC, is the substantial time and effort required
for developing, validating and maintaining nonlinear
process models that are valid over a wide operat-
ing range. Importantly, but sometimes overlooked,
these models should at the same time be suitable
for optimization, in terms of issues such as complex-
ity and smoothness. An important step towards less
costly model development is the use of advanced mod-
eling environments, which promote model structure,
model reuse and model maintenance through equation-
oriented modeling languages, object orientation and hi-
erarchical composition of sub-models.

Literature reveals some effort towards using ad-
vanced process modeling environments in a practical
dynamical optimization setting, e.g. Lang and Biegler
(2007), where the gPROMS system from Process Sys-
tems Enterprise Limited is connected to a software en-
vironment for dynamic optimization. However, the im-
pression remains that this is very much a developing
area.

The use of such models is not limited to NMPC in
real-time process control settings. One can envision
many types of real-time model-based applications us-
ing such models, ranging from data reconciliation, esti-
mation (states, parameters, disturbances, soft-sensing)
for monitoring and control, to advisory operator sup-
port systems and finally to NMPC. One can argue that
a complete NMPC installation involves the other ap-
plications mentioned, such that if Modelica models can
be used for NMPC, the other applications follow nat-
urally.

The aim of this paper is to discuss requirements,
challenges, opportunities, and experiences from using
an advanced modeling environment, in particular Dy-
mola/Modelica, for developing models that are used in
model-based process control applications.

The paper is structured as follows: We start by dis-
cussing some basic elements of an NMPC system, and
then go into some detail on gradient computation for a
class of NMPC optimization algorithms often referred
to as sequential (or single-shooting) NMPC optimiza-
tion. We discuss some implementation aspects in Sec-
tion 4 and 5, before we go on by presenting some stud-
ies on state- and parameter estimation, and NMPC
from the oil and gas production industry. Performance
of gradient computation algorithms are illustrated in
Section 8. We end the paper by discussing some of our
experiences.

This paper is a combined and revised version of Im-
sland et al. (2008) and Imsland et al. (2009).

2 Elements in NMPC

2.1 Models

We assume that a model of the physical plant we
want to control is implemented in Modelica. The un-
derlying mathematical representation could be either
as (hybrid) ordinary differential equations (ODEs) or
differential-algebraic equations (DAEs), but here we
assume, mainly for simplicity, that it is formulated as
a (piecewise) continuous ODE:

ẋ = f(x, u, p), y = h(x, u, p), z = g(x, u, p), (1)

where x are states, u are manipulated inputs, p are
parameters (which might be candidates for online esti-
mation), y are measured outputs and z are controlled
(not necessarily measured) outputs.

Note that typically, we will in addition to manipu-
lated inputs also have other (measured) inputs that in
essence make the system time-variant. However, we
will employ discrete-time state estimation and NMPC
formulations and are therefore only interested in in-
tegration over one sample interval where these inputs
typically are assumed constant.

For the same reason, we are only interested in the
solution of (1) in the sense that it is used to calculate
states and outputs at the next sampling instant. That
is, we are interested in the discrete-time system

xk+1 = xk +
∫ tk+1

tk

f(x(τ), uk, pk)dτ, (2a)

yk = h(xk, uk−1, pk−1), (2b)
zk = g(xk, uk−1, pk−1). (2c)

The integration involved is in general solved by ODE
solver routines.

For NMPC, we will use the above system for predic-
tion. In prediction for NMPC, we are not concerned
with the measured outputs, and therefore, with abuse
of notation, we will write the time-varying discrete-
time NMPC predictor system as

xk+1 = fk(xk, uk), zk = gk(xk, uk−1). (3)

Similarly, for state estimation we use in principle the
same discrete-time dynamic model with yk as output.

2.2 Model issues

Using equation-based modeling environments such as
those based on Modelica, one generally ends up with
differential-algebraic equation systems (DAEs). In Dy-
mola, there are implemented algorithms for reformula-
tion (symbolic transformation) of the DAE system such
that it from the outside looks like an ODE system, but
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where the evaluation of the right hand side in general
requires the solution of some nonlinear equation sys-
tems. The reformulation ensures that these nonlinear
equation systems are as small, and hence as efficiently
solved, as possible. However, the solution of them is
based on iterative, local methods, such that it can in
general take many iterations to find an acceptable so-
lution, and worse, one is not always guaranteed to find
a solution at all. (Although for well-behaved models,
one normally finds a solution in few iterations.)

Another issue is that the right hand side might be
discontinuous in its arguments. If this is the case, the
solvers used to solve the (apparent) ODE above, must
be able to handle discontinuities. Moreover, the system
will often be stiff, calling for implicit methods with
variable step lengths.

Apart from any possible discontinuities, the above
issues (DAEs, stiffness, variable step lengths) do not in
principle imply any problems using Modelica/Dymola
models with NMPC tools. Nevertheless, efficiency and
robustness issues may change the picture. Simulation
in an NMPC system involves frequent resetting of sys-
tem parameters (initial states, inputs and estimated
parameters), which for DAEs in general requires online
re-solving of the nonlinear equation set. For the ODEs
exported by Dymola, it leads to frequent re-solving of
the ’hidden’ nonlinear equation sets.

