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Abstract

This paper is about position control of a specific small-scale pilot underwater lifting body where the lifting
force stems from buoyancy adjusted with an air pocket in the lifting body. A mathematical model is
developed to get a basis for a simulator which is used for testing and for designing the control system,
including tuning controller parameters. A number of different position controller solutions were tried both
on a simulator and on the physical system. Successful control on both the simulator and the physical
system was obtained with cascade control based on feedback from measured position and height of the
air pocket in the lifting body. The primary and the secondary controllers of the cascade control system
were tuned using Skogestad’s model-based PID tuning rules. Feedforward from estimated load force was
implemented in combination with the cascade control system, giving a substantial improvement of the
position control system, both with varying position reference and varying disturbance (load mass).

Keywords: Underwater, buoyancy, air lift, position control, cascade control, feedforward control, distur-
bance, estimation, Skogestad model-based controller tuning

1 Introduction

Underwater lifting operations is a common task in e.g.
the offshore oil and gas production industry. This pa-
per is about control of a small-scale physical pilot un-
derwater lifting system.1 The lifting principle is ad-
justment of the buoyancy by controlling the amount of
air in the air pocket of the lifting body. Buoyancy can
provide a large lifting force with little energy, but it
requires a control system. A position control system is
designed and implemented to keep the body with load
at a reference position. A mathematical model is de-
veloped to get a basis for a simulator which is used for
testing and for designing the control system, including
tuning controller parameters.

Fossen (1994) and others, describe position control of
underwater vehicles, but there is not much research re-
ported about stabilizing underwater bodies using buoy-

1This project was initiated and funded by the company Miko
Marine, Oslo, Norway.

ancy. Several control functions were tried both on
a simulator and on the physical system. The only
method which worked well on the physical system was
standard cascade control with positional control as the
primary (master) control loop and air mass in the lift-
ing body as the secondary (slave) control loop. The
selected control strategy has certain similarities with
the control structure described in a US patent by Ot-
terblad and Dovertie (1985) where the inner loop is
based on a measurement of the lifting force.2 The sim-
ulator and the control system are implemented in a
LabVIEW program running with cycle time 0.02 sec
on a PC.

The paper is organized as follows: The system is de-
scribed in Section 2. A mathematical model is derived
in Section 3. This model is the basis of a simulator of
the system, and it is also used for design and tuning
of the controllers and the observer (estimator). Con-

2Actually, in the patent the secondary loop is based on the
time-derivative of the force measurement.
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trol system design, including state observer design, is
described in Section 4. Experimental results are pre-
sented in Section 5. Conclusions are given in Section
6.

2 System Description

Fig. 1 shows schematically the lifting body, including
the position control system. Fig. 2 (left) shows a photo
of the lifting body inside a water tank used for testing
the position control system. Fig. 2 (right) shows the
actuator which is a pneumatic control valve which ad-
justs the air flow into the air pocket of the lifting body.
The air flows out of the air pocket via a valve with
fixed (manually adjustable) opening.
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Figure 1: The lifting body with load.

The lifting body position y is measured with a pres-
sure sensor. The position is calculated from the pres-
sure measurement, since the position is proportional to
the hydrostatic pressure. The height of the air pocket
in the lifting body is measured with an ultrasound level
sensor.3

It is certainly an open question whether the con-
figuration shown in Fig. 1 represents optimal design.
Alternative configurations are controlling the outlow,
and controlling both inflow and outflow simultaneously
with split-range control. However, it was not a purpose
of the present project to find the optimal configuration

3It was important that the cap of the lifting body where the
sensor was mounted was isolated (we used foam plastic), to
avoid disturbing sound reflections.

Figure 2: Left: Water tank with lifting body. Right:
Pneumatic control valve (Samson, Type
3241, Series 250) for controlling the air flow
to the cylinder.

in this sense, but to design and implement a proper
position control system for the selected configuration,
assuming that the principal results are transferable to
a different configuration.

3 Mathematical Modeling

3.1 Variables and parameters

Variables and parameters with values are given below.

• y [m] is position of lift body. Position is zero at the
water surface, and positive direction is downwards.

• flift [N] is buoyancy lifting force.

• fh [N] is hydrodynamic drag or damping (friction)
force acting on the lifting body from the water.

• fg [N] is gravity force on the system.

• fd [N] is any independent environmental force in
addition to the forces defined above.

• mtot [kg] is total (resulting) mass to be lifted by
the lifting body.

• mb [kg] is mass of the ballast water.

• mair [kg] is mass of air in air pocket

• madd = 2.0 [kg] is added (virtual) mass related
to the forced motion of water as the lifting body
moves.

• mcyl = 6.0 [kg] is mass of the body.
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• mcyllift
= 2.0 [kg] is mass of the water correspond-

ing to volume taken up by the lifting body in the
water (causing buoyance force).

• ml = 5.0 [kg] (default value) is mass of load at-
tached to the lifting body.

• Vb [m3] is volume of ballast.

• Vcyl [m3] is volume of lifting body.

• Va [m3] is volume of air pocket in lifting body.

• Acyl [m2] is cross-sectional area of lifting body.

• Ap [m2] is a cross-sectional area parameter used
to calculate fd.

• Lcyl = 0.6 [m] is length of lifting body.

• d = 0.2 [m] is lifting body diameter.

• La [m] is height of air pocket in lifting body.

• ρa [kg/m3] is density of air in air pocket (at the
present depth).

• ρaatm
= 1.2 [kg/m3] is density of air at the surface

(atmospheric pressure).

• ρw = 1025 [kg/m3] is water density.

• Fin [kg/s] is air mass flow into lifting body from
the compressor, through the control valve.

• Fout [kg/s] is air mass flow out from lifting body
through outlet valve.

• Kh = 0.004 [N/(m/s)2] is hydrodynamic drag or
damping (friction) force.

• Kv = 250 [kg/s] is valve constant of inlet (control)
valve.

• Kvout is valve constant of outlet (manual) valve.

• patm [Pa] is atmospheric air pressure.

• ps [Pa] is the pressure of the air out from air com-
pressor (air supply).

• ∆pin [Pa] is pressure drop across air inlet valve.

• ∆pout [Pa] is pressure drop across air outlet valve.

• ∆patm = 101000 [Pa] is atmospheric pressure.

• u [V or %] is valve control signal.

• g = 9.81 [m/s2] is gravity constant.

The parameters Kh and Kvout
were adjusted manu-

ally in a simulator until the simulated position showed
the similar response as the measured position. The
parameter madd was given an assumably reasonable
value.

3.2 Mathematical modelling

A mathematical model describing the motion of the
lifting body was developed from the following modeling
principles:

• Equation of motion of the lifting body with load

• Mass balance of the air in the air pocket of the
lifting body

Modeling details are given in the following sections.

3.2.1 Equation of motion

Applying Newton’s Second Law gives

mtotÿ = −flift − fh + fg + fd (1)

mtot in eq. (1) is described in detail below.

mtot = mb +madd +mcyl +ml (2)

where

mb = ρwVb (3)

Vb = Vcyl − Va (4)

Va =
ma

ρa
(5)

ma is given by the mass balance of the air in the lifting
body, cf. eq. (20) below. Now, eq. (1) becomes

mtot = ρw

(
Vcyl −

ma

ρa

)
+madd +mcyl +ml (6)

where

Vcyl = AcylLcyl (7)

In eq. (6), ρa is a function of depth y given by the Gas
Law:

ρa(y) =
p(y)

RT
(8)

R is the specific gas constant, and T is the temperature.
Assuming constant T , eq. (8) gives

ρa(y)

pa(y)
=
ρa(0)

pa(0)
≡ ρaatm

patm
(9)

Here,

pa(y) = patm + ρwg (La + y) (10)

Now eq. (9) gives

ρa(y) = ρaatm

pa(y)

patm
(11)