If we can ensure that the model is a ’real’ ODE (with-
out nonlinear equation sets), this is avoided, resulting
in increased speed and robustness. There is no di-
rect help in Dymola to avoid the nonlinear equation
sets leading to a DAE system, but the reporting when
translating models helps to identify where these non-
linear equations are.

Additionally, ensuring that the model is continuous,
means that we can use more efficient solvers that do
not have to handle discontinuities.

These issues require more effort during the modeling,
and also imply that one often cannot apply other (li-
brary, customer) models directly. Nevertheless, the is-
sues are important: In our experience, it is a key aspect
of a successful implementation of an NMPC system to
find the correct balance between computational com-
plexity of the model/simulation and required model ac-
curacy. Required model accuracy is not easily defined
in general, but relates to the specific control objectives
of the particular process. In this respect, more complex
models are not necessarily more accurate.

When building models from physics, one typically
ends up with stiff equation systems, which require im-
plicit solvers with variable step sizes to be solved effi-
ciently. Analytical model Jacobians can be be used in
implicit solvers to speed up computation significantly.

2.3 NMPC optimization

The NMPC optimization problem is a dynamic opti-
mization problem, usually discretized to have a finite
number of optimization variables (manipulated vari-
ables), that must be solved at regular (sampling) in-
stants. The first part of the optimal solution – usually
the first sample interval – is implemented to the pro-
cess, before the dynamic optimization problem is re-
solved before the next sample instant. The optimiza-
tion problem is using updated process information from
a state estimation algorithm.

The optimization problem to be solved at time t,
with available state estimate x̂(t), may look something
like this, after a piecewise constant parameterization of
future manipulated variables (u) over an horizon N :

min
u0,u1,...,uN−1

N−1∑
k=0

F (xk+1, uk)

subject to


xk+1−f(xk, uk) = 0, k = 0, . . . , N − 1,
x0 = x̂(t),
hx(xk) ≥ 0, k = 1, . . . , N,
hu(uk) ≥ 0, k = 0, . . . , N − 1.

The functions hx and hu represent constraints on states
(or controlled variables) and manipulated variables.

In most cases, the (discretized) dynamic optimiza-
tion problem is solved using numerical algorithms
based on sequential quadratic programming (SQP). A
SQP method is an iterative method which at each iter-
ation makes a quadratic approximation to the objective
function and a linear approximation to the constraints,
and solves a QP to find the search direction. Then a
linesearch is performed along this search direction to
find an acceptable next iterate, and the process is re-
peated until convergence (or time has run out). Gen-
eral purpose SQP solvers may be applied to NMPC
optimization, but it is in general advantageous to use
tailor-made SQP algorithms for NMPC applications.

The main approaches found in the literature are
usually categorized by how the dynamic optimization
problem is discretized/parametrized. The most com-
mon method is perhaps the sequential approach (Li
and Biegler, 1989), which at each iteration simulates
the model using the current value of the optimization
variables (u0, u1, . . . , uN−1) to obtain the gradient of
the objective function (and possibly the Hessian), thus
effectively removing the model equality constraints and
the states x1, x2, . . . , xN as optimization variables. In
this paper, a sequential approach is assumed.

Other methods are the simultaneous ap-
proach (Biegler et al., 2002), and the multiple
shooting approach (Bock et al., 2000). All methods
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will benefit from having analytical Jacobians available
from a modeling system.

2.4 State estimation

Model-based control typically apply some estimation
scheme, for instance a sigma-point extended Kalman-
filter approach or moving horizon estimation (Schei,
2008). The tasks of the estimation in a model-based
control context, are to

• consolidate measurements to obtain a best esti-
mate of the process state,
• estimate unknown and changing parameters

(adaptation), and
• achieve zero steady state error in the desired con-

trolled variables (integral control).

Nonlinear state-, disturbance- and parameter es-
timation are essential for NMPC implementations,
but are also important in other settings than purely
control-related, such as monitoring and surveillance,
and static optimization/RTOs.

Estimation based on Kalman filter algorithms has
become tremendously widespread over the last almost
50 years. Other types of estimation algorithms also
exist, but are much less used. Kalman filter algo-
rithms for nonlinear systems (Extended Kalman Fil-
ters, EKFs) have traditionally been based on analytical
model linearizations, but over the last years, it is seen
that using divided differences (or similarly, Unscented
Kalman Filtering (UKF) approaches) in many cases
provides better performance than linearization-based
EKF.

Importantly, the perturbation schemes used in con-
nection with covariance update by divided difference-
approaches (including UKFs) obtain information be-
yond linearization. Thus, for these cases, availability
of analytical Jacobians from the model is not neces-
sarily an advantage (unless it speeds up simulation).
On the other hand, for estimation schemes based on
linearizations (e.g. traditional EKF), or estimation
based on numerical optimization (e.g. Moving Horizon
Estimation (MHE)-approaches, taking inequality con-
straints into consideration), analytical Jacobians can
be exploited.

The work in this paper uses an EKF implementa-
tion based on divided differences (both DD1 (Schei,
1997) and DD2 (Nørgaard et al., 2000), in the notation
of Nørgaard et al. (2000)). For further information and
discussion, see also Schei (2007).

3 Gradient computation in
sequential NMPC optimization

As gradient computations are by far the most time-
consuming part of a sequential NMPC optimization al-
gorithm, this section gives a discussion on algorithms
for this with an emphasis on issues related to choice
of an underlying modeling system like Modelica. Some
implementation results corresponding to this section
are given in Section 8.

3.1 Simplified NMPC optimization
problem

For the purpose of illustration, we formulate in this
section a simplified discrete-time NMPC optimization
problem using the model (3). We assume the de-
sired operating point (x, u) = (0, 0) is an equilibrium
(fk(0, 0) = 0, gk(0, 0) = 0), and we minimize at each
sample (using present measured/estimated state x0 as
initial state for predictions) the objective function

J(x0, u0, u1, . . . , uN−1) =
1
2

N−1∑
i=0

zT
i+1Qzi+1 + uT

i Rui

over future manipulated inputs ui, where zi are com-
puted (predicted) from (3), and Q and R are weight-
ing matrices. Importantly, the future behavior is opti-
mized subject to constraints:

zmin ≤ zk = gk(xk, uk−1) ≤ zmax, k = 1, . . . , N
umin ≤ uk ≤ umax, k = 0, . . . N − 1.

The first input u0 is then applied to the plant.
It is important to note that the problem formulation

used in this section is simplistic. For the sake of brevity
and with little loss of generality, it does not contain
features usually contained in NMPC software packages,
such as:
• Features related to non-regulation problems (for

instance control of batch processes).
• Input blocking (for efficiency).
• Incidence points (for efficiency and feasibility).
• Control horizon longer than input horizon.
• End-point terminal weight/region (in regulation,

for efficiency/stability).
• Input moves instead of inputs as optimization vari-

ables.
Further details about such issues can be found in MPC
textbooks, for instance Rawlings and Mayne (2009);
Maciejowski (2001).
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3.2 The sensitivity (step/impulse
response) matrix

As explained above, sequential SQP approaches to
NMPC optimization sequentially simulates and opti-
mizes. The simulation part should calculate the objec-
tive function- and constraint gradients with respect to
the optimization variables ui. This is typically done
via the step response matrix, or as in the simplified ex-
position here, the impulse response matrix. To avoid
confusion, we will mostly refer to this in the following
as the (NMPC) sensitivity matrix.

Rewrite the objective function by stacking future in-
puts and outputs as

J(x0,u) =
1
2
(
zTQz + uTRu

)
,

where u = (u0, u1, . . . , uN−1), z = (z1, . . . , zN ), Q =
blkdiag{Q} and R = blkdiag{R}. The gradient of the
objective function is

∂J

∂u
= zTQ

∂z
∂u

+ uTR.

Similarly, the linearization of the output constraints
are also given by the matrix Φ = ∂z

∂u , which we call the
sensitivity matrix (which in this case is the truncated
impulse response matrix).

That is, once we have calculated the sensitivity ma-
trix Φ, we can easily evaluate the objective function-
and constraints gradients in sequential NMPC opti-
mization. From this, one can argue that gradient com-
putation in sequential NMPC is mostly about efficient
computation of the sensitivity matrix.

The rest of this section treats calculation of the sensi-
tivity matrix by finite differences, and by forward ODE
sensitivity integration. We remark that one could also
use adjoint sensitivity methods for calculating the de-
sired NMPC gradients (Jørgensen, 2007; Ringset et al.,
2010). However, for NMPC problems with a significant
number of constraints, this is likely to be less efficient
than forward methods.

3.3 NMPC sensitivity matrix by finite
differences

Finding the sensitivity matrix by finite differences is
achieved by in turn perturbing each element of all in-

put vectors ui and simulate to find the response in
the zjs. The perturbation is typically either one-sided
(forward finite differences) or two-sided (central finite
differences), the latter taking about twice the time but
being somewhat more accurate (Nocedal and Wright,
2006).

3.4 NMPC sensitivity matrix by sensitivity
integration

Assuming we have a time-varying linearization of (3)
along the trajectories:

xk+1 = Akxk +Bkuk, (4a)
zk = Ckxk +Dkuk−1, (4b)

we can calculate the sensitivity matrix which in this
simple case is as shown in eq. (5) on the bottom of
the page. (The sensitivity matrix shown there is the
impulse response matrix, the step response matrix is
the cumulative sum of the columns of the impulse re-
sponse matrix, from right to left.) To find the lin-
earization (4), it is usually most practical to calculate
sensitivities of the solution of (1) with respect to ini-
tial values x(0) = xk and inputs uk (assumed constant
over each sample interval). Stacking these sensitivities
in matrices S and W , they are given by the following
matrix ODEs (Hairer et al., 1993):

S :=
∂x

∂uk
: Ṡ =

∂f

∂x
S +

∂f

∂u
, S(0) = 0, (6a)

W :=
∂x

∂xk
: Ẇ =

∂f

∂x
W, W (0) = I. (6b)

We will only be interested in the sensitivities at the end
of each sample interval, which are the system matrices
in (4a):

Bk :=
∂xk+1

∂uk
= Sk+1, Ak :=

∂xk+1

∂xk
= Wk+1. (7)

Defining also Ck := ∂zk

∂xk
, Dk := ∂zk

∂uk−1
, we get the

linearized (LTV) system above. The required Jacobian
matrices

∂f

∂x
,

∂f

∂u
,

∂g

∂x
,

∂g

∂u


z1
z2
...
zN

 =


C1B0 +D1 0 0 0 · · ·
C2A1B0 C2B1 +D2 0 0 · · ·
C3A2A1B0 C3A2B1 C3B2 +D3 0 · · ·
C4A3A2A1B0 C4A3A2B1 C4A3B2 C4B3 +D4 · · ·

...
...