= ρaatm

[
1 +

ρwg (La + y)

patm

]
(12)
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Here we will make the assumption that

y � La (13)

which will hold when the lifting body is at relatively
large depths. This implies

ρa(y) ≈ ρaatm

(
1 +

ρwgy

patm

)
(14)

which is used in eq. (6). Each of the terms at the right
side of eq. (1) are now described: In eq. (1), the lifting
force flift is given by

flift = ρwVag (15)

where

Va = AcylLa (16)

Acyl =
πd2

4
(17)

In eq. (1),

fh = Kh
dy

dt

∣∣∣∣dydt
∣∣∣∣ (18)

where Kh is adjusted manually during experiments.
In eq. (1),

fg =
(
ml +mcyl −mcyllift

)
g (19)

where the term mcyllift
g is the buoyance force due to

the lifting body itself being submerse.

3.2.2 Mass balance of air in air pocket

The mass ma of the air in the air pocket of the lifting
body is varying. A mathematical model of ma is given
by the following mass balance of the air in the lifting
body:

ṁa = Fin − Fout (20)

The air mass inflow Fin and the air mass outflow Fout
are described in detail in the following.

Modeling the air inflow
Fin is assumed to be a controllable (adjustable) in-

put variable. In practice the specified Fin is obtained
by manipulating the control signal u to the inlet con-
trol valve. u is a voltage in the range of [0 – 5V] which
will be represented with a percent value in the range of
[0 – 100%], with a linear relation between the ranges.
Fin is ideally given by the valve equation:

Fin = Kvfv1(u)

√
∆pin
patm

(21)

∆pin is the pressure drop across the valve:

∆pin = ps − pa (22)

Typically,
ps � pa (23)

Hence,

Fin ≈ Kvfv1(u)

√
ps
patm

(24)

fv1(u) is the valve flow characteristic function normal-
ized with values between 0 and 1. The valve used in
this project has an equal percentage valve characteris-
tic function. However, since we have an air flow meter
installed in the rig, we have decided to model the valve
with experimental relation between control signal and
flow. Fig. 3 shows the air flow Fin [kg/s] as a function
of the valve control signal u [%]. The supply pressure
was ps = 1 bar. The circles are experimental data, and
the lines are just linear interpolations.
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Figure 3: Air flow Fin [kg/s] as a function of the valve
control signal.

In the project we inverted this valve function by us-
ing table-lookup based on linear interpolation between
the tabular data. Hence, for any specified flow Fin,
the table-lookup give the valve control signal u needed
to obtain that flow. One convenient consequence of
this is that the nonlinear valve can be represented by
a linear valve with flow Fin as the control signal (or
manipulating variable).

Modeling the air outflow
In eq. (20) the air mass outflow Fout through the

valve, which has fixed opening, is modelled as

Fout = Kvout

√
|∆pout|
patm

· sign(∆pout) (25)
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where ∆pout is the pressure drop across the valve.
sign(∆pout) is the sign function, which has value 1 if
the argument (∆pout) is positive, and −1 if the argu-
ment is negative. ∆pout is given by

∆pout = ρwgLa (26)

4 Control System Design

4.1 Introduction

Several controllers were designed and tried out both on
the simulator (based on the model described in Section
3) and the real system. The application of these con-
trollers is described briefly below. All of the controllers
worked on a simulator, but the only method which
worked well and without problems on the physical sys-
tem was cascade control, which also was enhanced with
feedforward from estimated load force. (Section 4.2
describes details of the cascade control system.) One
practical problem with the physical system is that the
height of the water tank is relatively small as the height
is about 1.5 m. Therefore, the lifting body with load
mass easily reached physical constraints during exper-
iments. Some of the other controllers might work well
too under different physical conditions.

Certainly, it is benefical if the control task is satis-
factorily solved with a “standard” controller and this
turned out to be the case in the present application
(with cascade control).