...
...

. . .




u0

u1

...
uN−1

 (5)
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can be found from finite differences, symbolically (for
instance from a Dymola model), or by automatic differ-
entiation methods. The two latter should be preferred.

The sensitivity ODEs (6) are solved together
with (2a) by ODE solvers. Although the size of S and
W might be large, the fact that the systems (6) have
a block-diagonal Jacobian with the individual blocks
being the Jacobian of (2a) can and should be exploited
in ODE solvers, leading to efficient computation of the
ODE sensitivities (Schlegel et al., 2004; Hindmarsh and
Serban, 2006). (For systems with a very large number
of states and relatively few inputs/outputs, it might
be more efficient to directly integrate the elements in
the sensitivity matrix, and thus avoiding calculation of
state sensitivities.)

It is important to note that the above is described
for zero order hold and no input blocking. For efficient
implementation, it is essential to exploit input blocking
in the sensitivity computations. For further discussion
about gradient computations, we refer also to Ringset
et al. (2010).

4 Implementation

A software package for model-based estimation and
control (NMPC) will typically include an offline part
for model fitting (parameter optimization) to data,
data-based testing of estimation and simulation-based
testing of NMPC (including estimation), and an
online part for a complete NMPC real-time solu-
tion (including estimation). The workflow in tak-
ing a parametrized model (implemented in Model-
ica/Dymola, or ’by hand’ in lower level languages such
as C) to online application is attempted illustrated in
Figure 1. A Modelica tool (such as Dymola) will need
a method for exporting the models so they can be used
efficiently in the offline tool and the online system. Dy-
mola has the option of C-code export, which is platform
independent and gives models that are efficiently evalu-
ated and easily integrated with ODE/DAE-solvers and
optimizers, typically implemented in C.

NMPC software that use analytical methods for gra-
dient computation, need the discrete-time model to
provide Ak, Bk, Ck and Dk matrices (4) (typically
found via sensitivity integration using the exported
model, as discussed earlier). Figure 2 indicates the
data flow in a discretized model component that is
based on a continuous-time ODE Modelica/Dymola
model, using an ODE solver which implements sen-
sitivity integration.

Several specialized solvers for calculation of ODE
sensitivities exist. For instance, CVODES (Hindmarsh
and Serban, 2006) implements variable-order, variable-
step multistep ODE solvers for stiff and non-stiff sys-

Mass- and energy
balances, etc.

• Modelica: export
ODE/DAE, build
model

• Alternatively:
’hand-code’ model
(e.g. in C)

Model

NMPC

Estimation

Online system

Model

Modeling

Model

Offline tool

• Model fitting to
measurements

• Measurements-
based testing of
estimation

• Scenario-based
testing of NMPC

Figure 1: Overview over workflow in model usage.
Data storage, data acquisition/exchange,
and GUI not shown.

tems, with sensitivity analysis capabilities. For effi-
ciency of sensitivity integration, it is a significant ad-
vantage if we have symbolic ODE Jacobians available,
as we might have from a Dymola model. For models
that do not provide symbolic Jacobians, we have the
option of using automatic differentiation packages (Cp-
pAD, ADOLC, or others). This often requires C++
compilation.

5 Interfacing Modelica/Dymola
models with NMPC estimation
and optimization software

In this section, we discuss the integration of Modelica
models in NMPC software.

In the approach taken here, this involves “packaging”
of the model in a “model component” that includes
discretization (simulation of the model between sample
intervals), such that the model is discrete time as seen
from the other modules in the NMPC software package,
including the state estimation and NMPC module. See
Figure 2.

In NMPC software, the model component is often
directly coded in a low-level language like C. While
this has some advantages, for a number of reasons it
is desirable to have a more user-friendly way of im-
plementing models, using a high-level equation-based
modeling language. The overall goal is to reduce the
cost of modeling, which is a significant cost factor in
an NMPC implementation project. Reasons for cost
reduction in using a modeling language like Modelica
include
• Promote reuse of models, also through building of

model libraries.
• Better overview of models, ease of implementation

and modifications.
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dsmodel.c

xk, uk, pk

xk+1 =F (xk, uk, pk)

Ak, Bk

Modelica/Dymola

Initialization
Indexation

Symbolic Jacobians

Outputs

Derivatives

Initialization

model interface

x, uk, pk

ẋ = f(x, uk, pk)

∂f
∂x , ∂f

∂u

Solver

ODE (DAE)

Sensitivities

xk, uk, pk

zk =g(xk, uk, pk)

yk =h(xk, uk, pk)

Ck = ∂g
∂x , Dk = ∂g

∂u

Reconfiguration

model fitting, ...)

Estimation interface

Initialization

Prediction

Reconfiguration

Other interfaces

(Other estimation

algorithms, simulation,

NMPC interface

Initialization

Prediction

Figure 2: Overview over model component data flow.

• Easier exploitation of modeling effort in other con-
texts.
• Possibly easier integration of external models (ex-

ternal libraries, customer models, thermodynam-
ics, etc.).

Based on this list (and other criteria as e.g. open-
ness), Modelica is an excellent possible choice for mod-
eling language. Moreover, the software tool Dymola
provides a good Modelica modeling environment, ro-
bust and efficient algorithms for formula manipulation
(tearing, index reduction, etc.) and the opportunity
to integrate the models in other software, through the
Dymola C-code export option.

With the C-code export, the Modelica model is avail-
able in a C-file, dsmodel.c, along with interface func-
tions. Figure 2 illustrates how this C-file can be inte-
grated to form a model component.

A distinct advantage of the C-code export offered
by Dymola, is that it allows compilation of the total
control system including model on any target system
equipped with an ANSI C compiler. This is in contrast
to systems which base the interface on software compo-
nent interfaces such as CORBA, and requires (a version
of) the modeling environment to run simultaneously.

On the other hand, it might be conceived as a disad-
vantage that the interface is Dymola specific, and not
based on any standard. This is now being rectified with
the development of the standardized FMI interface1 for
model exchange. In the newer versions of Dymola, this
is now implemented, but it was not available when the
work reported in this paper was performed.

1http://functional-mockup-interface.org/.

6 Control-relevant modeling of an
offshore oil and gas processing
plant in Modelica

6.1 Modeling

In the North Sea (and on other continental shelves),
petroleum is produced by drilling wells into the ocean
bed. From the wells, typically a stream of oil, gas and
water arrives at a surface production facility (platform
or ship) which main task is to separate the products.
Oil and gas are exported, either through pipelines or by
ship. Water is cleaned and deposited to sea or pumped
back to the reservoir.

A schematic picture (in the form of a Dymola screen-
dump) of such an offshore oil and gas processing plant
is given in Figure 3. Oil, gas and water enter the plant
from several sources. In reality the sources are reser-
voirs connected to the production facility through wells
and pipelines. The separators are large tanks which
split the phases oil, water and gas. The produced oil
is leaving in the lower right corner of the figure, while
the gas enters a compression train (not included in the
figure) from the first and second separator (two left-
most tanks). Water is taken off from each separator
and sent to a water treatment process.

Generally, this type of process is a fairly complex
system in terms of numbers of components. However,
many of the components are of the same type (mainly
separators, compressors, valves, controllers, in addition
to minor components such as sources, sinks, splitters,
sensors, etc.), which simplifies overall modeling and
make it efficient to reuse model components. Further-
more, construction of this process model benefited sig-
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Figure 3: Overview of an offshore oil and gas processing plant, as implemented in Dymola.

nificantly from using models and concepts introduced
by the new Modelica.Fluid library. Models for valves,
sources, sinks, and sensors were used directly, whereas
other models and functions in the new library inspired
the development of our own models. For real-time ef-
ficiency reasons, we take care to ensure that we end
up with an ODE-type model. The new stream class
is an improvement to ease the construction of models
satisfying this criterion.

In addition to the unit modes, medium models are
necessary in order to calculate physical properties like
density and heat capacity, in addition to phase tran-
sitions between oil and gas. The model should have
real time capabilities, favoring simple/explicit rela-
tions. For phase equilibrium calculations, correlations
of k-values (as function of temperature, pressure and
molecular weight) were used together with a simpli-
fied representation of the many chemical species found
in the real process. Gas density was described by a
second-order virial equation, where the model coef-
ficients were fitted to an SRK-equation for the rel-
evant gas composition evaluated for the temperature
and pressure range of current interest.

A brief description of some unit models is given be-
low:
• Separators: Separators are large tanks which

due to their construction, and the different den-
sities of the components, separate water, oil and

gas into different process streams. The dynamics
of the separator model is based on a mass bal-
ance and flash calculations to calculate the split
of oil and gas. Based on the separator geometry
(and thermodynamics), water and oil levels and
gas pressure can be calculated from the compo-
nent masses.
• Compressors: The centrifugal compressor mod-

els are static models based on compressor maps
(specified by the compressor vendor) of polytropic
head vs. volumetric rate, parameterized in com-
pressor speed. The compressor maps are interpo-
lated to yield continuous relations. The compres-
sors are strongly nonlinear, that is, the gain from
compressor speed (input) to pressure and volumet-
ric rate are strongly dependent on operating point.
• Valves: There are different valve models for liquid

and gas flow, both based on basic valve equations.
Critical and sub-critical flow are handled. The
valve characteristics can be chosen to be either
linear or equal percentage via a drop-down menu.

For real-time efficiency reasons, we have made an
effort to develop components and modeling guidelines
that ensure that the overall model we end up with is an
ODE model. The main manifestation of this, is that we
cannot have more than one unit that determines flow
between each ’hold-up’-volume in the model. There-
fore, we have in some places introduced semi-physical
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’nodes’, and tuned the volumes of these to retain ac-
ceptable transient response (for example, by tuning the
node dynamics to be faster than the sample frequency).