Below is a short description of the application of the
various controllers:

• Feedback linearization in combination with
a Kalman filter which estimates the state
variables. The state variables are the lifting
body position and velocity and the mass of air
in the air pocket. Basically, with this controller,
nonlinear (and linear) terms of the process model
are cancelled out. The resulting process model
is linear and simple (three integrators in series).
A linear pole-placement controller for this model,
augmented with an integrator in the controller to
obtain integral control action, was designed. Al-
though the controller worked excellently with the
simulated system (with no model errors assumed),
it was not able to stabilize the real system. This is
probably because of too large sensitivity to model
errors. Model errors are particularly apparent
when the system reaches physical constraints, but
this was not analyzed in detail. Furthermore, the
sensitivity to an erroneous estimate of mass of air
in the air pocket in the lifting body is probably
large. The mass of air is closely related to the
lifting force. Intuitively, an erroneously calculated

lifting force may cause problems for stabilization
of the body position.

• Linear feedback control with pole-design in
combination with a Kalman filter which es-
timates the state variables. This controller is
based on a simplified process model being valid
close to a certain operating point, which was se-
lected as the “static” operating point, where the
body is at rest (this is the most critical operating
point regarding stability). This controller worked
well on the simulated system, but not on the real
system, probably because of the same reasons as
for Feedback linearization (see above).

• PID controller with lead element in series
with the PID controller. Ordinary PID con-
trol could not stabilize the system at all due to
the dynamic properties of the process which is
roughly a triple integrator (three integrators in
series), at least at a static operating point where
damping hydrodynamic drag force (as modeled in
this project) is zero. Position is integral of velocity
which is integral of acceleration which is propor-
tional to mass of air in air pocket, and this mass is
roughly the integral of air inflow. A PID controller
can stabilize a double integrator, but not a triple
integrator because a phase lead of more than 90
degrees provided by the controller is needed, and
the PID controller can not add more positive phase
(lead action) than 90 degrees (ideally) to the con-
trol loop. Therefore, a lead-lag element with dom-
inant lead action providing the additional phase
lead was included in the controller, succeeding the
PID controller. Actually, this controller was able
to stabilize the real system, but it became unsta-
ble after small disturbances (perturbations), so it
was concluded that the controller was not suffi-
ciently robust. Also, the control signal was very
noisy, due to the derivative action corresponding
to the phase lead action. This noise makes the
stabilization difficult.

• PID controller together with body acceler-
ation feedback, where the acceleration was
estimated with a state observer. The purpose
of acceleration feedback is similar to the lead-lag
element mentioned above, i.e. to add sufficient
positive phase in the control loop. The observer,
which is designed from specified oberver poles, es-
timates the lifting bag position, velocity, and ac-
celeration using only position measurement. The
experiences with this controller are similar with
the experiences with PID controller with lead el-
ement. An alternative to estimating the accelera-
tion is, of course, to measure it, but this was not
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implemented in this project. (So, it is unclear if
control using acceleration measurement works bet-
ter than using acceleration estimate.)

• Cascade control, with feedforward from es-
timated load force. The primary (master) loop
of the cascade control system realizes position con-
trol, and the secondary (slave) loop realizes con-
trol of air height in the air pocket of the lifting
body. Cascade control is “industry standard”, and
it worked successfully without problems in this
project. In the controller design, the clue is to
identify the secondary process variable to be mea-
sured. The process model was a great help to this
end as the model revealed that the state variables
are lifting body position and velocity and mass
of air in the air pocket. The primary controller
is of course based on the lifting body position,
and indirectly on velocity which is calculated by
the derivative action of the PID controller. The
secondary controller is based on the third process
state variable - the air mass. (The cascade con-
troller resembles state-variable feedback, which is
known to be able to stabilize “any” process.) How-
ever, this mass is not measured directly. Instead, a
closely related variable, namely the height of the
air pocket, is measured. The cascade controller
was enhanced with feedforward from estimated
load force. Details about the cascade controller
and is given in Section 4.2, and details about es-
timation of load force and feedforward from the
force estimate is given in Sections 4.3 and 4.4, re-
spectively.