6.2 Issues in preparing a Dymola model
for use with an NMPC system

Before a Dymola simulation model can be used in an
NMPC system, some preparation must be done. It is
worthwhile to mention some of the issues involved:

• In addition to making sure that the model does
not contain nonlinear systems of equations that
must be solved to evaluate it (i.e, the model is an
ODE as explained above), for Dymola to export
symbolic Jacobians we must of course ensure that
the model is differentiable. Especially if Modelica
functions are used extensively, this might in some
cases involve some effort.
• Dymola provides ODE-style Jacobians (A, B, C

and D matrices). Unfortunately, it seems not pos-
sible to specify a subset of inputs that we want
to evaluate Jacobians with respect to. This is es-
pecially critical for the B-matrix. For instance,
we have in the case study in Section 8 a total of
9 possible MVs/DVs, all of which are modeled as
Dymola inputs. We have chosen to control 2 or 4
of these. This means that we evaluate a B-matrix
of dimension 27×9, instead of 27×2 or 27×4. This
incurs considerable unnecessary complexity. If we
in addition have a considerable number of param-
eters to be estimated also modeled as Dymola in-
puts, this makes the situation even worse. Future
developments in the FMI interface mentioned in
Section 5 might provide functionality that allevi-
ate the situation.
• It seems the most natural way to implement

communication between an NMPC system and
the model, is to use ’top level’ Modelica inputs
and outputs. This is usually rather straightfor-
ward to implement for NMPC inputs and outputs
(MVs, DVs and CVs) and measurements, but not
very flexible: The Dymola C-code model inter-
face could have been more sophisticated when it
comes to identification and indexing of inputs, out-
puts and states. Furthermore, the use of top-level
inputs and outputs can become rather awkward
when it comes to model parameters that should
be estimated. Again, the FMI interface might im-
prove on this situation.

7 Case studies

7.1 State- and parameter estimation of
offshore processing plant

In this case, extended Kalman filtering based on finite
differences is used to estimate states and model param-
eters in a Modelica model of a real offshore oil and gas
processing plant similar to the one illustrated in Fig-
ure 3, but with a compressor train for gas compression
added. Logged data from real operation was used as
measurements in this study.

The real process is fairly well instrumented, but
there is no overall reconciliation of the individual mea-
surements nor any overall measurement of key figures.
From the individual measurements, most often in en-
gineering units, it is hard to get an overview of the
state of the process. With a complete process overview
by the help of the model, it is possible to identify the
current process state, being an essential basis for tak-
ing the correct corrective actions in case of abnormal
incidents, and also essential as a starting point for op-
timization of process operation.

The resulting ODE model of the system was fairly
stiff, with modes ranging from around 0.1 seconds to
hours, while the sampling time of the process was 1
minute. Therefore, it was absolutely necessary to use
an (implicit) ODE solver with varying step lengths.
In this case, the CVODE ODE solver2 was used, with
Jacobians found by finite differences. For this model,
with 38 states and 35 estimated parameters, the state
estimation ran more than 10 times faster than real
time.

The state and parameter estimation was successfully
tuned and tested on data from several days of opera-
tion. An excerpt is shown in Figure 4, where the model
initially is simulated ’open loop’, and the state estima-
tion is turned on after 60 minutes. The figure demon-
strates, for a single compressor stage, how the com-
pressor parameters converge such that the estimated
variables match the measured ones.

7.2 Simulation study: NMPC of offshore
processing plant

The case used in this section is similar to the one used
in the previous section, but is based on (another) pro-
duction platform. In this case, the focus is on the sep-
aration, and the gas compression is not modeled. The
process has five different streams of oil and gas, that are
to be separated in four separators (a separator train).
In contrast to the previous case, the water phase is now

2From the SUNDIALS package, see http://www.llnl.gov/

CASC/sundials/.
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Figure 4: State and parameter estimation of one of the compressor stages. Red lines are real process data, and
blue lines are estimated results. State estimation is turned on after 60 min.

explicitly modeled in the separators. The model was
tuned to fit data from the real process, but all results
shown in this paper are based on simulations.

The process is controlled by level controllers for wa-
ter and oil, and gas pressure controllers for each sep-
arator. This is a standard solution, which works well
in many/normal cases. However, in some cases, distur-
bances in the inlet flows from the inlet pipelines/wells
can cause problems for the control of the separators.
The levels in the separators will vary, which may cause
bad separation and may be detrimental for equipment
downstream of the separators, due to uneven flow out
of the separator train. The purpose for this study is
to see if NMPC with state and disturbance estimation,
using the level controller setpoints as manipulated vari-
ables (MVs), can exploit the buffer capacity in the sep-
arators to smooth out the outlet flows of water and oil.
The oil is in this particular case entering a distillation
column, and the water is entering a glycol regenerator,
for regeneration of glycol that is added in the process.
Smoother inflow to these units may allow more regu-
lar/increased production of the overall process.

There are six manipulated variables: The setpoints
for water and oil level controllers in the separators (two
of the separators does not separate water, and hence
does not have a water level controller). The controlled
variables (CVs) are pressures, levels and valve openings

for all separators, and rate of change of glycol concen-
tration in one separator.

The resulting model, with 29 states, was not partic-
ularly stiff. Therefore, a simple forward Euler ODE
solver was used in this case. The NMPC system, in-
cluding state and disturbance estimation based on fi-
nite differences, and NMPC optimization with gradi-
ents found by finite differences, ran considerably faster
than real time, using a sample interval of 6 s.