4.2 Cascade control

4.2.1 Control system structure
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Figure 4: Cascade control system.

Fig. 4 shows a block diagram of the cascade control
system based on feedback from measured underwater
lifting body position y (this feedback is of course oblig-
atory in a positional control system) and measured air

height La of the air pocket. Thus, two sensors were
implemented.

Since a mathematical model exists, it was tempting
to try feedback from estimated La as an alternative
to feedback from measured La. However, this did not
work well on the physical system as the control sys-
tem became unstable. The system relies on accurate
knowledge about La, and an estimate can not replace
the measurement in this case.

One practical benefit of cascade control compared
with more complex control structures is that the user
can manipulate the amount of air (the secondary or
internal process variable) directly during testing etc.
This is done by setting the primary controller into man-
ual mode, and manipulating the manual control signal
of the primary controller which is the setpoint of the
secondary controller.

4.2.2 Signal filters

Lowpass (time-constant) filters were implemented in
LabVIEW to smooth the y measurement – this is filter
F1 in Fig. 4 – and the La measurement – this is filter
F2 in Fig. 4. Also, a lowpass filter was implemented to
smooth the control signal, u = Fin – this is filter F3 in
Fig. 4. In the experiments the F1 filter was used with
time-constant of 0.1 s because that measurement was
somewhat noisy. The F3 filter was used with a time-
constant of 0.1 s to get a smooth control signal to the
valve. The F2 filter was actually not used (i.e. its time-
constant was set to zero) because the measurement of
La contained little noise.

4.2.3 Controller tuning

The master PID controller and the slave PI controller
were both tuned using the mathematical model of the
system.4 Both controllers were tuned from specifica-
tions of the response-time (time-constants) of the re-
spective control loops using Skogestad’s method of PID
controller tuning Skogestad (2003).

Tuning of the primary controller (PID) The primary
control variable is La, which is used as the setpoint of
the secondary loop. It is assumed that the dynamics of
the secondary loop which controls La is so fast relative
to the dynamics of the primary loop that the setpoint of
La is obtained approximately immediately. Thus, the
process model used as the basis for tuning the primary
loop is as follows:

mtotÿ = −flift − fh + fg + fd (27)

4And there was actually no need to retune the controllers when
the system was online (i.e. connected to the physical system)!
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where

mtot = mb +madd +mcyl +ml (28)

mb = ρw (Vcyl −AcylLa) (29)

flift = ρwAcylgLa (30)

fh = Khẏ |ẏ| (31)

fg =
(
ml +mcyl −mcyllift

)
g (32)

To tune the primary PID controller, a transfer func-
tion model with La as input and y as output is useful.
This model can be derived by rigorous linearization of a
nonlinear state-space model corresponding to eq. (27).
Alternatively, it can be derived as follows: Since the
hydrodynamic damping force fh given by eq. (31) has
its minimum value of zero when the speed ẏ is zero, the
most critical operating point – which should be used
for controller tuning – is at ẏ = 0. From the model
eqs. (27) – (32), the relation between La and y at this
operating point is

mtotÿ(t) = −ρwAcylgLa(t) (33)

From eq. (33) the transfer function from La to y is
found as

y(s)

La(s)
= P1(s) =

K1

s2
(34)

where the gain K1 is

K1 = −ρwAcylg
mtot

(35)

P1(s), which is a “double integrator”, can be con-
trolled with a PID controller. To tune the con-
troller parameters, Skogestad’s method, also denoted
the SIMC method5, Skogestad (2003) is used:

Kp =
1

4K1 (TC1
)
2 (36)

Ti = 4TC1 (37)

Td = 4TC1 (38)

where TC1
is the user-specified time-constant of the

control system (the primary loop). In general for the
double-integrator being tuned with Skogestad’s for-
mulas, it turns out that the actual (simulated) time-
constant is about three times larger than the specified
TC1

. But since TC1
has to be manually adjusted on the

real system, this inaccuracy is not important. TC1 is
the only tuning parameter of the PID controller. TC1

can be selected by trial-and-error on a simulator, and
should be further tuned on the real control system. It
was found that

TC1
= 2.5 s (39)

5SIMC = Simple Internal Model Control

was a good value on the simulator and on the real sys-
tem.

Skogestad’s tuning rule assumes a serial PID con-
troller function, which has the following transfer func-
tion (assuming u is the control signal and e is the con-
trol error):

u(s) = La(s) = Kps

(Tiss+ 1) (Tdss+ 1)

Tiss
e(s) (40)

where Kps , Tis , and Tds are the controller parameters
given by eqs. (36) – (38). However, the PID con-
troller used in this project actually implementes a par-
allel PID controller, which has the following transfer
function:

u(s) = La(s) =

[
Kpp +

Kpp

Tips
+KppTdps

]
e(s) (41)

To transform the serial PID settings to parallell PID
settings, we apply the following serial-to-parallel trans-
formations Skogestad (2003):

Kpp = Kps

(
1 +

Tds
Tis

)
=

1

4K (TC1
)
2

(
1 +

4TC1

4TC1

)
=

1

2K1 (TC1
)
2 = Kp (42)

Tip = Tis

(
1 +

Tds
Tis

)
= 4TC1

(
1 +

4TC1

4TC1

)
= 8TC1

= Ti (43)

Tdp = Tds
1

1 +
Tds

Tis

= 4TC1

1

1 +
4TC1

4TC1

= 2TC1
= Td (44)

Tuning of the secondary controller (PI) The sec-
ondary control loop controls La. The setpoint is Laref
which is equal to the output of the primary controller.
The control variable calculated by the secondary con-
troller is Fin, which is applied to the control valve.
The mathematical model of the process that the sec-
ondary controller controls, is given by eq. (20) which
is repeated here:

ṁa = Fin − Fout (45)

The relation between La and ma is given by

ma = ρaVa = ρaAcylLa (46)

Above, the air density ρa is given by eq. (14). Be-
cause y is known at any instant of time, ρa can be
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calculated by eq. (14) and is therefore known. Fur-
thermore, we can assume that the outflow Fout is a
disturbance. Then, the model of the process that the
secondary controller controls, is

ρaAcylL̇a = Fin − Fout (47)

The transfer function from control variable Fin to pro-
cess output variable La becomes

La(s)

Fin(s)
= P2(s) =

K2

s
(48)

which is an integrator. The gain K2 is

K2 =
1

ρaAcyl
=

1

ρaatm

(
1 + ρwgy

patm

)
Acyl

(49)

To tune the secondary controller for a process given
by eq. (48), we use Skogestad’s method Skogestad
(2003):

Kp =
1

K2TC2

(50)

Ti = 1.5TC2
(51)

Td = 0 (52)

where TC2
is the user-specified time-constant of the

secondary control system. It was found that

TC2
= 1.0 s (53)

is a good value on the simulator and on the real system.

4.3 Estimation of load force

An estimator of the load force was implemented. The
force estimate was used in feedforward control as ex-
plained in Section 4.4. The estimator was designed
as an observer with specified dynamics, see Goodwin
et al. (2001). The design is described in the following.

The mathematical model which is the basis of the
estimator is

mtotÿ = −ρwAcylgLa︸ ︷︷ ︸
flift

−Khẏ |ẏ|︸ ︷︷ ︸
fh

+ fe (54)

where fe is the environmental or disturbance force to
be estimated. fe will actually represent any force that
is not included in the model, or that is not modelled
correctly. It is assumed that fe is unknown without
any information about its variation. An appropriate
model which describes fe is therefore

ḟe = 0 (55)