Some simulation results with a disturbance, a time-
limited increased flow in one of the inflowing pipelines,
are shown in Figures 5–7. Figure 5 shows how the
NMPC reduces the level controller setpoints in the in-
let separator (resulting in increased outflow valve open-
ings, see Figure 7), to let the increased inlet flow (de-
tected by the state and disturbance estimation) be
smoothed out over all the separators. Figure 6 demon-
strates how the NMPC achieves smoother outflow from
the last separator, and that the glycol fraction in the
water varies less.

8 Evaluation of gradient
computations

This section aims to illustrate the advantages and dif-
ferences between finite differences and sensitivity-based
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Figure 5: Oil and water levels in the inlet separa-
tor, with MPC (solid) and without MPC
(dashed).

sensitivity computations. The model we use as NMPC
prediction model (cf. Figure 3) has 27 states. We con-
sider two NMPC problem formulations, one being 2×2
(2 MVs and 2 CVs), the other 4× 4.

Strictly speaking, the results in this section only ap-
ply to this specific case, but we believe there is con-
siderable generality in the trends reported. Issues that
will be discussed, are computational complexity (tim-
ing), accuracy, and implementational aspects. The re-
sults are of course influenced by many factors not inves-
tigated (i.e., kept constant) here, as for example num-
ber of states, stiffness, exact definition of input blocks,
etc.

We use a Matlab interface to the NMPC system, and
choose to compare computational complexity by mea-
suring execution time in Matlab. Although this has
some drawbacks, it should give a fairly accurate picture
of the relative performance. To increase the reliability,
for each recording of execution time we run 5 consecu-
tive identical NMPC scenarios, and record the smallest
execution time (based on wall clock time). This execu-
tion time includes the Kalman filter and NMPC opti-
mization, but as the gradient computation is the most
computationally expensive part, and the other parts
are independent of choice of method for gradient com-
putation, the difference in execution times should give
a fairly good estimate of the difference in complexity
of gradient computation.

8.1 Correctness and accuracy

It is clear that using finite difference (from now on FD)
and analytic sensitivity methods based on sensitivity
integration (AS) should give the same gradients “in
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Figure 6: Glycol concentration in glycol/water mixture
(top) and oil flow rate (bottom) from the last
stage separator, with MPC (solid) and with-
out MPC (dashed).

the limit” (of perturbation-size and integration toler-
ances). Nevertheless, it is of interest to test this, also to
get a feel for how large errors (or differences) relaxed
integration tolerances and realistic perturbations will
lead to.

From Figure 8, we see that for small integration er-
ror tolerances, the gradients found are fairly correct
in both methods, but the error in the FD sensitivity
matrix increases much faster as the error tolerances
are increased. An important note regarding the imple-
mentation of the AS-method is that we have chosen to
have error control on both states and sensitivities, not
merely states. In our experience, this can be essential
to ensure accurately enough sensitivities when using
AS.

We do not discuss here the choice of perturbation
size in FD methods, as this does not differ from the
general discussion in e.g. Nocedal and Wright (2006).
Suffice it to say that the general trends in Figure 8 are
fairly independent of choice of perturbation size.

As a side-remark, even though both methods only
give correct gradients in the limit, FD methods gives
a direct approximation to the gradient of the objective
function that is actually being optimized (including in-
tegration errors). This can in theory be an advantage
in the line-search step of SQP algorithms.

8.2 Computational complexity

In this section we will compare the computational cost
of different gradient computations as the number of
NMPC degrees of freedom increases. We increase the
degrees of freedom both in number of input blocks as
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Figure 7: Level controller setpoints (MVs, top) and
level and valve openings (CVs, bottom) in
inlet separator. Red line is oil, blue line is
water, magenta is oil valve opening, cyan is
water valve opening.

well as number of inputs. The cases we will compare,
are gradient computation using finite differences (FD)
with or without using symbolic Jacobians in the ODE
solver, and analytical gradient computation using sen-
sitivity integration (AS), also with and without using
symbolic Jacobians.

We use the same ODE tolerances in all cases, and
for sensitivity integration the sensitivities are included
in the error control. The relative time usage for dif-
ferent number of inputs and input blocks are shown in
Figure 9. In Figure 10, the experiment is repeated for
Nu = 2, but without using symbolic Jacobians in the
ODE solver.

The following observations are made:
• FD grows approximately quadratically in input

blocks (as additional input blocks incurs both ad-
ditional perturbations and ODE solver resetting),
while AS grows approximately linearly in input
blocks (incurs only additional ODE solver reset-
ting). Note the logarithmic scale in Figure 9. To
the extent that this is general, this means that
AS will always outperform FD when many input
blocks are used.
• Increasing number of input blocks (leads to more

frequent ODE solver resetting) is more expensive
than increasing number of inputs (leads to larger
“sensitivity state”) when using AS. We attribute
this both to the efficiency of CVODES in exploit-
ing the structure in the sensitivity equations, but
also to the next issue:
• Increasing number of inputs does not significantly

increase complexity of AS. This may be surprising,
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Figure 8: Top: Difference between ’real’ (as found by
AS methods with tolerances of 1e-12) step re-
sponse matrix A and step response matrices
for higher tolerances. Bottom: Step response
matrices using AS and AF (almost) converge
as tolerances decreases.

but can be explained in this case by the fact that
all ODE Jacobians are calculated irrespectively of
how many of the inputs are actually active, as dis-
cussed in Section 6.2. If Dymola allowed calcula-
tion of only those Jacobians that are needed, this
could considerably speed up execution time.
• AS suffers significantly more than FD from not

having symbolical Jacobians available (Figure 10).
Finally, we mention that in our experience, im-

plementing Modelica-functions in C can significantly
speed up FD (not done in the case in this Section), see
also Section 9.3. If this can be combined with export
of symbolic Jacobians, it can also speed up AS, but
to a much less extent. In other words, implementing
Modelica-functions in C is less important when using
AS.