It is assumed that all variables and parameters except
fe are known. In particular, La is known from its mea-
surement. In applications where the mtot varies sub-
stantially, it may be necessary to estimate it, but this
has not been done in the present project.
fe will be estimated with an observer, which is

a state-estimator designed from pole (or eigenvalues)
specifications. (An observer has the same structure as
the Kalman filter.) It is the difference between the
measured and the estimated position, e = ymeas−yest,
that updated the estimates, including the estimate of
fe. To design the observer, we need to write the model
in eqs. (54) - (55) as a state-space model (v is velocity):

ẏ = v (56)

v̇ = −ρwAcylg
mtot

La −
Khẏ |ẏ|
mtot

+
1

mtot
fe (57)

ḟe = 0 (58)

The observer is given by

ẏest = vest +K1e (59)

v̇est = −ρwAcylg
mtot

La −
Khvest |vest|

mtot

+
1

mtot
feest +K2e (60)

ḟeest = K3e (61)

K1, K2 and K3 are observer gains. Fig. 5 shows a
block diagram of the observer.

Process

(bag) with 

sensor

1/s

La ymeas

K3

1/s

1/mtot

fe,est

K1

1/s

K2

yestvest

_

-(Khvest|vest|)/mtot

-(rhowAcylgLa)/mtot

Closed (feedback) 

loop

Figure 5: The observer which is used to estimate the
environmental force fe. (1/s is the transfer
function of an integrator.)

The observer gains are calculated from specified dy-
namics in terms of poles of the closed (feedback) loop
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of the observer. It can be shown that the characteristic
polynomial of this loop is

cobs(s) = s3 +K1s
2 +K2s+

K3

mtot
(62)

The observer poles were selected as Butterworth poles
Franklin and Powell (1980). Butterworth poles give a
step response with a slight overshoot and good damp-
ing. (Of course, other poles configurations are possi-
ble.) Butterworth poles of a normalized third order
system correspond to the following characteristic poly-
nomial:

cbutternorm(s) = c3s
3 + c2s

2 + c1s+ c0 (63)

where
c3 = 1; c2 = 2; c1 = 2; c0 = 1 (64)

If we specify that the system has response-time6 Tr ap-
proximately equal to 3T , the Butterworth polynomial
becomes Haugen (2010)

cbutter1(s) = c3 (Ts)
3

+ c2 (Ts)
2

+ c1 (Ts) + c0 (65)

which has the same roots as

cbutter(s) = s3 +
c2
c3

1

T
s2 +

c1
c3

1

T 2
s+

c0
c3

1

T 3
(66)

Comparing cobs(s) and cbutter(s) gives the following
formulas for the observer gains:

K1 =
c2
c3

1

T
(67)

K2 =
c1
c3

1

T 2
(68)

K3 =
c0
c3

1

T 3
mtot (69)

The algorithm of the observer ready for progamming
is derived by discretizing the observer formulas in eqs.
(59) – (61) using Forward differentiation approxima-
tion. The resulting observer formulas are as follows:

yest(tk+1) = yest(tk) + h [vest(tk) +K1e(tk)] (70)

vest(tk+1) = vest(tk)

+h

[
−ρwAcylg

mtot
La(tk)− Khvest(tk)|vest(tk)|

mtot

+ 1
mtot

feest(tk) +K2e(tk)

]
(71)

feest(tk+1) = feest(tk) + hK3e(tk) (72)

where
e(tk) = ymeas(tk)− yest(tk) (73)

h is the time-step (0.02 s). The observer response-time
Tr was set to 0.8 s.

6Here, response-time means time to reach 63% of steady-state
value, similar to the definition of time-constant for first order
systems.

4.4 Feedforward from estimated load force

From eq. (54) we get the following feedforward con-
troller function:

Laff
=

1

ρwAcylg
feest (74)

which is added to the control output from the primary
controller, Laprim , so that the total reference to the
secondary controller becomes

Laref = Laprim + Laff
(75)

Fig. 6 shows the structure of the cascade control sys-
tem including estimator (observer) and feedforward
model.

C1 C2 P2 P1

S2

S1

u=

Fin yer La,ref La

Sensor 

(ultrasound)

Primary

Controller

(PID)

Secondary

controller

(PI)

Primary loop

Secondary

loop

Secondary

output

Primary

output
ProcessReference

F1

Filter

F2

F3

Sensor 

(pressure)

Filter

Filter

Disturbance

(environmental

force)

fe

Feedforward

Estimator 

(observer) for load 

force fe

fe,est

La,ff

y

La

Figure 6: The structure of the cascade control system
including estimator (observer) and feedfor-
ward model.

5 Experimental Results

5.1 Introduction

Experiments were run with cascade control with feed-
forward from estimated load force. Fig. 7 shows the
available parameters of the control system. The exper-
iments reported in the next sections are about

• position reference tracking, where the reference
was changed as a ramp, and

• disturbance (load) compensation, where the load
was suddenly changes by adding a mass of 0.5 kg.
The reference was then constant at 0.3 m.
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Figure 7: Controller settings of the cascade control sys-
tem in LabVIEW.

5.2 Position reference tracking

Fig. 8 shows the lifting body position reference (set-
point) r and measurement y, together with air body
height reference Laref and measurement La. Also the
control signal Fin applied to the control valve is shown.
The position reference was initially 0.3 m, and then
changed as a ramp downwards with slope 0.005 m/s,
and then upwards with the same slope. When the
reference was constant (before the ramping started),
the maximum position control error was approximately
0.02 m, due to various sources of noise in the system
(the error is zero in an ideal, noise-free system). During
the ramping, the maximum steady-state error was ap-
proximately 0.03 m. In an earlier experiment, cascade
control without feedforward from estimated force was
run. The control error was substantially larger than
with feedforward. (No plots are shown here.) The
superior control at using feedforward from estimated
load was somewhat surprising, because the load was
not changed during these experiments. It seems that
the load estimate encapsulates the effects of various
sources causing the control error to become different
from zero.

Figure 8: Cascade control with feedforward from esti-
mated load force: Ramped changes of the po-
sition reference.

5.3 Disturbance (load) compensation

Fig. 9 shows the responses as a mass load of 0.5 kg was
suddenly added to the body at time 360 s, and then
suddenly removed from the body at time 410 s. The
maximum response in the lifting body after the load
was added was 0.08 m, while the maximum response
after the load was removed was 0.12 m – an average
of 0.10 m. It took about 15 sec until the position was
back at the reference.

In another similar experiment without feedforward
the maximum response in the lifting body was 0.23
m, and position was back at the reference after 250
sec. Thus, disturbance compensation was substantially
improved with feedforward.

6 Conclusions

A mathematical model has been derived from physical
principles. The state variables are lifting body posi-
tion and speed, and mass of air in the air pocket of
the lifting body. Successful stabilizing position control
of the lifting body was obtained with cascade control.
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Figure 9: Cascade control with feedforward from esti-
mated load force: A load mass of 0.5 kg was
added at time 360 s, and then removed at
time 410 s.

The cascade control system is based on feedback from
both measured lifting body position and measured air
height in the lifting body. Thus, two sensors were im-
plemented. Both the master PID controller and the
slave PI controller were tuned using Skogestad’s model-
based PID tuning rules. The only specifications for
Skogestad’s tuning is the time-constant of the control
loop. The tunings were tried on the simulator before
being applied to the real system, and there was hardly
any need to retune the controllers. Feedforward from
estimated load force was implemented with the cas-
cade control system. At constant position reference the
maximum control error was 0.02 m. At ramping posi-
tion reference of slope 0.005 m/s the maximum control
error was 0.03 m. At constant reference but with a
suddenly added load mass of 0.5 kg the maximum con-
trol error was 0.10 m in average (0.08 m after the load
was added, and 0.12 m after the load was removed),
and the position was back at the reference after 15 s.
Experiments with cascade control but without feedfor-
ward gave a control error that was substantially (many
times) larger, both at changing reference and at chang-
ing disturbance (load mass).
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