9 Experiences with using Modelica
and Dymola for real time process
control applications

In this section, we summarize some of our experiences
with using Modelica and Dymola for process control
applications.

9.1 Modelica modeling in Dymola

When it comes to modeling, Modelica and Dymola has
much to offer over implementing the models in C. Due
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Figure 9: Relative time usage for different number of
inputs and input blocks.

to the object orientation and the graphical interface it
is easy to work on details and at the same time have
an overview over the whole model. Using a tool such
as Dymola, tasks like manipulation, testing and simu-
lation of the model are convenient.

In this paper, we have used cases from offshore oil
and gas production. We saw advantages in terms of
reuse between these projects, and we expect the re-
wards to be even greater at later stages. Using an
object-oriented environment like Modelica makes it
easier to develop unit models with more general inter-
faces, such that they are easier reused. The Modelica
Standard Library, in particular the Modelica.Fluid li-
brary, provides a good basis for doing this in many pro-
cess control applications, including the ones reported
here. Some of our unit models were inspired by Model-
ica.Fluid components, and by drawing inspiration from
Modelica.Media, we had a convenient structure for im-
plementing the thermodynamics.

As with other equation-based modeling systems, de-
bugging models during model development is a chal-
lenge in Dymola, and tools to help model debugging
would be a benefit. However, by testing unit models
thoroughly before aggregating them, many problems
can be avoided.

When using models with nonlinear equation systems
(DAEs), we had in some cases problems with initializa-
tion of the nonlinear equation systems, and identifying
which variables that were part of the equation system
(cf. discussion in Section 2.2). Of course, when mak-
ing sure the model was an ODE, these problems were
avoided.
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Figure 10: Relative time usage for different number of
inputs and input blocks, without exporting
symbolic Jacobians from Dymola.

9.2 Integration of Modelica/Dymola
models in NMPC software

Using the C-code export option of Dymola, it is fairly
straightforward to integrate the Modelica models as
model components as described in Section 5.

A significant part of the effort in constructing the
model component based on the structure illustrated in
Figure 2, is to generate and keep up to date the ref-
erencing/indexing variables. This information is nec-
essary in the NMPC user interface, for instance for
tuning of the EKF and the NMPC controller. This is
considerable and errorprone work if done by hand, but
recent developments (the new FMI interface) promise
some improvements in the model interface to automate
this.

In some cases, it would be an advantage to be able
to debug the model code. Due to the structure of the
auto-generated code, this is hard.

9.3 Running Modelica/Dymola models in
NMPC software

There are some further interesting findings from the
case study in Section 7.2. We had this model imple-
mented as a model component in C before we imple-
mented it in Modelica. By using profiling tools, we
found that running NMPC with the model compo-
nent based on the Modelica model, used less than 20%
additional time compared to using the pure C model
component, where most of the difference must be at-
tributed to Modelica overhead since the models were
practically mathematically identical.
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However, to get the Modelica-based model to run
this fast, we had to implement the Modelica functions
used in the Modelica-model in C. Not surprisingly,
there is considerable overhead in the implementation
of Modelica functions, especially related to indexing of
arrays. The possibility to implement Modelica func-
tions in C is supported by the Modelica specification,
and implemented in Dymola, and can be a considerable
practical advantage for real time applications.

10 Concluding remarks

In our experience, the use of Modelica/Dymola
for modeling for NMPC purposes shows significant
promise. Such environments are helpful in developing
complex process models, towards reuse of unit models,
and we see potential for increased model value (by ex-
tending the application area of the model) and easier
customer participation in model development.

However, using Modelica/Dymola models for NMPC
has some hurdles. Some effort is required to make
a Modelica simulation model ready to be used with
NMPC software, but further development in the soft-
ware interfaces may reduce these difficulties.

We found that constructing the sensitivity matrix
using analytical methods becomes significantly faster
than finite difference-based methods as the number
of inputs and/or input blocks increases, and there-
fore such methods are important as models get larger.
Moreover, we conclude that to use analytical methods,
we should have ODE Jacobians available, either sym-
bolically or automatically.

Finally, we emphasize that process models for
NMPC should be developed with the specific task
in mind, in terms of issues such as complexity, ac-
curacy and smoothness. In some cases, this means
that the model should be an ODE, while models from
component-based modeling languages such as Modelica
naturally translates into DAEs. It will in general re-
quire some effort and compromises for Modelica models
to translate into ODEs.
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In F. Allgöwer and A. Zheng, editors, Nonlinear Pre-
dictive Control, volume 26 of Progress in Systems
Theory, pages 246–267. Birkhäuser, Basel, 2000.
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